首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comet C/1999 S4 was observed with the 2m-telescopes of the Bulgarian National Observatory and Pik Terskol Observatory, Northern Caucasus, Russia, at the time of its disintegration. Maps of the dust brightness and color were constructed from images obtained in red and blue continuum windows, free from cometary molecular emissions. We analyze the dust environment of Comet C/1999 S4 (LINEAR) taking into account the observed changes apparent in the brightness images and in plots of Afρ profiles as function of the projected distance ρ from the nucleus. We also make use of the syndyne-synchrone formalism and of a Monte Carlo model based on the Finson-Probstein theory of dusty comets. The brightness and color of individual dust particles, which is needed to derive theoretical brightness and color maps of the cometary dust coma from the Monte Carlo model, is determined from calculations of the light scattering properties of randomly oriented oblate spheroids. In general, the dust of Comet C/1999 S4 (LINEAR) is strongly reddened, with reddening values up to 30%/1000 Å in some locations. Often the reddening is higher in envelopes further away from the nucleus. We observed two outbursts of the comet with brightness peaks on July 14 and just before July 24, 2000, when the final disintegration of the comet started. During both outbursts an excess of small particles was released. Shortly after both outbursts the dust coma “turns blue.” After the first outburst, the whole coma was affected; after the second one only a narrow band of reduced color close to the tail axis was formed. This difference is explained by different terminal ejection speeds, which were much lower than normal in case of the second outburst. In particular in the second, final outburst the excess small particles could originate from fragmentation of “fresh” larger particles.  相似文献   

2.
On March 31 and April 1, 1997, simultaneous photometry and polarimetry of comet Hale-Bopp's dust was conducted with the two-channel focal reducer of the Max-Planck-Institute for Aeronomy attached to the 2 m telescope of Pik Terskol Observatory (Northern Caucasus). Interference filters at642 nm and 443 nm selected red and blue narrow-band continuum windows. The observations have been averaged over the one hour of timethe comet could be observed. The polarization maps cover an area of about1 arcmin2 around the nucleus. The values of polarization degree measured close to the nucleus agree very well with observations obtained with aperture polarimetry. They are lower than in the surrounding coma by about 1%. In our field of view the polarization increases along the sun-comet line from the solar to the antisolar side by about 3%. The dust shells are visible in the polarization images. The polarization in the shells is higher by 1 to 2%and this increase is higher in the red than in the blue range. Therefore the ratio of red to blue polarization (≈ 1.2) increases in the shells by ≈ 0.03. In principle, the polarization excess in the shells, the ratio of red/blue polarization and the higher integrated polarization as compared to other comets can be explained by an excess of particles of radius of about 0.1 μm. Such particles, however, are subject to strong radiation pressure and will be pushed back into the tail before they reach the observed location of the shells. Real Rayleigh particles cannot explain the observed increase in the ratio of red/blue polarization. One therefore cannot exclude the possibility that the excess polarization in the shells is caused by fluffy aggregates via effects which are presently not well understood. The colour map shows features not well related to intensity and polarization, perhaps another dust shell of a different particle size. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Svoreň  J.  Komžík  R.  Neslušan  L.  Živňovský  J. 《Earth, Moon, and Planets》1997,78(1-3):149-154
Photometric observations of comet C/1995 O1 (Hale-Bopp) carried out at the Stará Lesná Observatory since February to April 1997 are analyzed and discussed. Emission band fluxes and continuum fluxes are presented, from which the total numbers of molecules in the columns of the coma encircled by diaphragms are calculated. The production rates are estimated from the conventional Haser model. We found that the photometric exponent of dust contribution two months prior perihelion was n = 5.2. The photometric exponent n of the cometary magnitude solely to the C2 emission alone equals 3.3 and that of CN equals 2.5. These values can be explained by a fact that the maximums of production rates of the gases were reached between March 2and 12 and not at the perihelion as it is valid for dust. These results are compared with the values of 1P/Halley (1986 III) under the similar conditions, obtained with the same method and instrument. C/Hale-Bopp exhibited 4.1 times more molecules radiating the CN-emission than 1P/Halley in the same column of the coma. The continuum flux of C/Hale-Bopp was also very strong. The ratios (to 1P/Halley) are 94:1 (Cont. 484.5) and 74:1 (Cont. 365.0). The cometary colour was the same as that of the Sun. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
This review begins with a discussion of the techniques needed for observations of scattered light from cometary dust. After an introduction into the basic concepts of the scattering process, observations of the phase curves of brightness, colour and polarization are covered. Images of colour and polarization are presented and the observed relation of colour and polarization in jets and shells is discussed. The interpretation of the measurements is based on the power law size distributions of dust grains observed from space. The power index must lie between 2 and 4 to provide the mass budget and visibility of the dust coma in accordance with the basic facts of cometary physics. Application of mechanical (radiation pressure) theory to cometary images allows us to derive related power law distributions for comets not explored by spacecraft. Grain scattering models are presented and compared with observations. A prediction is made of the spatial distribution of Stokes parameters U and V in the presence of aligned particles. Up to now such patterns have not been observed. Future work should include the exploration of comets at small and possibly very small phase angles and a detailed comparison of polarization and colour images of comets with thermal images and with models based on mechanical theory. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We present new Hubble Space Telescope ( HST  ) continuum and spectral line images of the radio galaxy Cygnus A. The images show much complex structure in the central kpc2. Continuum images show the central dust lane in detail, allowing detailed maps of E ( B  −  V ) to be constructed; the dust appears to follow a roughly Galactic extinction law. The emission-line components are resolved in the line images and investigated in detail. A clear 'opening cone' morphology is found, especially in the lines of Hα and [O  i ]. Blue condensations are seen in the south-eastern emission component and surrounding the central region. These are almost certainly due to star formation, which began <1 Gyr ago as deduced from the colour of the regions. More extended blue continuum is also seen and corresponds to the blue polarized component detected by other recent spectropolarimetric observations.  相似文献   

