首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pressure dependence of the refractive index of tholeiite basalt glass was studied in the range 0–5.0 GPa with an interference-polarization microscope and a diamond anvil cell. The non-linear change of the refractive index of basalt glass, with a kink around 2.0–2.5 GPa, is similar to the behaviour of the refractive index, density and elastic properties of silica glass under pressure. The comparison of data for glasses with continuous silicon-oxygen frameworks shows that the strain-polarizability potential Λ (photoelasticity theory), describing the change of refraction R with increasing density ρ: (Λ=–ΔR ρ/R0Δρ) is nearly constant. Using the value Λ=0.21 and the refractive index data, the compressibility of the investigated basalt glass under pressure up to 5.0 GPa was calculated by the equation: Δρ/ρ=6nΔn/(n2–1)(n2+2)(1–Λ). The results of the calculation agree with the compressibility of tholeiite basalt glass determined by measurement of the sizes of glass samples under pressure using photographic equipment. The compressibility of basalt glass is higher than that for plagioclases, resulting in the possibility of relative density inversion of deep-seated basalt melts and plagioclase crystals. These data reinforce the model of anorthositec crust generation on the Earth and on the Moon by inverse plagioclase crystal fractionation at high degrees of melting of basic rocks.  相似文献   

2.
Seventeen shock-recovery experiments were performed on powder mixtures of one part (by weight) olivine (St. John's forsterite) plus two parts silica glass (pure vitreous silica) in order to characterize the physical and chemical interaction of two chemically incompatible components during shock. Powders of <45 m grain size were shocked by impact of projectiles launched from a 20 mm gun which created pressures ranging from 6.2 to 64.2 GPa (1 GPa= 10kbar).Petrographie features observed in thin section attest to mechanical and thermal metamorphism. Samples shocked to pressures from 6.2 to 39.3 GPa form compacted, mosaic, granular aggregates with fractured and strained grains. Samples shocked to pressures from 42.9 to 64.2 GPa form vesicular, mixed melts containing flow schlieren and relict olivine fragments. Petrographic disequilibrium is manifested in cataclastic textures showing deformational anisotropy and in thermal effects showing non-uniform intergranular melting. This disequilibrium is caused by an irregular pressure distribution resulting from the rapid collapse of pore spaces.The chemical composition of the shock melts are similar in each of six samples shocked to pressures of 42.9 to 64.2 GPa. Melt chemistry is bimodal in each sample. Colorless melts are 99.9% SiO2 and represent pure silica glass melts; pale to dark green melts range in composition from 47% to 64% SiO2 and represent a progressive mixture of olivine melt (41% SiO2) with silica glass melt. Surprisingly, the compositions of the colored glasses are intermediate between the composition of pure olivine and the bulk composition of the original starting material (79% SiO2) and are similar to enstatitic pyroxene compositions (50% to 57% SiO2; 33% to 37% MgO). Although bulk compositions of shocked samples are unchanged, the creation of melts with pyroxene compositions instead of bulk sample compositions may indicate that an incipient eutectic-type fusion may have occurred in small olivine-normative domains surrounding individual olivine grains. Chemical disequilibrium is evidenced by the creation of these olivine-normative melts from a quartz-normative starting compositions and by the chemical heterogeneity in the melts.  相似文献   

