首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clay mineral assemblages in alluvial mudrocks are important for paleoclimatic interpretation and for understanding burial diagenetic cementation in sandstones, but it is commonly difficult to unravel the relative importance of source weathering, pedogenesis and diagenesis in their origin. The clay mineral assemblages in fluvial overbank mudrocks from the Lower Cretaceous Chaswood Formation in central Nova Scotia, investigated by X-ray diffraction analysis of the < 2 µm fraction of 45 samples, include kaolinite, illite, vermiculite, and mixed layer kaolinite/expandable clay and mica/vermiculite. The assemblages vary with depositional facies. Wetland organic-rich mudrocks have large amounts of amorphous material and kaolinite is the dominant clay mineral. In the eastern part of the basin, where overbank mudrocks were episodically uplifted by syn-sedimentary strike-slip faulting, cumulate ultisol and alfisol paleosols are common. In the ultisols, hematite is enriched and kaolinite increases at the expense of illite in the B horizon. Alfisols contain more illite and vermiculite and the B horizon is enriched in goethite. In the western part of the basin, where thin sandstones with abundant diagenetic kaolinite cement are interbedded with the mudrocks, the distinctive clay mineral assemblage of mica/vermiculite mixed layer, vermiculite with 15.5 Å peak, and kaolinite/expandable mixed layer clay with a 17.7 Å peak is interpreted to result from bacterially-mediated oxidation of organic matter below the paleo-water table during early burial diagenesis. Deeper burial diagenesis may lead to slightly higher kaolinite crystallinity. Volcanic ash appears to alter to kaolinite/expandable mixed layer clay with a 7.9 Å peak. Comparison with the continuously subsiding and rapidly accumulated Wessex Formation of southern England, formed at a similar paleolatitude, shows the strong role of pedogenic processes and early diagenesis by meteoric water in development of clay mineral assemblages in the locally tectonically uplifted Chaswood Formation.  相似文献   

2.
四川广安地区侏罗系粘土矿物类型主要为绿泥石、高岭石、伊蒙混层和伊利石;同一口井随着深度的增加,伊利石、绿泥石含量增加,伊蒙混层中的蒙脱石混层比降低。粘土矿物特征与储集层物性的相关性分析认为:伊蒙混层含量、伊利石含量均与储集层孔渗性能呈负相关,绿泥石与高岭石含量与储集层孔渗性呈正相关;通过对伊蒙混层中蒙脱石的混层比的计算,大多数为有序混层,说明该区凉高山组处于生油高峰期,这与岩石中TOC(%)介于0.8与1.3,Ro(%)介于0.7与1.2相吻合。  相似文献   

3.
相山矿田热液水云母化及其与铀矿化关系研究   总被引:7,自引:2,他引:5  
相山铀矿田广泛发育热液水云母化,且水云母以伊利石、蒙皂石混层矿物居多。对典型矿床围岩、蚀变岩石和矿石中粘土组成的定量分析和化学成分分析表明:随着U元素的逐渐富集,粘土矿物存在蒙皂石→伊利石、蒙皂石混层矿物→伊利石的转化过程,而且这一转化过程在本区是一个动态的平衡过程,这一研究结果很好解释了相山矿田以群脉矿床的为主的特征;蚀变岩石中高蒙皂石含量的粘土矿物为后期富大矿起了富集U的作用。  相似文献   

4.
In the oxidized zone of Rakha-Chapri Block of the Singhbhum Copper Belt, alteration of biotite, chlorite and muscovite extends down to ∼ 60 m. Below this level, these minerals are not altered, implying a supergene origin for the clay alteration products. The altered host-rock profile consists of an upper, predominantly kaolinitic zone and a lower illite-chlorite rich zone, with the clay minerals showing an overall tendency to decrease with depth. Kaolinite is the dominant clay mineral, the proportion of which varies considerably with depth, and chlorite, illite and halloysite are the other clay minerals of the oxidized zone. Incipient removal of copper even from the cap rocks, in-situ transformation of sulphides to oxidized compounds, and the unusual mode of occurrence of copper in the oxidized zone are the characteristic features of the Rakha-Chapri Block. Insufficient localized hydrolysis of silicates is considered responsible for relatively low acidity in the oxidized zone as a whole. Copper forms a component of the clay minerals probably as surface adsorbed or/lattice-bound ions.  相似文献   

