首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Banda arc of eastern Indonesia manifests the collision of a continent and an intra-oceanic island arc. The presently active arc is located on what appears to be oceanic crust whereas the associated subduction trench is underlain by continental crust.Recent lavas from the Banda arc are predominantly andesitic and range from tholeiitic in the north through calc-alkaline to high-K calc-alkaline varieties in the southern islands. Defining this regular geochemical variation are significant increases in the abundances of K (2,600–21,000 ppm), Rb (10–90 ppm), Cs (0.5–7.0 ppm), and Ba (100–1,000 ppm) from tholeiitic to high-K calc-alkaline lavas. 87Sr/86Sr ratios in the tholeiites are relatively low, from 0.7045 to 0.7047. In the calc-alkaline lavas, 87Sr/86Sr ratios range from 0.7052 to 0.7095, and in the high-K calc-alkaline lavas from 0.7065 to 0.7080. There is no correlation between 87Sr/86Sr and major and trace element abundances, even among lavas from the same volcano. Late Cenozoic cordierite — bearing lavas from Ambon, north of the presently active arc, are highly enriched in K, Rb and Cs, which together with 87Sr/86Sr ratios of approximately 0.715 is consistent with their derivation from partial melting of pelitic material in the locally — thick crust.The high 87Sr/86Sr ratios in the Recent calc-alkaline lavas are interpreted to result from mixing of a sialic component with a mantle derived component. The most likely cause is subduction and subsequent melting of either sea-floor sediments or continental crust. However, it is probably unrealistic to model this type of deep contamination by simple two-component mixing. Such contamination implies that the volcanic rocks from the Banda arc are at least partly a manifestation of melting at or near the Benioff seismic zone. Temperatures of at least 750–800 ° C at the top of the subducted lithospheric slab at depths of approximately 150 km are also implied; temperatures very close to the solidus of hydrous basalt (eclogite) at such pressure. It is concluded that partial melting of the crustal component of the subducted lithospheric slab may play a significant role in island arc petrogenesis.This paper is the result of a cooperative project with the Geological Survey of Indonesia, Ministry of Mines and Energy  相似文献   

2.
We present a gravity model of the crustal structure in southern Mexico based on interpretation of a detailed marine gravity profile perpendicularly across the Middle America Trench offshore from Acapulco, and a regional gravity transect extending into continental Mexico across the Sierra Madre del Sur, the central sector of the Trans-Mexican Volcanic Belt, the Sierra Madre Oriental, the Coastal Plain, and into the Gulf of Mexico. The elastic thickness of the Cocos lithospheric plate was found to be 30 km. In agreement with a previous seismic refraction study, no major differences in crustal structure were observed on both sides of the O’Gorman Fracture Zone. The gravity high seaward of the trench is interpreted as due to the incipient flexure and crustal thinning. The gravity low at the axis of the trench is explained by the increase in water depth and the existence of low-density accreted or continental-derived sediments (2.25 and 2.40 g/cm3). A gravity high of 50 mGal extending about 100 km landward is interpreted as caused by local shoaling of the Moho. The crust attains a thickness of 42 km under the Trans-Mexican Volcanic Belt but thins beneath the Coastal Plain and the continental slope of the Gulf of Mexico. Gravity highs around the Sierra de Tamaulipas are interpreted in terms of relief of the lower–upper crustal interface, implying a shallow basement.  相似文献   

3.
In this study, the recent update of the gravity database with new measurements has raised the opportunity of improving the knowledge of the crustal structure beneath the large volcanic system called Mount Cameroon, and its implication in the regional tectonics. The multi-scale wavelet analysis method was applied to highlight the geologic features of the area, and their depths were estimated using the logarithmic power spectrum method. The results reveal a complex crustal structure beneath Mount Cameroon with high variation in the lateral distribution of crustal densities. The upper and lower crusts are intruded by dense materials originating from the mantle with less lateral extension. The trends of Tiko and Ekona faults along the intrusion suggest tectonic activities as deep as 25 km. The difference in mantle composition or temperature between the East and the West of the studied area is clearly seen in detailed wavelet images and agrees with a mantle origin for the Cameroon Volcanic Line.  相似文献   

