首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial patterns of N dynamics in soil were evaluated within two small forested watersheds in Japan. These two watersheds were characterized by steep slopes (>30°) and high stream NO3 drainage rates (8·4 to 25·1 kg N ha−1 yr−1) that were greater than bulk precipitation N input rates (7·5 to 13·5 kg N ha−1 yr−1). Higher rates of nitrification potential at near-stream zones were reflected in greater NO3 contents for soil at the near-stream zones compared with ridge zones. Both stream discharge rates and NO3 concentrations in deep unsaturated soil at the near-stream zones were positively correlated to NO3 concentrations in stream water. These relationships, together with high soil NO3 contents at the near-stream zones, suggest that the near-stream zone was an important source of NO3 to stream water. Nitrate flux from these near-stream zones was also related to the drainage of cations (K+, Ca2+ and Mg2+). The steep slope of the watersheds resulted in small saturated areas that contributed to the high NO3 production (high nitrification rates) in the near-stream zone. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Wastewater with high ammonia concentrations is produced by many industries, e.g. in the production of fertilizer and explosives and in the agricultural and food industry. A direct discharge into rivers and lakes has to be avoided: Oxidation of ammonia requires 4.56 g DO/g NH+4-N and results in a decrease of dissolved oxygen concentration. Moreover, nitrate stimulates the proliferation of algae, with regard to the eutrophication of natural waters. For municipal wastewater with an ammonia concentration less than 50 mg/L NH+4-N nitrification is a standard process. However, the removal of higher loaded industrial effluents still poses many questions. Recently, lab-scale and pilot-scale investigations show remarkable advances in the increase in nitrification efficiency and in the stabilization of the process. But because of changing flowrates and concentrations, the aid of advanced control algorithms is necessary. Some of the most important variables of biochemical reactors can be determined only with difficulty, at times only with off-line measurements. Model-aided measurement approaches try to determine these variables indirectly from easily measured variables. An experimentally-proved reactor model is required. Therefore, a dynamic model of nitrification in ideally mixed reactors is proposed based on mass balances for the components ammonia. nitrite, nitrate. dissolved oxygen DO, carbon dioxide, pH. nitrosomonas and nitrobacter. The biological reaction rates consider oxygen limitation and substrate inhibition. The process model presented is tested by lab scale experiments using an aerated stirred tank reactor and a fluidized bed reactor. Conformity between the predictions of the model and the observed data was positive. It has been shown that the nitrite oxidation by nitrobacter is the most sensible step in nitrification.  相似文献   

3.
Backwaters connected to large rivers retain nitrate and may play an important role in reducing downstream loading to coastal marine environments. A summer nitrogen (N) inflow-outflow budget was examined for a flow-regulated backwater of the upper Mississippi River in conjunction with laboratory estimates of sediment ammonium and nitrate fluxes, organic N mineralization, nitrification, and denitrification to provide further insight into N retention processes. External N loading was overwhelmingly dominated by nitrate and 54% of the input was retained (137 mg m−2 day−1). Ammonium and dissolved organic N were exported from the backwater (14 and 9 mg m−2 day−1, respectively). Nitrate influx to sediment increased as a function of increasing initial nitrate concentration in the overlying water. Rates were greater under anoxic versus oxic conditions. Ammonium effluxes from sediment were 26.7 and 50.6 mg m−2 day−1 under oxic and anoxic conditions, respectively. Since anoxia inhibited nitrification, the difference between ammonium anoxic–oxic fluxes approximated a nitrification rate of 29.1 mg m−2 day−1. Organic N mineralization was 64 mg m−2 day−1. Denitrification, estimated from regression relationships between oxic nitrate influx versus initial nitrate concentration and a summer lakewide mean nitrate concentration of 1.27 mg l−1, was 94 mg m−2 day−1. Denitrification was equivalent to only 57% of the retained nitrate, suggesting that another portion was assimilated by biota. The high sediment organic N mineralization and ammonium efflux rate coupled with the occurrence of ammonium export from the system suggested a possible link between biotic assimilation of nitrate, mineralization, and export.  相似文献   