5.
The peteromineralogical characterization of the soil was carried out for the 12 soil profiles exposed in the Shorea robusta dominated forests of the Siwalik forest division, Dehradun. The quartz was observed as the dominating light mineral fraction (64–80%) in all the profiles studied. Biotite, hornblende, zircon, tourmaline, rutile and opaques comprising of iron minerals constituted the heavy mineral fraction (20%). The mineralogy of both the sand and clay fractions revealed a mixed mineralogy. The clay minerals in the order of their dominance were vermiculite, illite, kaolinite and mixed layer minerals. The presence of vermiculite and illite in appreciable quantities indicates that these were synthesized from the K-rich soil solution, as orthoclase and micas were present in significant quantities in the sand minerals. The mineral suites identified in the study shows that the geological, climatological and topographical factors of the region collectively played a dominant role in their formation and transformation. After critical appraisal of the results, it may be deduced that the mineralogical composition, physicochemical properties and total elemental analysis of the soils do not show any deficiency of the bases and other plant nutrients in general. The inherent fertility of the soil is good as indicated by the sand and clay mineralogy of the soil and the biotite and feldspar together with the mica is an important source of nutrients for the vegetation in the soils of the Doon valley.  相似文献   

6.
Transmission and scanning electron microscopy were utilized to investigate the nature and mechanisms of alteration of abundant detrital biotite of volcanic origin and progressive modification of phyllosilicate aggregates in a prograde sequence of pelitic rocks (illite crystallinity index = 0.19–0.58λ2θ) from the Gaspé Peninsula in Quebec.
Detrital biotite has been diagenetically altered to form corrensite and chlorite through two mechanisms; (1) layer-by-layer replacement gave rise to interstratification of packets of layers and complex mixed layering via several kinds of layer transitions between biotite and chlorite, corrensite or smectite; (2) dissolution-transport-precipitation resulted in the formation of relatively coarse-grained aggregates of randomly orientated, corrensite-rich flakes and fine-grained corrensite intergrown with chlorite and illite in the matrix.
The data show that stacks consisting of alternating packets of trioctahedral and dioctahedral phyllosilicates originated during early diagenesis when lenticular fissures in strained altering biotite were filled by dioctahedral clays. Subsequent prograde evolution of dioctahedral clays occurred through deformation, dissolution and crystallization, and overgrowth. Illite evolved to muscovite, with K in part provided through biotite alteration, and corrensite/chlorite to homogeneous chlorite. The alteration of detrital biotite is closely related to the formation of titanite and magnetite in diagenetic rocks, and pyrite, calcite and anatase or rutile in the higher grade rocks.
The observations demonstrate that detrital biotite of volcanic origin may be the principal precursor of chlorite in chlorite-rich metapelites originating in marginal basins. The mineral parageneses suggest that the transitions from corrensite to chlorite and illite to muscovite may be a function of local chemistry and time.  相似文献   

7.
The Jutulsessen area, can provide a vital clue to the supercontinent assembly of Gondwana Land as it is situated within the Circum East Antarctic Mobile Belt just east of the Penksockett rift marking the divide between the central Dronning Maud Land from the Western Dronning Maud Land. This landmass is dominated by migmatitic quartzo-feldspathic rocks intruded by syn to post-tectonic granites. The work highlights the data from western part cDML area with a view to arrive at a more comprehensive model for the cDML and subsequently to the super continent assembly. Granitic and migmatitic gneisses comprising of amphibolitic and biotite rich enclaves. The gneisses show variations from quartzo-felspathic gneiss to amphibolitic gneiss. The area has witnessed complex geological history involving at different deformational episodes with concomitant metamorphism. The pervasive dominant foliation trends NW-SE with shallow to medium dips towards SW. In the Stabben area, a nonfoliated intrusive syenite-gabbro pluton limits the gneissic exposures. Compositionally, the orthogneisses plot in the monzogranitegranodiorite field where as the mafic dykes/enclaves plot in the basalt-andesite-rhyodacite field. The bulk geochemical characteristics suggest significant crustal contamination. Garnet-biotite Fe-Mg exchange thermometry gives peak metamorphic temperature of 483° C for the gneisses and 628° C for the dioritic enclave within gneisses. A peak metamorphic grade of upper amphibolite to granulite facies is deduced from the mineral assemblages. Widespread anatexis has led to extensive occurrence of migmatites in the area. Recent geochronological studies assign an age of 1170 Ma to 970 Ma for the migmatites/gneisses and an emplacement age of 501 Ma for the Stabben gabbro and syenite. The discriminant plots of the Jutulsessen rocks indicate diverse origin ranging from pre-plate collision to post-collision orogenic tectonic setting. The mafic enclaves/dykes show ocean island arc to MORB affinities. Voluminous addition of juvenile crust during the Pan-African orogeny strongly overprints earlier structures.  相似文献   

