首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The stability of a river bank depends on the balance of forces, motive and resistive, associated with the most critical mechanism of failure. Many mechanisms are possible and the likelihood of failure occurring by any particular one depends on the size, geometry and structure of the bank, the engineering properties of the bank material, the hydraulics of flow in the adjacent channel and climatic conditions. Rivers flowing through alluvial deposits often have a composite structure of cohesionless sand and gravel overlain by cohesive silt/clay. Bank erosion occurs by fluvial entrainment of material from the lower, cohesionless bank at a much higher rate than material from the upper, cohesive bank. This leads to undermining that produces cantilevers of cohesive material. Upper bank retreat takes place predominantly by the failure of these cantilevers. Three mechanisms of failure have been identified: shear, beam and tensile failure. The stability of a cantilever may be analysed using static equilibrium and beam theory, and dimensionless charts for cantilever stability constructed. Application of the charts requires only a few simple measurements of cantilever geometry and soil properties. In this analysis the effects of cracks and fissures in the soil must be taken into account. These cracks seriously weaken the soil and can invalidate a stability analysis by affecting the shape of the failure surface. Following mechanical failure, blocks of soil must be removed from the basal area by fluvial entrainment if rapid undermining and cantilever generation are to continue. Hence, the rate of bank retreat is fluvially controlled, even though the mechanism of failure of the upper bank is not directly fluvial in nature. This cycle of bank erosion: undermining, cantilever failure and fluvial scour of the toe, operates over several flood events and has important implications for river engineering, channel changes, and the movement of sediment through fluvial systems.  相似文献   

2.
《国际泥沙研究》2016,(3):220-225
The cantilever failure is one of the typical bank failures, in which the lateral caving erosion at the bottom of the bank plays an important role. When the caving erosion width is larger than a certain value, the cantilever failures such as shear, toppling and stress failures may occur. In order to understand the condition of the cantilever failure, the collapse mechanisms of the cantilever failures are studied based on the bank stability theory and flume experiment. According to the bank stability equation with the lateral erosion, the critical caving erosion width (CCEW) formulas for the shear and toppling failures of simple slope bank were derived in this paper. The formulas show that the CCEW increases as the overhanging soil thickness and soil cohesion increase, and decreases as the crack depth on the bank surface and the slope angle of the bank increase. And these formulas were tested with experimental data, which shows the predicted values are good agreement with experimental data. The paper reveals a quantitative expression on the process of the river cantilever failure.  相似文献   

3.
We measured the effect of wet meadow vegetation on the bank strength and failure mechanics of a meandering montane meadow stream, the South Fork of the Kern River at Monache Meadow, in California's Sierra Nevada. Streambanks colonized by ‘wet’ graminoid meadow vegetation were on average five times stronger than those colonized by ‘dry’ xeric meadow and scrub vegetation. Our measurements show that strength is correlated with vegetation density indicators, including stem counts, standing biomass per unit area, and the ratio of root mass to soil mass. Rushes appear better than sedges at stabilizing coarse bar surfaces, while sedges are far more effective at stabilizing actively eroding cut banks. Wet meadow floodplain vegetation creates a composite cut bank configuration (a cohesive layer overlying cohesionless materials) that erodes via cantilever failure. Field measurements and a geotechnical model of cantilever stability show that by increasing bank strength, wet meadow vegetation increases the thickness, width, and cohesiveness of a bank cantilever, which, in turn, increases the amount of time required to undermine, detach, and remove bank failure blocks. At Monache Meadow, it takes approximately four years to produce and remove a 1 m wide wet meadow bank block. Wet meadow vegetation limits bank migration rates by increasing bank strength, altering bank failure modes, and reducing bank failure frequency. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Cross-sections of 16 straight sandbed streams in Minnesota, Iowa, and Nebraska were surveyed. Two stratigraphic horizons were found in the banks at each site, an upper cohesive unit usually composed of silt and clay and a lower unit composed of sand. Bank erosion on these rivers occurs when the upper cohesive unit is undercut by scour at bends. The overhanging cohesive block fails by beam or cantilever failure. As upper bank failure is a direct result of undercutting, the stability and rate of retreat of the bank are largely determined by erosion of the sandy part of the bank. The cohesive layer has little influence on bank retreat and width adjustment on the rivers studied here. A quantitative lateral sediment transport model developed by Parker (1978a) is used to calculate the steady-state geometry of the sandy part of the bank. Results are obtained for the shape, length, and height of the sandy part of the bank. The model predicts the length of the bank fairly well, and the theoretical equation for the height of the bank is of the correct form. The model, however, overestimates the slope of the bank. The height of the sandy part of the bank (Db) is approximately equal to the depth of the mean annual flow. Since Db is determined by the lateral sediment transport model, the width (W) may be obtained from the equation of continuity (Q = WDbV), published flow (Q) data, and a resistance equation for the mean velocity, V. The calculated widths are similar to those measured in the field.  相似文献   