6.
We present observations of the spiral galaxy NGC 7331 using the Submillimetre Common User Bolometer Array (SCUBA) on the James Clark Maxwell Telescope. We have detected a dust ring of 45 arcsec radius (3.3 kpc) at wavelengths of 450 and 850 μm. The dust ring is in good correspondence with other observations of the ring in the mid-infrared (MIR), CO and radio continuum, suggesting that the observed dust is associated with molecular gas and star formation. A B  −  K colour map shows an analogous ring structure with an asymmetry about the major axis, consistent with the extinction being produced by a dust ring. The derived temperature of the dust lies between 16 and 31 K and the gas-to-dust ratio lies between 150 and 570, depending on the assumed dust emission efficiency index (β = 1.5 or 2).  相似文献   

7.
The Solar System dust bands discovered by IRAS are toroidal distributions of dust particles with common proper inclinations. It is impossible for particles with high eccentricity (approximately 0.2 or greater) to maintain a near constant proper inclination as they precess, and therefore the dust bands must be composed of material having a low eccentricity, pointing to an asteroidal origin. The mechanism of dust band production could involve either a continual comminution of material associated with the major Hirayama asteroid families, the equilibrium model (Dermott et al. (1984) Nature 312, 505–509) or random disruptions in the asteroid belt of small, single asteroids (Sykes and Greenberg (1986) Icarus 65, 51–69). The IRAS observations of the zodiacal cloud from which the dust band profiles are isolated have excellent resolution, and the manner in which these profiles change around the sky should allow the origin of the bands, their radial extent, the size-frequency distribution of the material and the optical properties of the dust itself to be determined. The equilibrium model of the dust bands suggests Eos as the parent of the 10° band pair. Results from detailed numerical modeling of the 10° band pair are presented. It is demonstrated that a model composed of dust particles having mean semimajor axis, proper eccentricity and proper inclination equal to those of the Eos family member asteroids, but with a dispersion in proper inclination of 2.5°, produces a convincing match with observations. Indeed, it is impossible to reproduce the observed profiles of the 10° band pair without imposing such a dispersion on the dust band material. Since the dust band profiles are matched very well with Eos, Themis and Koronis type material alone, the result is taken as strong evidence in favor of the equilibrium model. The effects of planetary perturbations are included by imposing the appropriate forced elements on the dust particle orbits (these forced elements vary with heliocentric distance). A subsequent model in which material is allowed to populate the inner solar system by a Poynting-Robertson drag distribution is also constructed. A dispersion in proper inclination of 3.5° provides the best match with observations, but close examination of the model profiles reveals that they are slightly broader than the observed profiles. If the variation of the number density of asteroidal material with heliocentric distance r is given by an expression of the form 1/rτ then these results indicate that γ < 1 compared with γ = 1 expected for a simple Poynting-Robertson drag distribution. This implies that asteroidal material is lost from the system as it spirals in towards the Sun, owing to interparticle collisions.  相似文献   