4.
Acoustical structure of seismic profiles, and morphology of the Timor—Tanimbar—Ceram troughs and adjacent slopes of the outer Banda Arc, show remarkable similarities to equivalent parameters of many arcs subducting oceanic lithosphere and sediments, despite the fact that the outer Banda Arc is underlain by continental crust continuous with that of the colliding Australian craton. Such similarities include diffractions and anticlinal folds at the toe of the inner slope of the Timor—Tanimbar—Ceram troughs, which could be interpreted as thrust slices and thrust folds. Slope basins comprising sediments obviously dammed behind acoustic basement highs are also common on the trough inner slope, with some basins containing strata adjacent to the highs dipping away from the trough. Ridges and basins occur on the trough inner slope oriented parallel to the trough trend, and a slab continuous with down-bowed continental margin can often be detected a considerable distance in from the trough below the inner slope. On face value these observations are compatible with a mechanism of underthrusting by Australian and New Guinea crust with consequent imbrication and accretion of packages of off-scraped sediments. However, they may also be explained as possible outward-directed gravity slides of nappes displaced from uplifted inner portions of the arc, similar to the published structural interpretation of at least the eastern portion of the neighbouring, closely related New Guinea Fold Belt. It is shown that the weight of marine geological and geophysical evidence, including the alignment with the oceanic Indonesian Arc, the gravity anomalies, and the persistence of the various morphological and structural entities around the arc, favours subduction in the Timor—Tanimbar—Ceram troughs rather than massive gravity sliding towards the troughs. By this working model the outer Banda Arc would be the accretionary prism of a subduction zone which was formerly in an ocean-crust setting but since Pliocene has been interacting with continental lithosphere. If its structural evolution is analogous to that of the New Guinea orogenic belt, then the Banda Arc has not yet reached the stage of major, foreland-directed gravity slides. The proposed structural model for the Banda Arc is at variance with some but not all structural interpretations of the island of Timor, which is an emergent portion of the outer arc. Further critical studies are obviously required, both in marine and terrestrial areas, to resolve this impasse.  相似文献   

5.
A generalised crustal structure of Fiordland is proposed.Detailed mapping in part of Western Fiordland has led to the recognition of a basement granulite facies lower crustal material, probably Precambrian in age) separated by a regional thrust zone from a cover sequence (amphibolite facies gneisses, of Lower Paleozoic age). With the recognition of the basement—cover relationship and the aid of aeromagnetic anomalies Fiordland has been divided into four, generally north-northeast trending, regions. The Western Fiordland region is composed chiefly of basement rocks. The Central Fiordland and Southwestern Fiordland regions are made up predominantly of amphibolite and greenschist-facies metasediments and gneissic granodiorites of the cover sequence, which in Central Fiordland have a regional dip to the east, off the basement. The Eastern Fiordland region is characterised by a series of basic, intermediate and acid intrusive rocks. The more prominent magnetic anomalies in Eastern Fiordland, Southwestern Fiordland, and a large anomaly off the coast of Western Fiordland, are all considered to be caused by intrusive bodies. The presence of a positive gravity anomaly over Western Fiordland, coupled with a gravity low offshore, is consistent with the lower crust being uplifted and exposed in this area. Continuing shallow and intermediate-depth seismic activity beneath Fiordland, as well as the large size of the gravity anomaly, suggest that tectonic forces are currently acting to maintain Western Fiordland at its unusually high level.Fiordland thus displays a cross-section of continental crust: Precambrian(?) metaigneous granulites in the lower crust; Lower Paleozoic metasedimentary amphibolitefacies gneisses and melted equivalents in the middle crust; Mesozoic intrusives, and overlying Cretaceous and Tertiary sediments in the upper crust.  相似文献   