5.
Rill bank collapse is an important component in the adjustment of channel morphology to changes in discharge and sediment flux. Sediment inputs from bank collapse cause abrupt changes in flow resistance, flow patterns and downstream sediment concentrations. Generally, bank retreat involves gradual lateral erosion, caused by flow shear stress, and sudden bank collapse, triggered by complex interactions between channel flow and bank and soil water conditions. Collapse occurs when bank height exceeds the critical height where gravitational forces overcome soil shear strength. An experimental study examined conditions for collapse in eroding rill channels. Experiments with and without a deep water table were carried out on a meandering rill channel in a loamy sand and sandy loam in a laboratory flume under simulated rainfall and controlled runon. Different discharges were used to initiate knickpoint and rill incision. Soil water dynamics were monitored using microstandpipes, tensiometers and time domain reflectometer probes (TDR probes). Bank collapse occurred with newly developed or rising pre‐existing water tables near rill banks, associated with knickpoint migration. Knickpoint scour increased effective bank height, caused positive pore water pressure in the bank toe and reduced negative pore pressures in the unsaturated zone to near zero. Matric tension in unsaturated parts of the bank and a surface seal on the ‘interrill’ zone behind the bank enhanced stability, while increased effective bank height and positive pore water pressure at the bank toe caused instability. With soil water contents >35 per cent (sandy loam) and >23 per cent (loamy sand), critical bank heights were 0·11–0·12 m and 0·06–0·07 m, respectively. Bank toe undercutting at the outside of the rill bends also triggered instability. Bank displacement was quite different on the two soils. On the loamy sand, the failed block slid to the channel bed, revealing only the upper half of the failure plane, while on the sandy loam the failed block toppled forwards, exposing the failure plane for the complete bank height. This study has shown that it is possible to predict location, frequency and magnitude of the rill bank collapse, providing a basis for incorporation into predictive models for hillslope soil loss or rill network development. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Study on the stability of non-cohesive river bank   总被引:1,自引:0,他引:1  
Frequent bank collapse in nature highlights the need to study the mechanism of bank stability. This paper presents a theoretical analysis and a flume experimental study on the interaction of hydrodynamic conditions and non-cohesive banks of meandering and straight rivers. No bank collapse occurs if the bank angle is smaller than a critical value. The critical angle is a function of a dimensionless parameter KUD, which is directly proportional to the square of flow velocity near river bed and inversely proportional to the median diameter of bank material. Furthermore, the critical angle reduces with flow velocity and is higher in meandering rivers than in straight rivers. Formulas for estimating the threshold of bank stability are obtained by curve fitting method with experimental data. The results agree with the data measured in the middle and lower reaches of the Yangtze River.  相似文献   

7.
Bank retreat in the Jingjiang Reach is closely related not only to the near‐bank intensity of fluvial erosion but also to the composition and mechanical properties of bank soils. Therefore, it is necessary to correctly simulate bank retreat to determine the characteristics of fluvial processes in the Jingjiang Reach. The current version of bank stability and toe erosion model (5.4) was improved to predict riverbank retreat, by inputting a dynamic water table, and calculating the approximation of the distribution of dynamic pore water pressure in the soil near the river bank face, and considering the depositional form of the failed blocks, which is assumedly based on a triangular distribution, with the slope approximately equalling the stable submerged bank slope and half of collapsed volume deposited in the bank‐toe region. The degrees of riverbank stability at Jing34 were calculated using the improved bank stability and toe erosion model. The results indicate the following trends: (a) the degrees of riverbank stability were high during the dry season and the rising stage, which led to minimal bank failure, and (b) the stability degrees were low during the flood season and the recession stage, with the events of bank collapse occurring frequently, which belonged to a stage of intensive bank erosion. Considering the effects of bank‐toe erosion, water table lag, and the depositional form of the collapsed bank soil, the bank‐retreat process was simulated at the right riverbank of Jing34. The model‐predicted results exhibit close agreement with the measured data, including the total bank‐retreat width and the collapsed bank profile. A sensitivity analysis was conducted to determine the quantitative effects of toe erosion and water table lag on the degree of bank stability. The calculated results for toe erosion indicate that the amount of toe erosion was largest during the flood season, which was a primary reason for bank failure. The influence of water table lag on the degree of stability demonstrates that water table lag was an important cause of bank failure during the recession stage.  相似文献   