4.
Many large rivers worldwide are enriched with high levels of suspended solids (SS), which are known to be hotspots of many nitrogen (N) transformation processes (e.g., denitrification, nitrification). However, the influence of SS on microbial ammonium (NH4+) recycling remains unclear. Water column NH4+ regeneration rates (REGs) and potential uptake rates (Upots) as well as community biological NH4+ demand (CBAD) was measured in the river-estuary continuum of the third longest river in the world—Yangtze River, which has dramatic SS gradients. We found that REGs, Upots, and CBAD all increased downriver, with higher REGs, Upots, and CBAD in the estuary than in the river sections. The regeneration and uptake of NH4+ were nearly balanced in the river sections, while the positive CBAD in the estuary indicated obvious NH4+ demand of microbes. Concentrations of SS, which also control the content of chemical oxygen demand and particulate N, were the main factor influencing NH4+ recycling rates and CBAD. SS-induced regenerated NH4+ in the river-estuary continuum of Yangtze River was estimated to be 11.02 × 108 kg N yr−1 and accounted for about 14% of total N inputs, suggesting that regenerated NH4+ is an important N source for microbes and may influence nutrient dynamics in lower coasts. To our knowledge, this is the first study to report NH4+ recycling in Yangtze River with an emphasis on its influencing factors and contribution to N budgets.  相似文献   

5.
Abstract

The study area is located on the Harat plain, in the central region of Iran. Four local-soil filled, free-drainage lysimeters were installed in wheat and barley farms operating under traditional farm management practices. The volume, electrical conductivity (EC), nitrate and major ions of the applied irrigation water and irrigation return flow (IRF) were measured during the growing season. The total dissolved solids (TDS) of IRF increased three to five times compared to that of the applied water. This enhancement was the same as for the chloride ion ratio, indicating the major impact of evapotranspiration in IRF salinity enhancement. Geochemical modelling using PHREEQCI confirmed the significant role of evapotranspiration and the minor effects of processes such as calcite precipitation, gypsum dissolution, fertilizer nitrification and ion exchange on the values of the IRF TDS. Time variations of EC were functions of the type of flow (preferential or matrix), lithology and soil type. The controlling parameters of the nitrate time series were the frequent applications of N fertilizer and the nitrification process. The annual N loads (NO3-N) of IRF varied from 22 to 195 kg ha-1. These variations were due to the different N loads in the applied water, the amount of fertilizer, soil texture, N uptake and volume of IRF. The annual salt loads of IRF were mainly controlled by the volume of IRF.

Editor Z.W. Kundzewicz

Citation Jafari, H., Raeisi, E., Hoehn, E. and Zare, M., 2012. Hydrochemical characteristics of irrigation return flow in semi-arid regions of Iran. Hydrological Sciences Journal, 57 (1), 173–185.  相似文献   

6.
Nitrogen (N) and phosphorus (P) dynamics in the Kuparuk River in arctic Alaska were characterized in a 3‐year study using routine samples near the mouth of the river at the Arctic Ocean, synoptic whole‐river surveys, and temporally intense sampling during storms in three headwater basins. The Lower Kuparuk River has low nitrate concentrations (mean [NO3]‐N] = 17 µg l?1 ± 1·6 SE) and dissolved inorganic N (DIN, mean [N] = 31 µg l?1 ± 1·2 SE) compared with rivers in more temperate environments. Organic forms constituted on average 90% of the N exported to the Arctic Ocean, and high ratios of dissolved organic N (DON) to total dissolved N (TDN) concentrations (mean 0·92) likely result from waterlogged soils formed by reduced infiltration due to permafrost and low hydrologic gradients. Annual export of TDN, DON, and particulate N averaged 52 kg km?2, 48 kg km?2, and 4·1 kg km?2 respectively. During snowmelt, the high volume of runoff typically results in the highest nutrient loads of the year, although high discharge during summer storms can result in substantial nutrient loading over short periods of time. Differences in seasonal flow regime (snowmelt versus rain) and storm‐driven variation in discharge appear to be more important for determining nutrient concentrations than is the spatial variation in processes along the transect from headwaters towards the ocean. Both the temporal variation in nitrate:DIN ratios of headwater streams and the spatial variation in nitrate:DIN between larger sub‐basins and smaller headwater catchments is likely controlled by shifts in nitrification and soil anoxia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In the process of methane oxidation by nitrite ion, the latter, when in high concentration, inhibits the oxidation process. The effect of inhibition is incorporated in the proposed model, describing the dynamics of anaerobic oxidation of methane and its heavy fractions δ13CH4 and δC2H1H3 by nitrite ion. Two substrates—methane and nitrite—are considered in a modified Monod function, describing the oxidation rate. The model is calibrated against experimental data given in [8]. The dynamic behavior of the system under a deficiency of methane or nitrite ion is described. The dynamics of δ13CH4 and δC2H1H3 are shown to be governed by the oxidation dynamics of total methane CH4. By contrast to the conventional opinion that Rayleigh equation corresponds to 1st-order kinetics in terms of substrate concentration, this study shows that Rayleigh equation can be derived from dynamic equations for methane with heavy isotopes (13C and 2H), whatever the kinetic type of total methane oxidation.  相似文献   