6.
A three-dimensional gravity modelling of the Carpatho-Pannonian region was carried out to get a better image of the Moho boundary and the most prominent intra-crustal density heterogeneities. At first, only the major density boundaries were considered: the bottom of the Tertiary basin fill, the Moho discontinuity and the lithosphere to asthenosphere boundary. Density contrasts were represented by relative densities. The improved density model shows a transitional unit of high density at the base of the crust along the Teisseyre-Tornquist Zone. In the Western Carpathians, an extensive, relatively low-density unit was inferred in mid-crustal levels. The border zone between the Southern Carpathians and the Transylvanian basin is characterized by a sharp, step-like contact of the two crustal units. The Moho configuration reveals important information on the tectonic evolution of the region. Zones of continental collision are represented by thick Moho roots (Eastern Alps, Eastern Carpathians). Transpressional orogenic segments, however, are different: in the Western Carpathians, the Moho is a flat surface; in the Dinarides, a medium Moho root is observed; the Southern Carpathians are characterized by a thick crustal root. The differences are explained with the presence or absence of “subductible” oceanic crust along the Carpathians during the extrusion of Pannonian blocks.  相似文献   

7.
Seismic wide angle and receiver function results together with geological data have been used as constraints to build a gravity-based crustal model of the central High Atlas of Morocco. Integration of a newly acquired set of gravity values with public data allowed us to undertake 2–2.5D gravity modelling along two profiles that cross the entire mountain chain. Modelling suggests moderate crustal thickening, and a general state of Airy isostatic undercompensation. Localized thickening appears restricted to the vicinity of a north-dipping crustal-scale thrust fault, that offsets the Moho discontinuity and defines a small crustal root which accounts for the minimum Bouguer gravity anomaly values. Gravity modelling indicates that this root has a northeasterly strike, slightly oblique to the ENE general orientation of the High Atlas belt. A consequence of the obliquity between the High Atlas borders and its internal and deep structure is the lack of correlation between Bouguer gravity anomaly values and topography. Active buckling affecting the crust, a highly elevated asthenosphere, or a combination of both are addressed as side mechanisms that help to maintain the high elevations of the Atlas mountains.  相似文献   

8.
The Andaman arc in the northeastern Indian Ocean defines nearly 1100 km long active plate margin between the India and Burma plates where an oblique Benioff zone develops down to 200 km depth. Several east-trending seismologic sections taken across the Andaman Benioff Zone (ABZ) are presented here to detail the subduction zone geometry in a 3-D perspective. The slab gravity anomaly, computed from the 3-D ABZ configuration, is a smooth, long-wavelength and symmetric gravity high of 85 mGal amplitude centering to the immediate east of the Nicobar Island, where, a prominent gravity “high” follows the Nicobar Deep. The Slab-Residual Gravity Anomaly (SRGA) and Mantle Bouguer Anomaly (MBA) maps prepared for the Andaman plate margin bring out a double-peaked SRGA “low” in the range of − 150 to − 240 mGal and a wider-cum-larger MBA “low” having the amplitude of − 280 to − 315 mGal demarcating the Andaman arc–trench system. The gravity models provide evidences for structural control in propagating the rupture within the lithosphere. The plate margin configuration below the Andaman arc is sliced by the West Andaman Fault (WAF) as well as by a set of sympathetic faults of various proportions, often cutting across the fore-arc sediment package. Some of these fore-arc thrust faults clearly give rise to considerably high post-seismic activity, but the seismic incidence along the WAF further east is comparatively much less particularly in the north, although, the lack of depth resolution for many of the events prohibits tracing the downward continuity of these faults. Tectonic correlation of the gravity-derived models presented here tends to favour the presence of oceanic crust below the Andaman–Nicobar Outer Arc Ridge.  相似文献   