8.
Cross-sections were surveyed at straight reaches of 16 sandbed streams in the midwestern U.S. Two stratigraphic horizons are found in the banks at each site, an upper cohesive unit usually composed of silt and clay, and a lower unit composed of sand. Bank erosion on these rivers occurs when the upper cohesive unit is undercut by scour at bends. The overhanging cohesive block fails by toppling forward into the channel. During failure, the soil is primarily in tension rather than compression or shear. Analysis of this failure mechanism leads to a field method for measuring the tensile strength of riverbanks. Measured values of the tensile strength are not correlated with the channel geometry. Thus, the erodibility of the cohesive bank sediments does not influence the geometry of the rivers studied.  相似文献   

9.
Streambank retreat can be a significant contributor to total sediment and nutrient loading to streams. Process-based bank stability models, such as the Bank Stability and Toe Erosion Model (BSTEM), have been used to determine critical factors affecting streambank erosion and failure such as riparian vegetation and to estimate retreat rates over time. BSTEM has been successfully applied on a number of cohesive streambanks, but less so on composite banks consisting of both cohesive and noncohesive soils in highly sinuous streams. Composite streambanks can exhibit rapid and episodic bank retreat. The objectives of this research were twofold: (i) develop and apply simplified procedures for estimating root cohesion based on above- and below-ground biomass estimates and (ii) systematically apply BSTEM to a series of 10 composite streambanks distributed along the Barren Fork Creek in eastern Oklahoma to assess model sensitivity to root cohesion and model performance in predicting retreat. This research aimed to document the influence of riparian conservation practices on bank retreat rates and evaluated simplistic methods for incorporating such practices into such process-based models. Sites modeled included historically unprotected sites with no riparian vegetation and historically protected sites with riparian vegetation present during all or part of the 2003 to 2010 study period. The lateral retreat ranged from 4.1 to 74.8 m across the 10 sites and was largest at the historically unprotected sites in which retreat averaged 49.2 m. Protected sites had less bank retreat but with more variability in retreat rates per year. With calibration focused on the erodibility parameters, the model was able to match both the observed total amount of retreat as well as the timing of retreat at both the protected and unprotected sites as derived from aerial imagery. During calibration BSTEM was not sensitive to the specific value of the soil cohesion or the additional soil cohesion added due to roots for the cohesive topsoil layer, suggesting that the proposed simplified techniques could be used to estimate root cohesion values. The BSTEM modeling also provided an advantageous assessment tool for evaluating retreat rates compared to in situ bank retreat measurements due to the magnitude and episodic nature of streambank erosion and failures. Process-based models, such as BSTEM, may be necessary to incrementally model bank retreat in order to quantify actual streambank retreat rates and understand mechanisms of failure for the design of stabilization projects.  相似文献   

10.
Burrowing into riverbanks by animals transfers sediment directly into river channels and has been hypothesised to accelerate bank erosion and promote mass failure. A field monitoring study on two UK rivers invaded by signal crayfish (Pacifastacus leniusculus) assessed the impact of burrowing on bank erosion processes. Erosion pins were installed in 17 riverbanks across a gradient of crayfish burrow densities and monitored for 22 months. Bank retreat increased significantly with crayfish burrow density. At the bank scale (<6 m river length), high crayfish burrow densities were associated with accelerated bank retreat of up to 253% and more than a doubling of the area of bank collapse compared with banks without burrows. Direct sediment supply by burrowing activity contributed 0.2% and 0.6% of total sediment at the reach (1.1 km) and local bank (<6 m) scales. However, accelerated bank retreat caused by burrows contributed 12.2% and 29.8% of the total sediment supply at the reach and bank scales. Together, burrowing and the associated acceleration of retreat and collapse supplied an additional 25.4 t km−1 a−1 of floodplain sediments at one site, demonstrating the substantial impact that signal crayfish can have on fine sediment supply. For the first time, an empirical relation linking animal burrow characteristics to riverbank retreat is presented. The study adds to a small number of sediment budget studies that compare sediment fluxes driven by biotic and abiotic energy but is unique in isolating and measuring the substantial interactive effect of the acceleration of abiotic bank erosion facilitated by biotic activity. Biotic energy expended through burrowing represents an energy surcharge to the river system that can augment sediment erosion by geophysical mechanisms.  相似文献   

