首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultimate strain value for rocks in aggregate with their other physicomechanical characteristics plays a substantial role when solving different problems related to the bearing capacity and behavior of soils. These include determination of the maximum displacement, velocity, and acceleration values of soils during earthquakes and estimation of the potential strain energy accumulated in a medium during strong earthquake preparation. The latter parameter is also key in predicting earthquakes from the ultimate strain of rocks. The paper describes a technique developed by the author for determining the ultimate strain of soil columns under natural conditions from their relative slope on the surface after a strong earthquake. The empirical dependences of the ultimate strain of rocks on earthquake magnitude, relative slip, rupture length, and the seismic moment are obtained by analyzing their values calculated by the proposed method for 44 strong earthquakes with magnitudes of 5.6–8.5. A comparative analysis of the ultimate strain values obtained by other researchers by geodesic triangulation is performed.  相似文献   

2.
Izvestiya, Physics of the Solid Earth - Peat cores sampled from different climatic zones are studied. The petromagnetic and microprobe methods are used to find peat layers enriched with cosmic...  相似文献   

3.
Izvestiya, Physics of the Solid Earth - Abstract—The spectra of geomagnetic variations calculated in the period range close to planetary waves—5, 10, and 16 days—are analyzed. The...  相似文献   

4.
The theory of plasma density redistribution and polar wind acceleration acceleration under the affect on the magnetosphere of the ponderomotive forces induced by the ultra-low frequency electromagnetic waves is presented. Our attention is focused mainly on the important question about the necessity of experimental verification of fairly certain theoretical predictions. It is pointed out that experimental validation is not only necessary for the development of the theory but also for replenishing the knowledge about the structure and dynamics of the near-Earth space. An original method for indirect verification is presented. The idea of this method is based on the dependence of the foreshock locations on the orientation of the field lines of the interplanetary magnetic field (IMF) in front of the magnetosphere relative to the plane of the geomagnetic equator.  相似文献   

5.
Izvestiya, Physics of the Solid Earth - Abstract—The intensification of geomagnetic variations due to a number of strong remote earthquakes is studied using a chain of ground-based...  相似文献   

6.
Geomagnetism and Aeronomy - The results of analysis of variations in the total solar irradiance in the 17–24th solar activity cycles and their relation to the climate global warming are...  相似文献   

7.
The well-known 11-year cycle in low cloud cover amount for Solar Cycle Number 22 and the trend with time for Solar Cycle Number 23 are interpreted as being due to similar changes, but of opposite phase, in the mean global surface temperature of the Earth. An analysis of cloud amounts in two higher altitude bands shows that they, and the surface temperature, are roughly in phase with each other. The suggested mechanism to explain this result is that a warming of the Earth’s surface causes low clouds to rise and to be reclassified in the next upper category. The energetics of the process are shown to be satisfactory for this to be the correct explanation.  相似文献   

8.
Impact of space energetic particles on the Earth’s atmosphere (a review)   总被引:1,自引:0,他引:1  
The state of the Earth??s upper atmosphere is formed with the participation of impacts by energetic particles, such as galactic cosmic rays, protons of solar proton events, and precipitation of relativistic electrons. Changes in the neutral composition and the thermal and dynamical regime of the upper atmosphere during periods of disturbances caused by the influence of energetic particles are considered.  相似文献   

9.
Geomagnetism and Aeronomy - We have studied the geomagnetic conditions during the occurrence of auroral-hiss VLF emissions on the Earth’s surface in the form of noise bursts at frequencies...  相似文献   

10.
The collision of a solar wind tangential discontinuity with the bow shock and magnetopause is considered in the scope of an MHD approximation. Using MHD methods of trial calculations and generalized shock polars, it has been indicated that a fast shock refracted into the magnetosheath originates when density increases across a tangential discontinuity and a fast rarefaction wave is generated when density decreases at this discontinuity. It has been indicated that a shock front shift under the action of collisions with a tangential discontinuity is experimentally observed and a fast bow shock can be transformed into a slow shock. Using a specific event as an example, it has been demonstrated that solar wind tangential discontinuity affects the geomagnetic field behavior.  相似文献   

11.
F-approximation of the Earth’s surface topography   总被引:2,自引:0,他引:2  
  相似文献   

12.
Izvestiya, Physics of the Solid Earth - Abstract—The paper presents the review of the conceptually most important results of seismological studies of the Earth’s core and their...  相似文献   

13.
正The plasmasphere is a region of relatively dense(~10–10000 cm~(–3))plasma,surrounding the Earth and extending to distances of about five Earth radii(R_E).It is filled with large amount of cold(~1 e V)plasma originated from the Earth’s ionosphere and co-rotating with the Earth due to the large scale co-rotation electric field.The outermost  相似文献   