3.
4.
P-V-T data of MgSiO3 orthoenstatite have been measured by single-crystal X-ray diffraction at simultaneous high pressures (in excess of 4.5 GPa) and temperatures (up to 1000 K). The new P-V-T data of the orthoenstatite, together with previous compression data and thermal expansion data, are described by a modified Birch-Murnaghan equation of state for diverse temperatures. The fitted thermoelastic parameters for MgSiO3 orthoenstatite are: thermal expansion ?α/?P with values of a=2.86(29)×10-5 K-1 and b=0.72(16)×10-8 K-2; isothermal bulk modulus K T o =102.8(2) GPa; pressure derivative of bulk modulus K′=?K/?P=10.2(1.2); and temperature derivative of bulk modulus K=?K/?T=-0.037(5) GPa/K. The derived thermal Grüneisen parameter is γ th=1.05 for ambient conditions; Anderson-Grüneisen parameter is δ T o =11.6, and the pressure derivative of thermal expansion is ?α/?P=-3.5×10-6K-1 GPa-1. From the P-V-T data and the thermoelastic equation of state, thermal expansions at two constant pressures of 1.5 GPa and 4.0 GPa are calculated. The resulting pressure dependence of thermal expansion is Δα/ΔP=-3.2(1)× 10-6 K-1 GPa-1. The significantly large values of K′, K, δ T and ?α/?P indicate that compression/expansion of MgSiO3 orthoenstatite is very sensitive to changes of pressure and temperature.  相似文献   

5.
Samples of synthetic diaplectic anorthite glass (38 GPa shock pressure), thermal glass and synthetic anorthite crystals were investigated using infrared spectral methods at one atmosphere and high pressures (near 4 GPa). Band positions and pressure derivatives for the Si-O asymmetric modes in the region 1,300–900 cm?1 indicate that the diaplectic glass has more structural similarities with the crystalline material than with thermal glass even though the overall infrared spectral characteristics suggest a glassy state.  相似文献   

6.
We have measured in situ Mössbauer transmission spectra of iron silicate spinel (γ-Fe2SiO4) in a diamond anvil cell at room temperature and pressures up to 16 GPa. The observed spectra show a doublet characteristic of the paramagnetic state. The isomer shift and quadrupole splitting at atmospheric pressure are 1.10 and 2.63 mm/s, respectively, which are smaller than those of fayalite (α-Fe2SiO4). Both the isomer shift and quadrupole splitting decrease linearly with pressure with slope of ?0.003(1) and ?0.020(1) mm/sec · GPa, respectively. This simple linear trend suggests that no electronic or polymorphic transitions occur under 16 GPa except for those due to the small and continuous changes of volume and local symmetry under pressure. On the basis of a crystalline field calculation, the negative pressure derivative of the quadrupole splitting is associated with a trend towards an ideal cubic symmetry of the oxygen sublattice.  相似文献   

7.
We report new experimental data of Cu diffusivity in granite porphyry melts with 0.01 and 3.9 wt% H2O at 0.15–1.0 GPa and 973–1523 K. A diffusion couple method was used for the nominally anhydrous granitic melt, whereas a Cu diffusion-in method using Pt95Cu5 as the source of Cu was applied to the hydrous granitic melt. The diffusion couple experiments also generate Cu diffusion-out profiles due to Cu loss to Pt capsule walls. Cu diffusivities were extracted from error function fits of the Cu concentration profiles measured by LA-ICP-MS. At 1 GPa, we obtain \({D_{{\text{Cu, dry, 1 GPa}}}}=\exp \left[ {( - {\text{13.89}} \pm {\text{0.42}}) - \frac{{{\text{12878}} \pm {\text{540}}}}{T}} \right],\) and \({D_{{\text{Cu, 3}}{\text{.9 wt\% }}{{\text{H}}_{\text{2}}}{\text{O}},{\text{ 1 GPa}}}}=\exp \left[ {( - 16.31 \pm 1.30) - \frac{{{\text{8148}} \pm {\text{1670}}}}{T}} \right],\) where D is Cu diffusivity in m2/s and T is temperature in K. The above expressions are in good agreement with a recent study on Cu diffusion in rhyolitic melt using the approach of Cu2S dissolution. The observed pressure effect over 0.15–1.0 GPa can be described by an activation volume of 5.9 cm3/mol for Cu diffusion. Comparison of Cu diffusivity to alkali diffusivity and its variation with melt composition implies fourfold-coordinated Cu+ in silicate melts. Our experimental results indicate that in the formation of porphyry Cu deposits, the diffusive transport of magmatic Cu to sulfide liquids or fluid bubbles is highly efficient. The obtained Cu diffusivity data can also be used to assess whether equilibrium Cu partitioning can be reached within certain experimental durations.  相似文献   