8.
Nutrient dynamics in karst agroecosystems remain poorly understood, in part due to limited long‐term nested datasets that can discriminate upland and in‐stream processes. We present a 10‐year dataset from a karst watershed in the Inner‐Bluegrass Region of central Kentucky, consisting of nitrate (nitrate‐N [NO3?]), dissolved reactive phosphorus (DRP), total organic carbon (TOC), and total ammoniacal‐N (TAN) measurements at nested spring and stream sites as well as flowrate at the watershed outlet. Hydrograph separation techniques were coupled with multiple linear regression and Empirical Mode Decomposition time‐series analysis to determine significance of seasonal processes and to generate continuous estimates of nutrient pathway loadings. Further, we used model results of benthic algae growth and decomposition dynamics from a nearby watershed to assess if transient storage in algal biomass could explain differences in spring and downstream watershed nutrient loading. Results highlight statistically significant seasonality for all nutrients at stream sites, but only for NO3? at springs with longitudinal variability showing significant decreases occurring from spring to stream sites for NO3? and DRP, and significant increases for TOC and TAN. Pathway loading analysis highlighted the importance of slow flow pathways to source approximately 70% of DRP and 80% of NO3?. Results for in‐stream dynamics suggest that benthic autotroph dynamics can explain summer deviations for TOC, TAN, and DRP but not NO3?. Regarding upland dynamics, our findings agree well with existing perceptions in karst for N pathways and upland source seasonality but deviate from perceptions that karst conduits are retentive of P, reflecting the limited buffering capacity of the soil profile and conduit sediments in the Inner‐Bluegrass. Regarding in‐stream fate, our findings highlighted the significance of seasonally driven nutrient processing in the bedrock‐controlled streambed to influence nutrient fluxes at the watershed outlet. Contrary to existing perceptions, we found high N attenuation and an unexplained NO3? sink in the bedrock stream, leading us to postulate that floating macrophytes facilitate high rates of denitrification.  相似文献   

9.
Preliminary nitrogen isotope data for ammonia from animal urine, fuel combustion, fertilizer use and fertilizer factories have been measured or estimated. It turns out that direct nitrogen isotope measurements of atmospheric ammonia at Jülich are in the expected range calculated from the ranges of different sources. For deposition of atmospheric ammonium in Jülich-rain a depletion in15N with respect to atmospheric ammonia has been found which is explained by isotope fractionations during rainout and washout. In correspondence with this fractionation model are nitrogen isotope data of rain-ammonium from coastal areas, which are enriched in15N due to the fact that sea water acts as a sink for atmospheric ammonia.For Jülich rain-nitrate a pronounced seasonal trend has been detected with lower15N data in spring and summer than in autumn and winter. This trend is interpreted by different nitrogen isotope data of anthropogenic and natural nitric oxides which have been measured or estimated from isotope fractionation effects during nitrification and denitrification reactions in soils. It should be possible to get better global estimations for anthropogenic and natural nitric oxides from nitrogen isotope measurements.  相似文献   