8.
The crash of comet Shoemaker-Levy 9 fragments with Jupiter was observed at Aziziah Observatory, Hail, in Saudi Arabia. Three different observational methods (CCD photometric, spectroscopic, and photoelectric photometric) were used. The observations began on the 13th of July and ended on the 23 of July 1994. The CCD photometric results of the impact of fragmentsG andL are presented here, showing clearly the dark clouds resulted from those impacts. The measurements of the Titanium Oxide (TiO) absorption depth of impactsG andL showed an increase compared to the absorption depth of undisturbed regions, which indicates an increase in the TiO abundance. The increase in the colour reddening towards shorter wavelength found inG andL impacts indicate a composition of small size dust particles. Based on observations obtained at Aziziah Observatory, Saudi Arabia.  相似文献   

9.
A very long series of photographic observations of the comet Hale-Bopp has been made during January–April 1997 at the double astrograph (400/2000) of the Main Astronomical Observatory (Kyiv, Ukraine). Some of the cometary photos were obtained with two wide-band filter combinations. One of these combinations isolates C2 emission, another — the nearby dust continuum. The images were digitized by means of AMDPH-XY machine and then calibrated following the standard procedure. After subtraction of the dust continuum the distribution of surface brightness in the C2 emission coma of comet Hale-Bopp was studied. We found an asymmetric brightness distribution both pre- and post-perihelion. On 21.77 April 1997 a secondary brightness peak is found at the distance of 1.03 × 105 km from the nucleus. It is possible that this peak is related to the extended source of the C2 molecules. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We present results of polarimetric and photometric observations of bright comet C/1995 O1 (Hale-Bopp) obtained at the 0.7 m telescope of Kharkov University Observatory from June 18, 1996 to April 24, 1997. The IHW and HB comet filters were used. The C2 and C3 production rates for Hale-Bopp are more than one order of magnitude larger and the dust production rates are more than two orders of magnitude larger than the Halley ones at comparable distances. Hence, Hale-Bopp was one of the most dusty comets. The average UC-BC and BC-RC colours of the dust were −0.02 and 0.13 mag, respectively. The polarization of comet Hale-Bopp at small phase angles of 4.8–13.0° was in good agreement with the date for comet P1/Halley at the same phase angles in spite of the fact that the heliocentric distances of comments differed nearly twice. However, at intermediate phase angles of 34–49° the polarization of comet Hale-Bopp was significantly larger than the polarization of the other dusty comets. It is the first case of such a large difference found in the continuum polarization of comets. The wavelength dependence of polarization for Hale-Bopp was steeper than for other dusty comets. The observed degree of polarization for the anti-sunward side of the coma was permanently higher than that for the sunward shell side. The polarization phase dependence of Hale-Bopp is discussed and compared with the polarization curves for other dusty comets. The peculiar polarimetric properties of comet Hale-Bopp are most likely caused by an over-abundance of small or/and absorbing dust particles in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
S. Ganesh 《Icarus》2009,201(2):666-673
Comet NEAT C/2001 Q4 was observed for linear polarization using the optical polarimeter mounted at the 1.2 m telescope at Mt. Abu Observatory, during the months of May and June 2004. Observations were conducted through the International Halley Watch narrow band (continuum) and BVR broad band filters. During the observing run the phase angle ranged from 85.6° in May to 55° in June. As expected, polarization increases with wavelength in this phase angle range. Polarization colour in the narrow bands changes at different epochs, perhaps related to cometary activity or molecular emission contamination. The polarization was also measured in the cometary coma at different locations along a line, in the direction of the tail. As expected, we notice minor decrease in the polarization as photocenter (nucleus) is traversed while brightness decreases sharply away from it. Based on these polarization observations we infer that the Comet NEAT C/2001 Q4 has high polarization and a typical grain composition—mixture of silicates and organics.  相似文献   

12.
T.A. Ellis 《Icarus》2008,194(1):357-367
Intensity profiles were obtained for the C2 and CN emission and blue continuum of Comet Bradfield (1987s), from observations obtained over a 10 week period starting shortly before perihelion. Model intensity profiles were produced and then fitted to the observed profiles, and used to put constraints on some of the dust and gas parameters. Most of these parameters, including the gas and dust outflow speeds from the cometary nucleus and the molecular lifetimes, were consistent with expected values. The best fitting models incorporate significant dust particle fragmentation and extended emission of CN from dust, both occurring in the inner coma. In addition, although there may have been enhancement of gas and dust emission on the sunward side of the cometary nucleus, it appears that the tailward side maintained a significant level of activity.  相似文献   

13.
Eleven low-mass cores are found in the Orion Molecular Cloud 2 from VLA observations of the line emission of NH3 (1,1). They are perhaps clumps prior to gravitatonal collapse with average radius of 0.03 pc and mass of 3.5 M, distributed along the central axes of filaments in the NS direction. We find a velocity gradient of 5 km s−1 pc−1 in the declination direction within a 3′ region. Based on our NH3(1,1) observations and compared with dust continuum emission at millimilion wavelength as well as in the infrared, we suggest that most of these dense cores are probably protosteller condensations, not yet containing stellar cores, but are self-gravitating systems in thermodynamical equilibrium.  相似文献   