8.
We report the first study of electrical conductivities of silicate melts at very high pressures (up to 10 GPa) and temperatures (up to 2,173 K). Impedance spectroscopy was applied to dry and hydrous albite (NaAlSi3O8) glasses and liquids (with 0.02–5.7 wt% H2O) at 473–1,773 K and 0.9–1.8 GPa in a piston-cylinder apparatus, using a coaxial cylindrical setup. Measurements were also taken at 473–2,173 K and 6–10 GPa in two multianvil presses, using simple plate geometry. The electrical conductivity of albite melts is found to increase with temperature and water content but to decrease with pressure. However, at 6 GPa, conductivity increases rapidly with temperature above 1,773 K, so that at temperatures beyond 2,200 K, conductivity may actually increase with pressure. Moreover, the effect of water in enhancing conductivity appears to be more pronounced at 6 GPa than at 1.8 GPa. These observations suggest that smaller fractions of partial melt than previously assumed may be sufficient to explain anomalously high conductivities, such as in the asthenosphere. For dry melt at 1.8 GPa, the activation energy at T > 1,073 K is higher than that at T < 1,073 K, and the inflection point coincides with the rheological glass transition. Upon heating at 6–10 GPa, dry albite glass often shows a conductivity depression starting from ~1,173 K (due to crystallization), followed by rapid conductivity enhancement when temperature approaches the albite liquidus. For hydrous melts at 0.9–1.8 GPa, the activation energies for conductivity at ≥1,373 K are lower than those at <973 K, with a complex transition pattern in between. Electrical conductivity and previously reported Na diffusivity in albite melt are consistent with the Nernst–Einstein relation, suggesting the dominance of Na transport for electrical conduction in albite melts.  相似文献   

9.
Single-crystal X-ray diffraction experiments with SiO2 α-cristobalite reveal that the well-known reversible displacive phase transition to cristobalite-II, which occurs at approximately 1.8 GPa, can be suppressed by rapid pressure increase, leading to an overpressurized metastable state, persisting to pressure as high as 10 GPa. In another, slow pressure increase experiment, the monoclinic high-pressure phase-II was observed to form at ~1.8 GPa, in agreement with earlier in situ studies, and its crystal structure has been unambiguously determined. Single-crystal data have been used to refine the structure models of both phases over the range of pressure up to the threshold of formation of cristobalite X-I at ~12 GPa, providing important constraints on the feasibility of the two competing silica densification models proposed in the literature, based on quantum mechanical calculations. Preliminary diffraction data obtained for cristobalite X-I reveal a monoclinic unit cell that contradicts the currently assumed model.  相似文献   

10.
An equation of state for Mg(OH)2 brucite under high-pressure and high-temperature conditions has been obtained by measuring temperature dependence of volume up to 600 K at ambient pressure and pressure dependence of volume up to 16 GPa at 300, 473, 673, and 873 K with in situ X-ray diffraction. Pressure dependence of entropy of brucite has been calculated with thermal expansion coefficient and volume which are derived from the present EoS. This dependence indicates that generation of secondary OH dipoles affects entropy. The OH dipoles probably appear around 2 GPa and the number seems not to change over 8 GPa at 300 K.  相似文献   

11.
 Using the high-pressure differential thermal analysis (HP-DTA) system in a cubic multianvil high-pressure apparatus, we measured the melting points of portlandite, Ca(OH)2, up to 6 GPa and 1000 °C. We detected endothermic behavior at the temperature and pressure conditions of 800 °C and 2.5 GPa, 769 °C and 3.5 GPa, 752 °C and 4.0 GPa, 686 °C and 5.0 GPa, and 596 °C and 6.0 GPa, respectively, due to melting of portlandite. By in situ X-ray studies under pressure, the melting of portlandite was observed at 730 °C and 4.32 GPa and at 640 °C and 5.81 GPa, respectively. Results of both HP-DTA and X-ray studies were consistent within experimental error. The melting is congruent and has a negative Clapeyron slope, indicating that liquid Ca(OH)2 has higher densities than crystalline portlandite in this pressure range. Received: 19 June 1999 / Revised, accepted: 11 September 1999  相似文献   