8.
During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges.The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite ± illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite ± mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite ± illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite ± chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ∼250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite ± chlorite alteration formed at ∼300°C; (2) chlorite ± illite alteration at 235°C; (3) chlorite ± illite and mixed layer clay alteration; and (4) chlorite ± illite alteration at 220°C.Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples.Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.  相似文献   

9.
铁锂云母钠长花岗岩中发现了新型的低温热液蚀变产物——含方霜晶石的羟硅铝石-地开石粘土脉。描述了粘土脉的地质背景、岩石学特征,以及方霜晶石、羟硅铝石的矿物学特征。讨论了这一发现的岩石学和矿物学的意义。  相似文献   

10.
近年来美国和智利等国家新发现了大量赋存在粘土岩中的锂资源,该类锂资源主要是由火山灰蚀变而成。火山灰沉积水解形成的绿豆岩,广泛分布于我国西南地区,其是否存在锂的富集现象值得研究。笔者对重庆铜梁地区绿豆岩开展了调查研究,通过X射线荧光光谱仪和等离子质谱仪分析,发现绿豆岩中钾的平均含量为8.77%,锂的含量可达663×10~(-6),相当于0.14%的Li_2O含量,远高于固体、露采盐类矿的边界品位0.06%;稀土元素总量可以达到500×10~(-6),接近离子吸附型矿的边界品位。X射线衍射分析显示绿豆岩主要含有石英、长石和粘土矿物,其中粘土的主要成分为伊蒙混层和少量伊利石。伊蒙混层含量占比高的样品较占比低的样品Li的含量偏高。结合粘土及锂的物理化学特性,推断绿豆岩中的Li呈离子形态被粘土矿物吸附。如果这些锂资源能够被综合利用,势必将会产生巨大的经济效益。  相似文献   

11.
Olive green clays likely to be bentonitic in composition have been mineralogically and chemically studied. They occur in association with other lacustrine sediments at Lake Manyara. Radiocarbon dates from four diatom horizons indicate ages ranging from 12 Ka to 135 Ka suggesting a Mid-Holocene age. Middle Pleistocene age have been assigned to the ridged oncolites of Lake Manyara. The olive green coloured clays in the Manyara basin are known to occur in association with other lake beds including phosphorite deposits, stromatolites, bioturbated silty clays, partly silicified marls, conglomerates and olive green coloured opal beds. The results presented herein are from the olive green coloured clays. The olive green clays (bentonite?) are a result of devitrification or alteration of volcanic ashes and/or pyroclasts. The green clays occur in different forms as they are separated from each other by other lacustrine sediments. The alteration might have taken place in slightly different environments in terms of salinity and alkalinity. One of the top layer is friable and shows conchoidal fractures when dry. The other beds below in the lacustrine sequence are cemented with calcite and some dolomite as well as zeolites. The lowermost layer in the sequence is friable and shows cracks filled with coarse crystalline calcite. Mineralogically the bentonite is composed of the clay minerals illite, illite-smectite mixed layer clays, and chlorite. Other authigenic minerals include various zeolites (analcime, clinoptilolite, erionite and some traces of mordenite), opal, and fluorapatite. The clays have magnesium contents varying from 3.01% to 7.43%. The calcium contents vary widely due to presence or absence of one of the two minerals calcite or apatite. Trace elements like Ba, Ce, Sr, Zr are equally attributed to the presence of calcite and apatite. The formation of the illite-smectite mixed layer clays in an alternating manner with other lake sediments depicts different episodes of volcanic eruptions in the area. The mineralogical composition of smectites, zeolites, and opal in the green clays suggests a deposition of pyroclasts and volcanic ashes in a closed lake system with fluctuating levels. Due to evaporation alkalinity and salinity levels were fluctuating. The clays might have been bentonite which have undergone illitisation, a phenomena noted in other neighbouring rift basins.  相似文献   