9.
10.
The Himalaya and Lhasa blocks act as the main belt of convergence and collision between the Indian and Eurasian plates. Their crustal structures can be used to understand the dynamic process of continent–continent collision. Herein, we present a 3D crustal density model beneath these two tectonic blocks constrained by a review of all available active seismic and passive seismological results on the velocity structure of crust and lower lithosphere. From our final crustal density model, we infer that the present subduction-angle of the Indian plate is small, but presents some variations along the west–east extension of the orogenic belt: The dip angle of the Moho interface is about 8–9° in the eastern and western part of the orogenic belt, and about 16° in the central part. Integrating crustal P-wave velocity distribution from wide-angle seismic profiling, geothermal data and our crustal density model, we infer a crustal composition model, which is composed of an upper crust with granite–granodiorite and granite gneiss beneath the Lhasa block; biotite gneiss and phyllite beneath the Himalaya, a middle crust with granulite facies and possible pelitic gneisses, and a lower crust with gabbro–norite–troctolite and mafic granulite beneath the Lhasa block. Our density structure (<3.2 g/cm3) and composition (no fitting to eclogite) in the lower crust do not be favor to the speculation of ecologitized lower crust beneath Himalaya and the southern of Lhasa block.  相似文献   

11.
The Southern Granulite Terrain (SGT) is composed of high-grade granulite domain occurring to the south of Dharwar Craton (DC). The structural units of SGT show a marked change in the structural trend from the dominant north–south in DC to east–west trend in SGT and primarily consist of different crustal blocks divided by major shear zones. The Bouguer anomaly map prepared based on nearly 3900 gravity observations shows that the anomalies are predominantly negative and vary between −125 mGal and +22 mGal. The trends of the anomalies follow structural grain of the terrain and exhibit considerable variations within the charnockite bodies. Two-dimensional wavelength filtering as well as Zero Free-air based (ZFb) analysis of the Geoid-Corrected Bouguer Anomaly map of the region is found to be very useful in preparing regional gravity anomaly map and inversion of this map gave rise to crustal thicknesses of 37–44 km in the SGT. Crustal density structure along four regional gravity profiles cutting across major shear zones, lineaments, plateaus and other important geological structures bring out the following structural information. The Bavali Shear Zone extending at least up to 10 km depth is manifested as a plane separating two contrasting upper crustal blocks on both sides and the gravity high north of it reveals the presence of a high density mass at the base of the crust below Coorg. The steepness of the Moyar and Bhavani shears on either side of Nilgiri plateau indicates uplift of the plateau due to block faulting with a high density mass at the crustal base. The Bhavani Shear Zone is manifested as a steep southerly dipping plane extending to deeper levels along which alkaline and granite rocks intruded into the top crustal layer. The gravity high over Palghat gap is due to the upwarping of Moho by 1–2 km with the presence of a high density mass at intermediate crustal levels. The gravity low in Periyar plateau is due to the granite emplacement, mid-crustal interface and the thicker crust. The feeble gravity signature across the Achankovil shear characterized by sharp velocity contrast indicates that the shear is not a superficial structure but a crustal scale zone of deformation reaching up to mid-crustal level.  相似文献   

12.
Shallow and deep sources generate a gravity low in the central Iberian Peninsula. Long-wavelength shallow sources are two continental sedimentary basins, the Duero and the Tajo Basins, separated by a narrow mountainous chain called the Spanish Central System. To investigate the crustal density structure, a multitaper spectral analysis of gravity data was applied. To minimise biases due to misleading shallow and deep anomaly sources of similar wavelength, first an estimation of gravity anomaly due to Cenozoic sedimentary infill was made. Power spectral analysis indicates two crustal discontinuities at mean depths of 31.1 ± 3.6 and 11.6 ± 0.2 km, respectively. Comparisons with seismic data reveal that the shallow density discontinuity is related to the upper crust lower limit and the deeper source corresponds to the Moho discontinuity. A 3D-depth model for the Moho was obtained by inverse modelling of regional gravity anomalies in the Fourier domain. The Moho depth varies between a mean depth of 31 km and 34 km. Maximum depth is located in a NW–SE trough. Gravity modelling points to lateral density variations in the upper crust. The Central System structure is described as a crustal block uplifted by NE–SW reverse faults. The formation of the system involves displacement along an intracrustal detachment in the middle crust. This detachment would split into several high-angle reverse faults verging both NW and SE. The direction of transport is northwards, the detachment probably being rooted at the Moho.  相似文献   