12.
H2O diffusion in dacitic melt was investigated at 0.48-0.95 GPa and 786-893 K in a piston-cylinder apparatus. The diffusion couple design was used, in which a nominally dry dacitic glass makes one half and is juxtaposed with a hydrous dacitic glass containing up to ∼8 wt.% total water (H2Ot). H2O concentration profiles were measured on quenched glasses with infrared microspectroscopy. The H2O diffusivity in dacite increases rapidly with water content under experimental conditions, similar to previous measurements at the same temperature but at pressure <0.15 GPa. However, compared with the low-pressure data, H2O diffusion at high pressure is systematically slower. H2O diffusion profiles in dacite can be modeled by assuming molecular H2O (H2Om) is the diffusing species. Total H2O diffusivity DH2Ot within 786-1798 K, 0-1 GPa, and 0-8 wt.% H2Ot can be expressed as: where DH2Ot is in m2/s, T is temperature in K, P is pressure in GPa, K = exp(1.49 − 2634/T) is the equilibrium constant of speciation reaction (H2Om+O?2OH) in the melt, X = C/18.015/[C/18.015 + (100 − C)/33.82], C is wt.% of H2Ot, and 18.015 and 33.82 g/mol correspond to the molar masses of H2O and anhydrous dacite on a single oxygen basis. Compared to H2O diffusion in rhyolite, diffusivity in dacite is lower at intermediate temperatures but higher at superliquidus temperatures. This general H2O diffusivity expression can be applied to a broad range of geological conditions, including both magma chamber processes and volcanic eruption dynamics from conduit to the surface.  相似文献   

13.
Structural modifications induced by shock-wave compression up to 40 GPa in anorthite glass are investigated by Raman spectroscopy. In the first investigation, densification increases with increasing shock pressure. A maximum densification of 2.2% is obtained for a shock pressure of 24 GPa. This densification is attributed to a decrease of the average ring size, favoring three-membered rings. The densification is much lower than in silica glass subject to shock at similar pressures (11%), because the T-O-T bond angle decrease is impeded in anorthite glass. For higher shock pressures, the decrease of the recovered densification is attributed to partial annealing of the samples due to high after-shock residual temperatures. The study of the annealing process of the most densified glass by in-situ high temperature Raman spectroscopy confirms that relaxation of the three-membered rings occurs above about 900 K. Received: 21 July 1998 / Revised and accepted: 27 January 1999  相似文献   

14.
The high-pressure and temperature equation of state of majorite solid solution, Mj0.8Py0.2, was determined up to 23 GPa and 773 K with energy-dispersive synchrotron X-ray diffraction at high pressure and high temperature using the single- and double-stage configurations of the multianvil apparatuses, MAX80 and 90. The X-ray diffraction data of the majorite sample were analyzed using the WPPD (whole-powder-pattern decomposition) method to obtain the lattice parameters. A least-squares fitting using the third-order Birch-Murnaghan equation of state yields the isothermal bulk modulus, K T0  = 156 GPa, its pressure derivative, K′ = 4.4(±0.3), and temperature derivative (∂K T /∂T) P = −1.9(±0.3)× 10−2 GPa/K, assuming that the thermal expansion coefficient is similar to that of pyrope-almandine solid solution. Received: 5 October 1998 / Revised, accepted: 24 June 1999  相似文献   