14.
By the example of a standard three-dimensional model of thermal convection in a rotating spherical shell, it is shown how radial density gradient ?ρ affects the generation of hydrodynamic helicity χ. For example, the generation of χ weakly depends on ?ρ inside a Taylor cylinder and, outside the cylinder, the compressibility of the liquid amplifies the generation of χ. The consequences for the geodynamo theory are considered.  相似文献   

15.
This article studies long-period variations in the Earth’s upper atmosphere density over several solar activity cycles, using long-term data on the evolution of motion of three artificial satellites (Intercosmos-19, Meteor-1-2, and Cosmos-1154) in orbits at heights of 400–1000 km. The time interval when the satellites were in the orbits covered three solar activity cycles (partly the 21st, completely the 22nd, and partly the 23rd). It is found that the variations in the average density of the upper atmosphere at heights of 400–600 km in the 1980–2000 period were governed by the changes in the solar activity level.  相似文献   

16.
The Effects of the Earth’s Curvature on Gravity and Geoid Calculations   总被引:1,自引:0,他引:1  
While it is obvious that large-scale gravity studies should account for the sphericity of the Earth, each case should be examined. If a geometry model is very large for the 3D-gravity calculation, it cannot be correctly defined in Cartesian coordinates. Because of the Earth’s curvature it is necessary to use spherical coordinates, the importance of which is shown in this paper. The calculation of the gravity for a cylinder reveals, 1 m above the center of the cylinder, a relative difference of 13% between the models with Cartesian and spherical coordinates.  相似文献   

17.
The effect of ionospheric wind on the gravity wave propagation is studied. These waves arise in the ionosphere due to intensification of their sources near the Earth’s surface during enhanced seismic activity. The influence of the wind on these waves is connected with the Ampere’s force that produces the ion-drag force acting on the atmosphere. This results in the occurrence of the discrete wave spectrum the maximum of which increases in proportion to the numbers of the natural scale. Furthermore, these waves are amplified during propagation from the source region in the direction perpendicular to the wind direction. These peculiarities of the gravity waves can be used for monitoring of seismic activity based on the ionosphere sounding.  相似文献   

18.
Active volcanoes are thought to be important contributors to the atmospheric mercury (Hg) budget, and this chemical element is one of the most harmful atmospheric pollutants, owing to its high toxicity and long residence time in ecosystems. There is, however, considerable uncertainty over the magnitude of the global volcanic Hg flux, since the existing data on volcanogenic Hg emissions are sparse and often ambiguous. In an attempt to extend the currently limited dataset on volcanogenic Hg emissions, we summarize the results of Hg flux measurements at seven active open-conduit volcanoes; Stromboli, Asama, Miyakejima, Montserrat, Ambrym, Yasur, and Nyiragongo.. Data from the dome-building Soufriere Hills volcano are also reported. Using our determined mercury to SO2 mass ratios in tandem with the simultaneously-determined SO2 emission rates, we estimate that the 7 volcanoes have Hg emission rates ranging from 0.2 to 18 t yr-1 (corresponding to a total Hg flux of ~41 t·yr-1). Based on our dataset and previous work, we propose that a Hg/SO2 plume ratio ~10-5 is best-representative of gas emissions from quiescent degassing volcanoes. Using this ratio, we infer a global volcanic Hg flux from persistent degassing of ~95 t·yr-1 .  相似文献   

19.
Data from the BMSW spectrometer, which measures the ion flux value and sometimes plasma parameters with a time resolution of 31 ms, allow the study of the parameters of turbulence of the solar wind and magnetosheath plasma on kinetic scales. In this work, the frequency spectra of the ion flux fluctuations before and after recording the interplanetary shock front in the Earth’s magnetosheath are compared based on these data. It is shown that, in contrast to the solar wind, where the exponential decay of the spectrum often occurs after the shock front on the kinetic scales, no such phenomenon is observed in the magnetosheath: the spectrum on these scales can be approximated by a power function in all the cases considered. In half of these cases, the spectrum slope on the kinetic scales does not change during the interplanetary shock propagation. The results indicate a weak impact of interplanetary shock waves on the parameters of the plasma turbulence. In addition, it is shown that an interplanetary shock does not change the level of intermittency of the ion flux in the magnetosheath at both low and high level before the front.  相似文献   

20.
Geomagnetism and Aeronomy - During geomagnetic substorms, the current sheet in the Earth’s magnetotail can transversely reduce in thickness from a few radii of the Earth (RE) to one to...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号