10.
An algorithm for retrieving the AL index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N*V 2] is used to determine the process of substorm formation. The algorithm is incorporated into a framework developed to retrieve the AL index of an Elman-type artificial neural network (ANN) containing an additional layer of neurons that provides an “internal memory” of the prehistory of the dynamical process to be retrieved. The ANN is trained on data of 70 eight-hour-long time intervals, including the periods of isolated magnetospheric substorms. The efficiency of this approach is demonstrated by numerical neural-network experiments on retrieving the dynamics of the AL index from the of solar wind and IMF parameters during substorms.  相似文献   

11.
Both susceptibility to chemical oxidation and biodegradability of nitrobenzene are determined. Nitrobenzene is found to be resistant to chemical oxidation with potassium permanganate and is partially oxidized with potassium dichromate. Biodegradability is studied in a batch and in a flow-through system both with municipal and with artificially prepared wastewaters. Nitrobenzene present in municipal wastewater at 300 g/m3 concentrations is found to be biodegradable after adaptation of the biomass. In a flow-through system nitrobenzene is degradable at 400 g/m3 concentration. Concentrations exceeding 10 g/m3 inhibit the nitrification process.  相似文献   

12.
Transfer of atmospheric N deposition on shallow‐soil forested basins on the Canadian Shield to receiving water bodies may be enhanced by rapid preferential flow along the soil–bedrock interface (BR runoff) on basin slopes. Controls on BR runoff, partitioning of event and pre‐event water contributions to this flow, and implications of this partitioning for N fluxes in BR runoff were studied under natural and artificial inputs to an instrumented slope. BR runoff as a fraction of water inputs to the slope increased with antecedent soil wetness and input depth. Event water contributions to BR runoff initially increased with antecedent soil wetness, but then declined at large antecedent soil wetness. Export of applied NH4+ from the slope was maximized when event water contributions containing large NH4+ concentrations dominated BR runoff; however, there was no relationship between the fraction of NO3? application transported in BR runoff and either application input or the event water fraction of that runoff. The applicability of our results to other shallow‐soil areas of the Canadian Shield is limited by artificial N inputs to the slope in excess of natural loads and by low rates of N mineralization and negligible nitrification in the slope's soils. Nevertheless, the study reinforces the need to consider how the hydrologic, geometric and pedologic properties of forest slopes interact with biotic and abiotic soil processes to control N transport and transformation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
In watersheds impacted by nitrate from agricultural fertilizers, nitrification and denitrification may be decoupled as denitrification in the hyporheic zone is not limited to naturally produced nitrate. While most hyporheic research focuses on the 1–2 m of sediment beneath the stream bed, there are a limited number of studies that quantify nitrogen (N) cycling at larger hyporheic scales (10s of metres to kms). We conducted an investigation to quantify N cycling through a single meander of a low gradient, meandering stream, draining an agricultural watershed. Chemistry (major ions and N species) and hydrologic data were collected from the stream and groundwater beneath the meander. Evidence indicates that nearly all the shallow groundwater flowing beneath the meander originates as stream water on the upgradient side of the meander, and returns to the stream on the downgradient side. We quantified the flux of water beneath the meander using a numerical model. The flux of N into and out of the meander was quantified by multiplying the concentration of the important N species (nitrate, ammonium, dissolved organic nitrogen (DON)) by the modelled water fluxes. The flux of N into the meander is dominated by nitrate, and the flux of N out of the meander is dominated by ammonium and DON. While stream nitrate varied seasonally, ammonium and DON beneath the meander were relatively constant throughout the year. When stream nitrate concentrations are high (>2 mg litre?1), flow beneath the meander is a net sink for N as more N from nitrate in stream water is consumed than is produced as ammonium and DON. When stream nitrate concentrations are low (<2 mg litre?1), the flux of N entering is less than exiting the meander. On an annual basis, the meander hyporheic flow serves as a net sink for N. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The use of submersed macrophyte tissue δ 15N to quantify the level of WWTP effluent use in a highly urbanized and agricultural river was evaluated using several methods. Macrophytes, NH4 + and NO3 ? were collected by canoe along two 10 km reaches of river, upstream and downstream of two major municipal WWTPs over 3 years. NH4 + decreased in concentration while δ 15N–NH4 + increased as a function of distance downstream of both WWTPs, changing in one survey from 13 to 31 ‰ over 1 km. This increase is attributed to the combined effects of volatilization, nitrification and uptake. While NO 3 ? concentrations increased downstream of the WWTP over one of the survey reaches, δ 15N–NO 3 ? showed no prominent trend with distance at either. Macrophyte tissue δ 15N increased with distance downstream of both WWTPs, with a slope not significantly different from that of δ 15N–NH4 + suggesting that macrophytes incorporate effluent NH4 + as their main N source in those areas. However, mixing models suggest that towards the end of the reach, where source separation is distinct, macrophytes may utilize background NO 3 ? . Our study indicates the difficulty of deriving precise estimates of effluent use by macrophytes in a system where the δ 15N of the effluent changes rapidly. It also illustrates the utility of macrophytes in describing those changes where the effluent is too attenuated to allow for direct isotopic analysis.  相似文献   