15.
 The crystal structure of a synthetic Rb analog of tetra-ferri-annite (Rb–TFA) 1M with the composition Rb0.99Fe2+ 3.03(Fe3+ 1.04 Si2.96)O10.0(OH)2.0 was determined by the single-crystal X-ray diffraction method. The structure is homooctahedral (space group C2/m) with M1 and M2 occupied by divalent iron. Its unit cell is larger than that of the common potassium trioctahedral mica, and similar lateral dimensions of the tetrahedral and octahedral sheets allow a small tetrahedral rotation angle α=2.23(6)°. Structure refinements at 0.0001, 1.76, 2.81, 4.75, and 7.2 GPa indicate that in some respects the Rb–TFA behaves like all other micas when pressure increases: the octahedra are more compressible than the tetrahedra and the interlayer is four times more compressible than the 2:1 layer. However, there is a peculiar behavior of the tetrahedral rotation angle α: at lower pressures (0.0001, 1.76, 2.81 GPa), it has positive values that increase with pressure [from 2.23(6)° to 6.3(4)°] as in other micas, but negative values −7.5(5)° and −8.5(9)° appear at higher pressures, 4.75 and 7.2 GPa, respectively. This structural evidence, together with electrostatic energy calculations, shows that Rb–TFA has a Franzini A-type 2:1 layer up to at least 2.81 GPa that at higher pressure yields to a Franzini B-type layer, as shown by the refinements at 4.75 and 7.2 GPa. The inversion of the α angle is interpreted as a consequence of an isosymmetric displacive phase transition from A-type to B-type structure between 2.81 and 4.75 GPa. The compressibility of the Rb–TFA was also investigated by single-crystal X-ray diffraction up to a maximum pressure of 10 GPa. The lattice parameters reveal a sharp discontinuity between 3.36 and 3.84 GPa, which was associated with the phase transition from Franzini-A to Franzini-B structure. Received: 21 October 2002 / Accepted: 25 February 2003  相似文献   

16.
The structural compression mechanism and compressibility of diaspore, AlO(OH), were investigated by in situ single-crystal synchrotron X-ray diffraction at pressures up to 7 GPa using the diamond-anvil cell technique. Complementary density functional theory based model calculations at pressures up to 40 GPa revealed additional information on the pressure-dependence of the hydrogen-bond geometry and the vibrational properties of diaspore. A fit of a second-order Birch–Murnaghan equation of state to the p–V data resulted in the bulk modulus B 0 = 150(3) GPa and B 0 = 150.9(4) GPa for the experimental and theoretical data, respectively, while a fit of a third-order Birch–Murnaghan equation of state resulted in B 0 = 143.7(9) GPa with its pressure derivative B′ = 4.4(6) for the theoretical data. The compression is anisotropic, with the a-axis being most compressible. The compression of the crystal structure proceeds mainly by bond shortening, and particularly by compression of the hydrogen bond, which crosses the channels of the crystal structure in the (001) plane, in a direction nearly parallel to the a-axis, and hence is responsible for the pronounced compression of this axis. While the hydrogen bond strength increases with pressure, a symmetrisation is not reached in the investigated pressure range up to 40 GPa and does not seem likely to occur in diaspore even at higher pressures. The stretching frequencies of the O–H bond decrease approximately linearly with increasing pressure, and therefore also with increasing O–H bond length and decreasing hydrogen bond length. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

17.
Multi-anvil and piston cylinder experiments were performed to determine the effect of both pressure and temperature on the diffusivities of several siderophile elements in a Fe90Ni10 core-analog alloy. Activation energies were calculated to be between 244 and 257 kJ/mol for Re, Pd, and Au at 10 GPa, and 264 kJ/mol for P at 1 GPa. It was found that pressure has a marked negative effect on the diffusivities of Au, Re, and Pd, and activation volumes for these elements were calculated to be between 3 and 6 cm3/mol at 10 GPa. The effect of both temperature and pressure on P diffusion is noticeably less, and the absolute diffusivity of phosphorus is consistently higher than that of the other elements. It is inferred that the reason for this difference is because P is diffusing via an interstitial mechanism as opposed to Re, Pd, and Au which occupy regular lattice sites in the crystal. The effect of pressure and temperature together with depth in the Earth suggests that these elements may continue to exhibit different behavior at more extreme conditions. The significance of these new results lies in the ability to place constraints on many time-dependent processes that pertain to the formation and evolution of planetary cores, as well as the formation and cooling histories of other metal-rich bodies in the solar system, such as meteorites.  相似文献   