14.
Comet C/1999 S4 (LINEAR) was exceptional in many respects. Its nucleus underwent multiple fragmentations culminating in the complete disruption around July 20, 2000. We present circular polarization measurements along the cuts through the coma and nucleus of the comet during three separate observing runs, in June 28-July 2, July 8-9, and July 21-22, 2000. The circular polarization was detected at a rather high level, up to 0.8%. The left-handed as well as right-handed polarization was observed over the coma with the left circularly polarized light systematically observed in the sunward part of the coma. During our observations the phase angle of the comet varied from 61 up to 122°, which allowed us to reveal variations of circular polarization with the phase angle. Correlation between the degree of circular polarization, visual magnitude, water production rate, and linear polarization of Comet C/1999 S4 (LINEAR) during its final fragmentation in July 2000 was found. The mechanisms that may produce circular polarization in comets and specifically in Comet C/1999 S4 (LINEAR) are discussed and some tentative interpretation is presented.  相似文献   

15.
Spectropolarimetric observations from 5000 to 8000 Å have been obtained for comets P/Austin (1982g) and P/Churyumov-Gerasimenko (1982f). The observations were spaced over phase angles of 50–125° for comet Austin and 10–40° for comet Churyumov-Gerasimenko. The use of spectropolarimetry allowed an evaluation of continuum polarization without molecular line contamination. Especially for comet Churyumov-Gerasimenko, the curve of polarization versus phase angle resembles curves for asteroids, where the polarization is negative (electric vector maximum parallel to the scattering plane) for phase angles less than 20° and the most negative polarization is from ?1 to ?2%. The negative polarization at backscattering angles may be due to multiple scattering in agglomerated grains, as assumed for asteroids, or to Mie scattering by small dielectric particles. If multiple scattering is important in comet dust, polarization measurements may imply a low albedo, less than 0.08. The polarization of comet Austin remained steady during a large change in the dust production rate. Both comets increased continuum flux by a factor of 2 near perihelion. The continuum of comet Churyumov-Gerasimenko had the shape of the solar spectrum with derivations less than 5%. The equivalent width of spectral features of C2, NH2, and O varied as r?2.  相似文献   

16.
Tenuous dust clouds of Jupiter's Galilean moons Io, Europa, Ganymede and Callisto have been detected with the in-situ dust detector on board the Galileo spacecraft. The majority of the dust particles have been sensed at altitudes below five radii of these lunar-sized satellites. We identify the particles in the duut clouds surrounding the moons by their impact direction, impact velocity, and mass distribution. Average particle sizes are between 0.5 and 1 μm, just above the detector threshold, indicating a size distribution with decreasing numbers towards bigger particles. Our results imply that the particles have been kicked up by hypervelocity impacts of micrometeoroids onto the satellites' surfaces. The measured radial dust density profiles are consistent with predictions by dynamical modeling for satellite ejecta produced by interplanetary impactors (Krivov et al., 2003, Planet. Space Sci. 51, 251-269), assuming yield, mass and velocity distributions of the ejecta from laboratory measurements. A comparison of all four Galilean moons (data for Ganymede published earlier; Krüger et al., 2000, Planet. Space Sci. 48, 1457-1471) shows that the dust clouds of the three outer Galilean moons have very similar properties and are in good agreement with the model predictions for solid ice-silicate surfaces. The dust density in the vicinity of Io, however, is more than an order of magnitude lower than expected from theory. This may be due to a softer, fluffier surface of Io (volcanic deposits) as compared to the other moons. The log-log slope of the dust number density in the clouds vs. distance from the satellite center ranges between −1.6 and −2.8. Appreciable variations of number densities obtained from individual flybys with varying geometry, especially at Callisto, are found. These might be indicative of leading-trailing asymmetries of the clouds due to the motion of the moons with respect to the field of impactors.  相似文献   