13.
K. Hinz 《Tectonophysics》1973,20(1-4):295-302
Within the frame of the German-French project ANNA-1970, two long refraction profiles were investigated north and south of the island of Majorca.

For the southern Balearic Basin an oceanic crust can be derived from the travel-time curves consisting of a 4.0 km thick Cenozoic sedimentary layer with: Vp = 2.35 (km/sec) + 0.35 (sec−1) × Z (km) and a 5 km thick layer with: Vp = 4.0 (km/sec) + 0.28 (sec−1) × Z (km)

The transition to the upper mantle takes place at a depth of 12 km. Directly south of Majorca a crustal thickening was measured which may be caused by the process of crustal shortening. P]In the northern Balearic Basin a faulted transitional type of crust has been observed indicating probably an embryonic and juvenile ocean expansion.  相似文献   


14.
Numerous ge ological and geophysical investigations within the past decades have shown that the Rhinegraben is the most pronounced segment of an extended continental rift system in Europe. The structure of the upper and lower crust is significantly different from the structure of the adjacent “normal” continental crust.

Two crustal cross-sections across the central and southern part of the Rhinegraben have been constructed based on a new evaluation of seismic refraction and reflection measurements. The most striking features of the structure derived are the existence of a well-developed velocity reversal in the upper crust and of a characteristic cushion-like layer with a compressional velocity of 7.6–7.7 km/sec in the lower crust above a normal mantle with 8.2 km/sec. Immediately below the sialic low-velocity zone in the middle part of the crust, an intermediate layer with lamellar structure and of presumably basic composition could be mapped.

It is interesting to note that the asymmetry of the sedimentary fill in the central Rhinegraben seems to extend down deeper into the upper crust as indicated by the focal depths of earthquakes. The top of the rift “cushion” shows a marked relief which has no obvious relation to the crustal structure above it or the visible rift at the surface.  相似文献   


15.
Hari Narain 《Tectonophysics》1973,20(1-4):249-260
Studies carried out by various investigators up to 1971 to delineate the Indian crustal structure using body wave travel times, surface wave dispersion and gravity methods are summarised and reviewed. The average crustal thickness is found to be 35–40 km in the Indian peninsular shield, 30–35 km in the Indo Gangetic plains and 60–80 km in the Himalayas and the Tibetan plateau region. The limitations of the various methods used and the errors in the estimation of crustal thickness by them are discussed. As no deep refraction work for crustal studies has been carried out so far in India, this topic is not covered in this study.  相似文献   

16.
Seismic refraction profiles completed in the past twenty years reveal that the top of the basement complex generally lies near sea level in East Antarctica but typically 2 or 3 km below sea level in West Antarctica. Throughout much of East Antarctica the thickness of the layer overlying the basement complex is less than half a kilometer, although a Phanerozoic sequence more than 1 km thick probably underlies the ice at the South Pole. Throughout central West Antarctica, on the other hand, a section one to several kilometers thick generally overlies the basement complex. The observed sedimentary section is no more than one half kilometer thick on either side of the Transantarctic Mountains. Rocks with high seismic velocities typical of the lower continental crust occur within a few kilometers of the surface on both sides of the Transantarctic Mountains. This occurrence lends support to the hypothesis of an abrupt increase in crustal thickness between West and East Antarctica.