18.
 The second-order elastic constants of CaF2 (fluorite) have been determined by Brillouin scattering to 9.3 GPa at 300 K. Acoustic velocities have been measured in the (111) plane and inverted to simultaneously obtain the elastic constants and the orientation of the crystal. A notable feature of the present inversion is that only the density at ambient condition was used in the inversion. We obtain high-pressure densities directly from Brillouin data by conversion to isothermal conditions and iterative integration of the compression curve. The pressure derivative of the isentropic bulk modulus and of the shear modulus determined in this study are 4.78 ± 0.13 and 1.08 ± 0.07, which differ from previous low-pressure ultrasonic elasticity measurements. The pressure derivative of the isothermal bulk modulus is 4.83 ± 0.13, 8% lower than the value from static compression, and its uncertainty is lower by a factor of 3. The elastic constants of fluorite increase almost linearly with pressure over the whole investigated pressure range. However, at P ≥ 9 GPa, C 11 and C 12 show a subtle structure in their pressure dependence while C 44 does not. The behavior of the elastic constants of fluorite in the 9–9.3 GPa pressure range is probably affected by the onset of a high-pressure structural transition to a lower symmetry phase (α-PbCl2 type). A single-crystal Raman scattering experiment performed in parallel to the Brillouin measurements shows the appearance of new features at 8.7 GPa. The new features are continuously observed to 49.2 GPa, confirming that the orthorhombic high-pressure phase is stable along the whole investigated pressure range, in agreement with a previous X-ray diffraction study of CaF2 to 45 GPa. The high-pressure elasticity data in combination with room-pressure values from previous studies allowed us to determine an independent room-temperature compression curve of fluorite. The new compression curve yields a maximum discrepancy of 0.05 GPa at 9.5 GPa with respect to that derived from static compression by Angel (1993). This comparison suggests that the accuracy of the fluorite pressure scale is better than 1% over the 0–9 GPa pressure range. Received: 10 July 2001 / Accepted: 7 March 2002  相似文献   

19.
Molecular dynamics simulations with ab initio potential under various pressures up to 11.58 GPa have been carried out to investigate the relationship between microscopic structure and solubility of Ar in silica melts. The Voronoi diagram method is used to identify interstitial voids in the structure of silica melts. We find that (1) the radius distribution of interstitial voids generally obeys the log-normal probability function; (2) the number of available interstitial voids large enough to accommodate Ar atoms decreases with increasing pressure; (3) Ar solubility increases linearly with pressure up to about 3 GPa, where Ar solubility reaches a maximum value, and then it decreases dramatically when pressure becomes higher than 5-6 GPa. The drop of Ar solubility is a result of structural continuous change but not structural transformation. These results are in good agreement with experimental measurements.  相似文献   

20.
The crystal structure of the cheralite—CaTh(PO4)2—has been revisited by neutron diffraction and its behaviour under high pressure investigated by X-ray diffraction up to 36?GPa. The neutron diffraction data at ambient pressure gave a more accurate determination of the Ca/Th cation position than previous XRD data, taking advantage that the neutron scattering lengths of calcium and thorium are of same order of magnitude. The nuclear density distribution was also determined using the maximum entropy method (MEM) confirming that the two cations are not located at the same position in the unit cell but are slightly displaced from one another along a specific direction in order to minimize the electrostatic repulsion with the surrounding phosphorus atoms. At high pressure, the compound did not show any phase transition or amorphization. From the evolution of the unit-cell volume as a function of the pressure, the zero-pressure bulk modulus B0 and its pressure derivative B0 have been determined by fitting the experimental compressibility curve to the Birch–Murnaghan equation of state. The results are B0?=?140(2) GPa and B 0 ?=?4.4(4) GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号