15.
This paper presents 19 months of stable isotope (δ2H and δ18O) data to enhance understanding of water and solute transport at two spatial scales (2.3 km2 and 122 km2) in the agricultural Lunan catchment, Scotland. Daily precipitation and stream isotope data, weekly lake and spring isotope data and monthly groundwater isotope data revealed important insights into flow pathways and mixing of water at both scales. In particular, a deeper groundwater flow path significantly contributes to total streamflow (25-50%). Upstream lake isotope dynamics, susceptible to evaporative fractionation, also appeared to have an important influence on the downstream isotope composition. This unique tracer data set facilitated the conceptualization of a lumped catchment-scale flow-tracer model. The incorporation of hydrological, mixing and fractionation processes based on these data improved simulations of the stream δ2H isotope response at the catchment outlet from 0.37 to 0.56 for the Nash-Sutcliffe statistic. The stable isotope data successfully aided model conceptualization and calibration in the quest for a simple water and solute transport model with improved representation of process dynamics.  相似文献   

16.
A study was made of the nitrogen (N) inputs to, and exports from, a stream draining a pasture catchment near Hamilton, New Zealand, in order to plan measures for minimizing N losses to natural waters. An estimated 7 kg N ha?1 was exported from the catchment during 1981 of which 86 per cent was in reduced forms (Kjeldahl-N, TKN) and the remainder as nitrate-N (NO3-N). Virtually all of the reduced N inputs came from saturated overland flow whereas NO3-N inputs were dominantly subsurface derived. The TKN exported by individual storm events could be predicted (R2 = 0.97) from peak flow and from the peak flow rate in the seven days preceding the storm. A TKN balance for eight events showed that except for large floods (return period approximately a year) the stream system was a net sink for TKN. During large floods, scouring of the organic rich seepage areas resulted in the stream system itself being a net source of TKN. Microbial assays for nitrification and denitrification activity indicated that the main nitrate source was the well-aerated greywacke and ash soils and that the permanently saturated seepage zones were a significant nitrate sink. An in-stream nitrate addition experiment showed that up to 20mg N m?2 h?1 was removed from the stream. Simultaneous measurements of in situ denitrification activity demonstrated that only about 1 per cent of this removal could be accounted for by denitrification. It was inferred that plant uptake was responsible for the remainder. Retention of near-stream seepage areas is suggested as a measure for minimizing NO3-N export, whilst removal of stock from seasonally saturated areas during periods of saturatior should reduce soil loss and hence TKN inputs to the stream.  相似文献   