12.
The clay mineralogy of the clay intervals interbedded with siliceous mudstones across the Permian-Triassic boundary (PTB) in Pengda, Guiyang, Guizhou province, was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The clay mineral assemblages of the sediments are mainly I/S clays and minor smectite, kaolinite, and illite as reveled by XRD analyses. The peak-shape parameters BB1 and BB2 of I/S clays of the representative clay bed PL-01 are 4.7° and 4.4°, and the peak position of the low angle reflection is at 6.8° 2θ (13.6 ), suggesting that the I/S clays has a IS type of ordering. However, the presence of multi-order reflections and their intensities are different from those of completely ordered 1∶1 mixed-layer I/S clay rectorite, indicating that I/S clays of the Pengda section have partially ordered IS structures. HRTEM observations show that most of the I/S clays exhibit an IS stacking ordering. However, in some areas within a IS particle, smectite layer is observed in doublets, triplets, and quartets, which are interstratified by various amounts of illite layers, suggesting the presence of other irregular stacking in addition to the major 1∶1 IS ordered stacking. Transformation of smectite layer into illite layers is also observed in the I/S clays, suggesting that the Pengda I/S clays are derived from smectite illitization, in good agreement with the clay mineral assemblage. The I/S clays of the Pengda section contain up to 45% to 95% smectite layer, the notably higher contents of smectite layer relative to those of other PTB stratigraphic sets in south China can be attributed to difference in alteration and smectite illitization processes due to different sedimentary environments.  相似文献   

13.
Abstract. Several epithermal gold deposits occur in the Hoshino area, which is located in the western end of the late Cenozoic Hohi volcanic zone, north‐central Kyushu, Japan. The area is characterized by intermediate to felsic extrusive rocks of Pliocene age. In the Hoshino area, the shallow manifestation of the hydrothermal activity is exposed on the surface. Several outcrops of sinter are still preserved on the top of hydro thermally altered volcanic rocks, and high‐grade gold‐bearing quartz veins occur on the surface at lower levels. The hydrothermal alteration resulted into well‐developed alteration zones. The zonal alteration pattern, primarily of near‐neutral pH type, is characterized by the outer smectite zone of a lower temperature, and the inner mixed layer minerals zone of a higher temperature. Quartz vein‐related or fracture‐controlled alteration, is represented by the occurrence of interstratified illite/smectite and K‐feldspar, suggesting a potassium‐enriched alteration. The mineralization in the Hoshino area is recognized on the surface by the occurrence of gold‐bearing quartz veins distributed mainly in the mixed layer minerals zone. The fracture system related to the gold mineralization is mainly characterized by NW‐SE trend. The alteration pattern and the mineralogical composition of the veins suggest that the mineralizing fluids had near‐neutral pH and the mineralization is of low‐sulfidation‐type. Fluid inclusion data and textures observed in quartz veins indicate that gold precipitated during boiling. The chemical composition of quartz veins shows that high‐grade gold‐bearing quartz veins are characterized by higher content of Al2O3, K2O and Rb. Several outcrops of silica‐sinters are distributed on the top of the mixed layer minerals zone. Although their structures are not very well preserved, because of later silicification, the Hoshino sinters still show characteristic textures identical to those observed in modern sinters, such as the presence of plant fossil incorporated into the sinters, the strongly developed depositional laminations and the columnar structures perpendicular to the depositional surfaces. Quartz is the only silica mineral constituting the Hoshino sinters presently. The conversion of amorphous silica into quartz was probably governed by higher temperatures resulting from later hydrothermal activity. This later hydrothermal activity is reflected by the intense silicification affecting mainly the lower parts of the sinters and also by the presence of quartz veins cutting the sinters. The distribution of sinters in the Hoshino area is very significant. The presence beneath the sinters of concealed high‐grade gold‐bearing quartz veins should be highly considered and exploration work is strongly suggested.  相似文献   