In 1969, deep seismic soundings were carried out by the 14th Soviet Antarctic Expedition near the coast of Queen Maud Land. The crustal thickness was found to be about 40 km near the mountains, decreasing to about 30 km near the coast. In the top 15 km of the crust there is a gradual downward increase in P-wave velocity from 6.0 to 6.3 km/sec. The average velocity through the crust is 6.4 km/sec and the measured velocity below the M-discontinuity is 7.9 km/sec.

At the southwestern margin of the Ronne Ice Shelf, near-vertical reflections from the M-discontinuity have been recorded. A mean P-wave velocity of 6 km/sec in the crust was measured, leading to an estimated depth to M of 24 km below sea level.

Seismic surface wave dispersion studies indicate a mean crustal thickness of about 30 km in West Antarctica and about 40 km in East Antarctica. The dispersion data also show that group velocities across East Antarctica are much closer to those along average continental paths than to those across the Canadian shield. The results thus support other indications that central East Antarctica is not a simple crystalline shield.

P′P′-reflections beneath the continent support the existence of a low-velocity channel for P-waves, but show no significant difference in deep structure between Antarctica and other continents.  相似文献   


17.
18.
Crustal contributions to arc magmatism in the Andes of Central Chile   总被引:52,自引:4,他引:52  
Fifteen andesite-dacite stratovolcanoes on the volcanic front of a single segment of the Andean arc show along-arc changes in isotopic and elemental ratios that demonstrate large crustal contributions to magma genesis. All 15 centers lie 90 km above the Benioff zone and 280±20 km from the trench axis. Rate and geometry of subduction and composition and age of subducted sediments and seafloor are nearly constant along the segment. Nonetheless, from S to N along the volcanic front (at 57.5% SiO2) K2O rises from 1.1 to 2.4 wt %, Ba from 300 to 600 ppm, and Ce from 25 to 50 ppm, whereas FeO*/MgO declines from >2.5 to 1.4. Ce/Yb and Hf/Lu triple northward, in part reflecting suppression of HREE enrichment by deep-crustal garnet. Rb, Cs, Th, and U contents all rise markedly from S to N, but Rb/Cs values double northward — opposite to prediction were the regional alkali enrichment controlled by sediment subduction. K/Rb drops steeply and scatters greatly within many (biotite-free) andesitic suites. Wide diversity in Zr/Hf, Zr/Rb, Ba/Ta, and Ba/La within and among neighboring suites (which lack zircon and alkali feldspar) largely reflects local variability of intracrustal (not slab or mantle) contributions. Pb-isotope data define a limited range that straddles the Stacey-Kramers line, is bracketed by values of local basement rocks, in part plots above the field of Nazca plate sediment, and shows no indication of a steep (mantle+sedimentary) Pb mixing trend. 87Sr/86Sr values rise northward from 0.7036 to 0.7057, and 143Nd/144Nd values drop from 0.5129 to 0.5125. A northward climb in basal elevation of volcanic-front edifices from 1350 m to 4500 m elevation coincides with a Bougueranomaly gradient from –95 to –295 mgal, interpreted to indicate thickening of the crust from 30–35 km to 50–60 km. Complementary to the thickening crust, the mantle wedge beneath the front thins northward from about 60 km to 30–40 km (as slab depth is constant). The thick northern crust contains an abundance of Paleozoic and Triassic rocks, whereas the proportion of younger arc-intrusive basement increases southward. Primitive basalts are unknown anywhere along the arc. Base-level isotopic and chemical values for each volcano are established by blending of subcrustal and deep-crustal magmas in zones of melting, assimilation, storage and homogenization (MASH) at the mantle-crust transition. Scavenging of mid-to upper-crustal silicic-alkalic melts and intracrustal AFC (prominent at the largest center) can subsequently modify ascending magmas, but the base-level geochemical signature at each center reflects the depth of its MASH zone and the age, composition, and proportional contribution of the lowermost crust.  相似文献   