17.
On July 28, 2006 the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences recorded the spectrum of a faint meteor. We confidently identify the lines of FeI and MgI, OI, NI and molecular-nitrogen (N2) bands. The entry velocity of the meteor body into the Earth’s atmosphere estimated from radial velocity is equal to 300 km/s. The body was several tens of a millimeter in size, like chondrules in carbon chondrites. The radiant of the meteor trajectory coincides with the sky position of the apex of the motion of the Solar system toward the centroid of the Local Group of galaxies. Observations of faint sporadic meteors with FAVOR TV CCD camera confirmed the radiant at a higher than 96% confidence level. We conclude that this meteor particle is likely to be of extragalactic origin. The following important questions remain open: (1) How metal-rich dust particles came to be in the extragalactic space? (2) Why are the sizes of extragalactic particles larger by two orders of magnitude (and their masses greater by six orders of magnitude) than common interstellar dust grains in our Galaxy? (3) If extragalactic dust surrounds galaxies in the form of dust (or gas-and-dust) aureoles, can such formations now be observed using other observational techniques (IR observations aboard Spitzer satellite, etc.)? (4) If inhomogeneous extragalactic dust medium with the parameters mentioned above actually exists, does it show up in the form of irregularities on the cosmic microwave background (WMAP etc.)?  相似文献   

18.
The infrared photometric observations of V4334 Sgr in 2000 are presented. They show that a gradual, but nonmonotonic increase in the optical depth of its dust envelope, which was formed early in 1997, had continued until the mid-summer. In July 1999 and July 2000, τ(1.25 µm)≈7.7 and 11.3, respectively. From July through October 2000, the optical depth decreased appreciably. From October 1998 (the first deep minimum of visual brightness) until now, the amplitude of the bolometric-magnitude variations in V4334 Sgr is $ \sim 0^m .5$ . The relation between the bolometric and L magnitudes (m bol, L) can be fitted by a linear function, m bol = 1.25L + 4.04. In the dust-envelope model chosen, the percentage of large (a gr=0.2–0.3 µm) dust grains by particle number increased by a factor of ~4. In the summer of 2000, their fraction by mass was ~78%, and they mainly contributed to the optical depth of the dust envelope. No appreciable correlation between optical depth and bolometric flux was observed.  相似文献   

19.
Image-tube filter photographs calibrated against photoelectric filter photometry have been used to give maps of M42 in absolute flux units over the central 15 arc min of the nebula in Hα, [Nii] (λ 6584 Å), Hβ and continuum at λ 4700 Å. Maps of the ratios Hα/[Nii] and (for the first time) of continuum/Hβ have been produced with unprecedented spatial resolution. These show that the gas to dust ratio is high near the exciting stars and falls strongly in the vicinity of large scale ionization fronts marked by minima in the Hα/[Nii] ratio. These results are interpreted in terms of detailed shell models containing either ice or graphite or silicate scattering particles. In all models there must be a central hole in the distribution of scattering particles. The effect of neutral globules and intrusions is investigated. It is found that all types of grain are trapped inside neutral intrusions near the centre of the nebula by the pressure of the Lα light surrounding the globule, but in the early evolution of the nebula particles can escape into the ionized medium when fronts are R-type. Ice grains escaping at this time will be destroyed for distances to the exciting stars less than 1 pc. These results can explain both the central hole in dust and the underabundance of oxygen in the ionized gas observed earlier. Arguments depending on colour index of the scattered light indicate that mixtures of scattered light from ice in the globules and from ice in the ionized medium can explain the observations, but that the graphite and silicate particles fail. A schematic model of the Orion Nebula is presented to attempt to explain the large scale phenomena observed here. It demonstrates that simple shell models for this nebula are dubious.  相似文献   

20.
We propose a simple theoretical model for aggregative and fragmentative collisions in Saturn’s dense rings. In this model the ring matter consists of a bimodal size distribution: large (meter sized) boulders and a population of smaller particles (tens of centimeters down to dust). The small particles can adhesively stick to the boulders and can be released as debris in binary collisions of their carriers. To quantify the adhesion force we use the JKR theory (Johnson, K., Kendall, K., Roberts, A. [1971]. Proc. R. Soc. Lond. A 324, 301–313). The rates of release and adsorption of particles are calculated, depending on material parameters, sizes, and plausible velocity dispersions of carriers and debris particles. In steady state we obtain an expression for the amount of free debris relative to the fraction still attached to the carriers. In terms of this conceptually simple model a paucity of subcentimeter particles in Saturn’s rings (French, R.G., Nicholson, P.D. [2000]. Icarus 145, 502–523; Marouf, E. et al. [2008]. Abstracts for “Saturn after Cassini–Huygens” Symposium, Imperial College London, UK, July 28 to August 1, p. 113) can be understood as a consequence of the increasing strength of adhesion (relative to inertial forces) for decreasing particle size. In this case particles smaller than a certain critical radius remain tightly attached to the surfaces of larger boulders, even when the boulders collide at their typical speed. Furthermore, we find that already a mildly increased velocity dispersion of the carrier-particles may significantly enhance the fraction of free debris particles, in this way increasing the optical depth of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号