14.
The frequency of occurrence of minerals in 1876 samples of Sanbagawa pelitic schist in central Shikoku is summarized on the basis of microscopic observation accompanied, in part, by use of an electron microprobe. All samples contain quartz, plagioclase, phengite, chlorite and graphite. More than 90% of samples contain clinozoisite, titanite and apatite. Garnet is present in 95% of samples from the garnet zone, and biotite is present in 64% of samples from the albite‐biotite zone. Calcite is found in about 40% of samples of the pelitic schist collected from outcrop, but occurs in 95% of the pelitic schist from drill cores. Calcite was apparently ubiquitous in the pelitic schist during the Sanbagawa metamorphism, but must have been dissolved recently by the action of surface or ground water. The mineral assemblages of the Sanbagawa pelitic schist have to be analyzed in the system with excess calcite, quartz, albite (or oligoclase), clinozoisite, graphite and fluid that is composed mainly of H2O, CO2 and CH4. In the presence of calcite, reactions that produce garnet, rutile, oligoclase, biotite and hornblende, some of which define isograds of the metamorphic belt, should be written as mixed volatile equilibria that tend to take place at lower temperature than the dehydration reactions that have been proposed. The presence of calcite in pelitic schist suggests that fluid composition is a variable as important in determining mineral assemblages as pressure and temperature. Thus Ca‐bearing phases must be taken into account to analyze the phase relations of calcite‐bearing pelitic schist, even if CaO content of Sanbagawa pelitic schist is low. As calcite is a common phase, the mineral assemblages of the biotite zone pelitic schist may contravene the mineralogical phase rule and warrant further study.  相似文献   

15.
This report presents mineralogical, geochemical and isotopic data on samples obtained using the Benthic Multi‐coring System (BMS) to drill a submarine hydrothermal deposit developed in a caldera on the summit of the Suiyo Seamount in the Izu–Bonin Island Arc, south of Japan. This deposit is regarded as the first example of Kuroko‐type sulfide mineralization on a volcano at the volcanic front of an island arc. The mineralization and hydrothermal alteration below the 300 × 150‐m area of active venting was investigated to depths of 2–9 m below the sea floor. Drilling beneath the area of active venting recovered a sequence of altered volcanic rocks (dacite lavas, pyroclastic rocks of dacite–rhyolite compositions and pumice) associated with sulfide veining and patches/veins of anhydrite. No massive sulfide was found, however, and the subsea‐floor mineralization to 10 m depth is dominated by anhydrite and clay minerals with some sulfides. Sulfide‐bearing samples contained high Au (up to 42 ppm), Ag (up to 263 ppm), As (up to 1550 ppm), Hg (up to 55 ppm), Sb (up to 772 ppm), and Se (up to 24 ppm). Electron probe microanalyzer indicated that realgar, orpiment, and mimetite were major As‐bearing minerals. The sulfides were also characterized by high Zn (>10%) compared to Cu (<6.3%) and Pb (<0.6%). The δ202Hg/198Hg, δ202Hg/199Hg and δ202Hg/200Hg of the sulfide‐bearing dacite samples and a sulfide chimney decreased with increasing Hg/Zn concentration ratio. The variation of the δ202Hg/198Hg ranged from ?2.8 to +0.5‰ to relative to S‐HG02027. The large range of these δ202Hg/198Hg was greater than might be expected for such a heavy element and may be due to a predominance of kinetic effects. The variation of δ202Hg/198Hg of sulfide‐bearing dacite samples suggested that light Hg isotope in the vapor mixed with oxygenated seawater near sea floor during mineralization. Lead isotope ratios of the sulfide were very similar to those of the dacite lava, suggesting that lead is of magmatic origin. The 87Sr/86Sr ratio (0.70872) of anhydrite was different from that of the dacite lava, and suggests an Sr derivation predominantly from seawater. Hydrothermal alteration of the dacite in the Suiyo hydrothermal field was characterized by Fe‐sulfides, anhydrite, barite, montmorillonite, chlorite/montmorillonite mixed‐layer minerals, mica, and chlorite with little or no feldspar or cristobalite. Hydrothermal clay minerals changed with depth from montmorillonite to chlorite/montmorillonite mixed‐layer minerals to chlorite and mica. Hydrogen isotope ratios of chlorite/montmorillonite and mixed‐layer, mica‐chlorite composites obtained below the active venting sites ranged from ?49 to ?24‰, suggesting seawater as the dominant fluid causing alteration. Oxygen isotope ratios of anhydrite ranged from 9.2 to 10.4‰ and anhydrite formation temperatures were calculated to be 188–207°C. Oxygen isotope ratios ranged from +5.2 to +9.2‰ for montmorillonite, +3.2 to +4.5‰ for chlorite/montmorillonite mixed‐layer minerals, and +2.8 to +3.8‰ in mixtures of chlorite and mica. The formation temperatures of montmorillonite and of the chlorite–mica mixture were 160–250°C and 230–270°C, respectively. The isotope temperatures for clay minerals (220–270°C) and anhydrite (188°C) were significantly lower than the borehole temperature (308.3°C) measured just after the drilling, suggesting that temperature at this site is now higher than when clay minerals and anhydrite were formed.  相似文献   