19.
《Tectonophysics》1987,140(1):1-12
A crustal depth section was obtained from Deep Seismic Soundings (DSS) along the Alampur-Koniki-Ganapeshwaram profile, cutting across the northern part of the Proterozoic Cuddapah basin, India, running just south of latitude 16° N and between longitude 78° E and 81°E. The existence of a low-angle thrust fault at the eastern margin of the Cuddapah basin (Kaila et al., 1979) was confirmed along a second profile. Another low-angle thrust, along which charnockites with the granitic basement are upthrust against the Dharwars was delineated further east. The contact of the khondalites (lower Precambrian) with quaternary sediments near the east coast of India seems to be a fault boundary, which may be responsible for the thick sedimentary accumulation in the adjoining offshore region.The basement in the western part of the Cuddapah basin is very shallow and is gently downdipping eastward, to a depth of 1.7 km about 20 km west of Atmakur. It attains a depth of about 4.5 km in the deepest part of the Kurnool sub-basin, around Atmakur. Under the Nallamalai ranges its depth varies between 3.5 and 6.5 km, with an easterly dip. In the region north of the Iswarkuppam dome, the basement is at a depth of about 5.0 km, to about 6.8 km in the eastern part of the Cuddapah basin. Outside the eastern margin of the basin, the depth of the basement is about 1.8 km and further eastwards it is exposed. A fault at the contact of the khondalites with quaternary sediments near the east coast brings the basement down to a depth of approximately 1.3 km.In the Kurnool sub-basin the depth to the Moho discontinuity varies from 35 km under Atmakur to 39 km under the Nallamalai hills. In the region of the Iswarkuppam dome it is at a depth of about 36 km, deepening to about 39 km before rising to 37 km towards the east. Two-dimensional velocity modelling using ray-tracing techniques tends to confirm these results.Gravity modelling of the crustal structure, utilizing a four-layer crustal model in most parts along this profile, conforms to the observed gravity values. A weak zone in the eastern part of the profile where high-density material (density 3.05 g/cm3) has been found seems to be responsible for the gravity high in that part.  相似文献   

20.
In this study, receiver function analysis is carried out at 32 broadband stations spread all over the Gujarat region, located in the western part of India to image the sedimentary structure and investigate the crustal composition for the entire region. The powerful Genetic Algorithm technique is applied to the receiver functions to derive S-velocity structure beneath each site. A detail image in terms of basement depths and Moho thickness for the entire Gujarat region is obtained for the first time. Gujarat comprises of three distinct regions: Kachchh, Saurashtra and Mainland. In Kachchh region, depth of the basement varies from around 1.5 km in the eastern part to 6 km in the western part and around 2–3 km in the northern part to 4–5 km in the southern part. In the Saurashtra region, there is not much variation in the depth of the basement and is between 3 km and 4 km. In Gujarat mainland part, the basement depth is 5–8 km in the Cambay basin and western edge of Narmada basin. In other parts of the mainland, it is 3–4 km. The depth of Moho beneath each site is obtained using stacking algorithm approach. The Moho is at shallower depth (26–30 km) in the western part of Kachchh region. In the eastern part and epicentral zone of the 2001 Bhuj earthquake, large variation in the Moho depths is noticed (36–46 km). In the Saurashtra region, the crust is more thick in the northern part. It varies from 36–38 km in the southern part to 42–44 km in the northern part. In the mainland region, the crust is more thick (40–44 km) in the northern and southern part and is shallow in Cambay and Narmada basins (32–36 km). The large variations of Poisson’s ratio across Gujarat region may be interpreted as heterogeneity in crustal composition. High values of σ (∼0.30) at many sites in Kachchh and few sites in Saurashtra and Mainland regions may be related to the existence of high-velocity lower crust with a mafic/ultramafic composition and, locally, to the presence of partial melt. The existing tectono-sedimentary models proposed by various researchers were also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号