17.
Hydrographic and biogeochemical observations were conducted along the longitudinal section from Ise Bay to the continental margin (southern coast of Japan) to investigate changes according to the Kuroshio path variations during the summer. The strength of the uplift of the cold deep water was influenced by the surface intrusion of the Kuroshio water to the shelf region. When the intrusion of the Kuroshio surface water to the shelf region was weak in 2006, the cold and NO3-rich shelf water intruded into the bottom layer in the bay from the shelf. This bottom intrusion was intensified by the large river discharge. The nitrogen isotope ratio (δ15N) of NO3 (4–5‰) in the bottom bay water was same as that in the deeper NO3 over the shelf, indicating the supply of new nitrogen to the bay. The warm and NO3-poor shelf water intruded into the middle layer via the mixing region at the bay mouth when the Kuroshio water distributed in the coastal areas off Ise Bay in 2005. The regenerated NO3 with isotopically light nitrogen (δ15N=−1‰) was supplied from the shelf to the bay. This NO3 is regenerated by the nitrification in the upper layer over the shelf. The contribution rate of regenerated NO3 over the shelf to the total NO3 in the subsurface chlorophyll maximum layer in the bay was estimated at 56% by a two-source mixing model coupled with the Rayleigh equation.  相似文献   

18.
This study was designed to improve our understanding of, and mechanistically simulate, nitrate (NO3) dynamics in a steep 9.8 ha rural headwater catchment, including its production in soil and delivery to a stream via surface and subsurface processes. A two‐dimensional modelling approach was evaluated for (1) integrating these processes at a hillslope scale annually and within storms, (2) estimating denitrification, and (3) running virtual experiments to generate insights and hypotheses about using trees in streamside management zones (SMZs) to mitigate NO3 delivery to streams. Total flow was mathematically separated into quick‐ and slow‐flow components; the latter was routed through the HYDRUS software with a nitrogen module designed for constructed wetlands. Flow was monitored for two years. High surface‐soil NO3 concentrations started to be delivered to the stream via preferential subsurface flow within two days of the storm commencing. Groundwater NO3‐N concentrations decreased from 1.0 to less than 0.1 mg l?1 from up‐slope to down‐slope water tables, respectively, which was attributed to denitrification. Measurements were consistent with the flushing of NO3 mainly laterally from surface soil during and following each storm. The model accurately accounted for NO3 turnover, leading to the hypotheses that denitrification was a minor flux (<3 kg N ha?1) compared to uptake (98?127 kg N ha?1), and that SMZ trees would reduce denitrification if they lowered the water table. This research provides an example of the measurement and modelling of NO3 dynamics at a small‐catchment scale with high spatial and temporal resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The goals of this study were to evaluate the contribution of sewage-derived N to reef flat communities in Guam and to assess the impact of N inputs on coral disease. We used stable isotope analysis of macroalgae and a soft coral, sampled bimonthly, as a proxy for N dynamics, and surveyed Porites spp., a dominant coral taxon on Guam’s reefs, for white syndrome disease severity. Results showed a strong influence of sewage-derived N in nearshore waters, with δ15N values varying as a function of species sampled, site, and sampling date. Increases in sewage-derived N correlated significantly with increases in the severity of disease among Porites spp., with δ15N values accounting for more than 48% of the variation in changes in disease severity. The anticipated military realignment and related population increase in Guam are expected to lead to increased white syndrome infections and other coral diseases.  相似文献   

20.
To clarify the sources and transformation of NO3 on the Pacific coast of Japan, observations over the continental shelf were conducted during the summer in 2005 and 2006 when the Kuroshio flowed close to and away from the coastal area, respectively. Below the halocline, there are two prominent salinity peaks that originated in two different waters. In the subsurface layer, the salinity maximum (Smax) was indicative of the Kuroshio Water (KW), while the salinity minimum (Smin) in the middle layer at ∼400 m depth was indicative of the North Pacific Intermediate Water (NPIW). δ15NNO3 ranged from 4.1‰ to 5.1‰ with a mean of 4.8±0.4‰ in the deeper water around Smin. Below 50 m depth over the shelf break, δ15NNO3 values (3.1±0.8‰ in 2005 and 4.6±0.3‰ in 2006) clearly increased as contribution of NPIW increased in 2006. On the contrary, subsurface δ15N of NO3 values (−1.1±0.1‰) remained unchanged in both years, although the contribution of the KW to the subsurface water changed significantly. This suggests that the source of NO3 has little effect on the δ15N of NO3 in this layer. The negative δ15N values also coincided with the base of the chlorophyll maximum layer suggesting that these isotopic signals must be evidence of active nitrification in the upper layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号