16.
Bentonitic clay deposit of M’zila locates in the North border of the upstream portion of the Chélif basin “Bas Chélif” down to 35 km NE of Mostaganem. It consists of 14 layers (most recent) 1 to 14 (oldest) forming the North and South flanks of an E–W Syncline. These layers are enclosed in the median blue marls formation of the Upper Miocene of the “Bas Chélif” basin lying unconformably on the ante thrust sheet sandstone formation. This median member contains metric cinerites thick continuous levels and could beings originally bentonitic clay region of M’zila. The cinerites are the product of explosive type in the volcanic eruption, usually deposited in the marine environment. They are formed by a more or less rich feldspar and biotite volcanic glass dust. Bentonitic clay layers have average thicknesses vary between 2 and 6 m. They are distributed by centimeter to decimeter levels of soft sandstone, sandy, and rich black mica. Sandstone is greywacke clay and carbonated cemented, matrix consisting of quartz, feldspars, biotite as major minerals, zircon, and glauconite as accessory minerals. They deposited in a marine, reduced, and confined environment. Mineralogical composition of bentonitic clay region of M’zila is as follows: (1) Clay minerals are represented by the montmorillonite with a small amount of kaolinite. (2) Non-clay minerals are composed mainly of quartz, albite, biotite, calcite, heulandite, chlorite, dolomite, and gypsum. Infrared spectroscopy shows that bentonitic clay has highlighted the presence of the disorderly a high temperature silica tridymite. Geochemistry of the major elements of M’zila bentonitic clay shows high a percentage of SiO2 and Al2O3. Chemical analysis shows that the 10, 12, 14 B 7, 4 A, and 4 clay layers are ferric clay; 11 and 3 layers are magnesian clay. Particle size analysis by sedimentation shows bentonitic clays are accrued mainly clay fractions to silt. Bentonitic clay deposit of M’zila has probably volcanic origin and deposited in a marine, reduced, and confined environment.  相似文献   

17.
目前对于粘土层中伊蒙混层矿物的堆垛结构、单元层含量与岩浆母质及环境条件关系的了解等,仍然十分匮乏.一定沉积环境下火山灰层中粘土矿物组合、以及伊蒙混层堆垛方式精细结构特征,可能记录了沉积(包括成岩作用) 环境对火山物质蚀变产物的影响.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、元素地球化学分析、氧同位素分析方法等方法,对贵州新民深海相二叠系-三叠系(P-T) 界线附近蚀变火山灰层的地球化学特征、粘土矿物精细结构特征等进行了深入研究.结果表明,4个火山灰粘土层均含有2种具有R3结构、不同混层比的伊蒙混层矿物相,且均出现粘土矿物集合体取代原先的火山碎屑颗粒或在颗粒表面生长的现象,粘土矿物形成于沉积-成岩阶段因而其泥质结构被保留;样品XM-5-1和XM-5-2的Fe3+原子数分别为0.16和0.17个且具有明显Eu负异常和较低的K2O含量,而XM-5-3和XM-5-4的Fe3+原子数均为0.14个,说明相对于前2个粘土层,后2个的岩浆母质更加偏向酸性而表现为成岩蚀变程度更强.粘土矿物的氧同位素组成为17.3‰~18.1‰,与常温下蒙脱石与海水的平衡数值相近,表明粘土矿物化学组成与海底成岩蚀变环境有关,而不同火山灰层的粘土矿物学特征则主要取决于岩浆岩母质以及成岩蚀变强度.   相似文献   

18.
珠江口晚第四纪埋藏风化层及其环境意义*   总被引:4,自引:0,他引:4  
风化层是沉积间断和环境变迁的明显标志。在珠江三角洲平原以及珠江口海域都见有晚第四纪的埋藏风化层。珠江口外伶仃岛海域2个钻孔岩芯4个样品的AMS年龄表明,在第四系剖面中,MIS 3以来通常有两个风化层。下风化层的年龄为\{31060~\}28754aB.P. ,属于MIS 3; 上风化层为\{14320~\}11500aB.P. ,属于MIS 2。风化层的岩性因地而异,包括粘土、砂质粘土、中细砂和砂砾等。色调为红褐色、褐色或杂色。2个岩芯上、下风化层4个样品的氧化物分析表明,上风化层的风化强度比下风化层大。1个岩芯的硅藻分析表明,风化层主要是陆相层经风化而成,两个风化层分别反映MIS 3和MIS 2的两个陆相—海相的沉积旋回。  相似文献   

19.
Iheya‐North‐Knoll is one of the small knolls covered with thick sediments in the Okinawa Trough back‐arc basin. At the east slope of Iheya‐North‐Knoll, nine hydrothermal vents with sulfide mounds are present. The Integrated Ocean Drilling Program (IODP) Expedition 331 studied Iheya‐North‐Knoll in September 2010. The expedition provided us with the opportunity to study clay minerals in deep sediments in Iheya‐North‐Knoll. To reveal characteristics of clay minerals in the deep sediments, samples from the drilling cores at three sites close to the most active hydrothermal vent were analyzed by X‐ray diffraction, scanning electron microscope and transmission electron microscope. The sediments are classified into Layer 0 (shallow), Layer 1 (deep), Layer 2 (deeper) and Layer 3 (deepest) on the basis of the assemblage of clay minerals. Layer 0 contains no clay minerals. Layer 1 contains smectite, kaolinite and illite/smectite mixed‐layer mineral. Layer 2 contains chlorite, corrensite and chlorite/smectite mixed‐layer mineral. Layer 3 is grouped into three sub‐layers, 3A, 3B and 3C; Sub‐layer 3A contains chlorite and illite/smectite mixed‐layer mineral, sub‐layer 3B contains chlorite/smectite and illite/smectite mixed‐layer minerals, and sub‐layer 3C contains chlorite and illite. Large amounts of di‐octahedral clay minerals such as smectite, kaolinite, illite and illite/smectite mixed‐layer mineral are found in Iheya‐North‐Knoll, which is rarely observed in hydrothermal fields in mid‐ocean ridges. Tri‐octahedral clay minerals such as chlorite, corrensite and chlorite/smectite mixed‐layer mineral in Iheya‐North‐Knoll have low Fe/(Fe + Mg) ratios compared with those in mid‐ocean ridges. In conclusion, the characteristics of clay minerals in Iheya‐North‐Knoll differ from those in mid‐ocean ridges; di‐octahedral clay minerals and Fe‐poor tri‐octahedral clay minerals occur in Iheya‐North‐Knoll but not in mid‐ocean ridges.  相似文献   

20.
Nine Namurian clay bands retrieved from boreholes in the northern part of the Pennine Basin are, on the basis of their petrography, mineralogy and geochemistry, shown to be volcanic in origin and are therefore bentonites. The bentonites, which have a fragmental texture, are normally graded and show rare preservation of shard textures, representing vitric tuff deposits that have been altered subsequently to clay-dominated horizons. Crystals are a minor component of the bentonites, but biotite, in particular, is concentrated at the base of the beds. A clay mineral assemblage of mixed-layer illite–smectite with subordinate kaolinite identifies most of the samples as K-bentonites, but kaolinite dominates two samples that can be classed as tonsteins. Temporal variation of salinity within the depositional basin is suggested to explain these different clay assemblages. The major element geochemistry of the bentonites reflects their clay mineralogy and the compositions of diagenetic minerals present, the latter including pyrite, carbonates and hydroxyapatite. Enrichment of the bentonites in some trace elements (including Ba, Sr, Pb, Cu and Ni) can be related to the presence of the diagenetic minerals, but the extent to which the elements are added from external sources as opposed to being redistributed within the ash is unclear. Immobile trace element systematics suggest a rhyodacite/dacite composition for the original ash and derivation from the collision of plates, this being supported by evidence provided by the rare earth elements (REE) in one group of samples. However, in another group of samples, variations in REE concentrations may be caused by mobility of these elements during alteration. The chemistry of the Namurian bentonites contrasts markedly with that of the local Carboniferous volcanics but is comparable, in some respects, with one group of Westphalian tonsteins, although the latter are more rhyolitic in character. It is suggested that the Namurian bentonites and the Westphalian tonsteins of acid affinities originated from volcanic activity associated with a destructive plate margin in the Variscan externides and that the observed compositional trend may reflect magma evolution possibly related to the progressive east–west closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号