11.
Riverbank retreat along a bend of the Cecina River, Tuscany (central Italy) was monitored across a near annual cycle (autumn 2003 to summer 2004) with the aim of better understanding the factors influencing bank changes and processes at a seasonal scale. Seven flow events occurred during the period of investigation, with the largest having an estimated return period of about 1·5 years. Bank simulations were performed by linking hydrodynamic, fluvial erosion, groundwater flow and bank stability models, for the seven flow events, which are representative of the typical range of hydrographs that normally occur during an annual cycle. The simulations allowed identification of (i) the time of onset and cessation of mass failure and fluvial erosion episodes, (ii) the contributions to total bank retreat made by specific fluvial erosion and mass‐wasting processes, and (iii) the causes of retreat. The results show that the occurrence of bank erosion processes (fluvial erosion, slide failure, cantilever failure) and their relative dominance differ significantly for each event, depending on seasonal hydrological conditions and initial bank geometry. Due to the specific planimetric configuration of the study bend, which steers the core of high velocity fluid away from the bank at higher flow discharges, fluvial erosion tends to occur during particular phases of the hydrograph. As a result fluvial erosion is ineffective at higher peak discharges, and depends more on the duration of more moderate discharges. Slide failures appear to be closely related to the magnitude of peak river stages, typically occurring in close proximity to the peak phase (preferentially during the falling limb, but in some cases even before the peak), while cantilever failures more typically occur in the late phase of the flow hydrograph, when they may be induced by the cumulative effects of any fluvial erosion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Between a.d. 2006 and 2008, we completed annual surveys of two mercury‐contaminated eroding banks, one forested and the other grass covered, along the gravel‐bed, bedrock South River in Virginia. Gridded digital terrain models with a resolution of 0·05 m were created from bank topography data collected using a terrestrial laser scanner. Model comparisons indicate that the forested bank retreated nearly 1 m around two leaning trees, while elsewhere the extent of bank retreat was negligible. On the grassy bank, retreat was controlled by the creation of small overhanging clumps of turf at the top of the bank, their occasional failure, and the ultimate removal of failed debris from the bank toe. Partial autocorrelation analysis of vertically integrated bank retreat demonstrates that bank profile erosion is virtually uncorrelated at horizontal distances greater than about 1 m on both banks, a length scale of approximately half the bank height. This extensive streamwise variability suggests that widely spaced profile data cannot adequately represent bank erosion at these sites. Additional analysis of our comprehensive spatial data also indicates that traditional bank profile surveys with any spacing greater than 1 m would result in measurement errors exceeding 10%, an important conclusion for assessing annual rates of mercury loading into the South River from bank erosion. Our results suggest that three‐dimensional gridded bare‐earth models of bank topography may be required to accurately measure annual bank retreat in similar river systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A 2D MATHEMATICAL MODEL FOR THE BED DEFORMATION IN THE LOWER YELLOW RIVER   总被引:2,自引:0,他引:2  
1 BANK EROSION IN THE LOWER YELLOW RIVER In alluvial rivers, riverbeds are always in a state of transition and development. Two kinds of deformations result for the fluvial process according to certain basic characteristics. One is longitudinal deformation that is characterized by the deformation of a riverbed in the direction of streamwise flow such as riverbed scour or deposition. The other is transverse or lateral deformation that is distinguished by the deformation of a riverb…  相似文献   

14.
River bank erosion occurs primarily through a combination of three mechanisms: mass failure, fluvial entrainment, and subaerial weakening and weathering. Subaerial processes are often viewed as ‘preparatory’ processes, weakening the bank face prior to fluvial erosion. Within a river basin downstream process ‘domains’ occur, with subaerial processes dominating the upper reaches, fluvial erosion the middle, and mass failure the lower reaches of a river. The aim of this paper is to demonstrate that (a) subaerial processes may be underestimated as an erosive agent, and (b) process dominance has a temporal, as well as spatial, aspect. Bank erosion on the River Arrow, Warwickshire, UK, was monitored for 16 months (December 1996 to March 1998) using erosion pins. Variations in the rate and aerial extent of erosion are considered with reference to meteorological data. Throughout the first 15 months all erosion recorded was subaerial, resulting in up to 181 mm a?1 of bank retreat, compared with 13 to 27 mm a?1 reported by previous researchers. While the role of subaerial processes as ‘preparatory’ is not contended, it is suggested that such processes can also be erosive. The three bank erosion mechanisms operate at different levels of magnitude and frequency, and the River Arrow data demonstrate this. Thus the concept of process dominance has a temporal, as well as spatial aspect, particularly over the short time‐periods often used for studying processes in the field. Perception of the relative efficacy of each erosive mechanism will therefore be influenced by the temporal scale at which the bank is considered. With the advent of global climate change, both these magnitude–frequency characteristics and the consequent interaction of bank erosion mechanisms may alter. It is therefore likely that recognition of this temporal aspect of process dominance will become increasingly important to studies of bank erosion processes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
岸滩侧蚀崩塌现象普遍存在于江河湖泊中,是一种危害较大的自然灾害。季节性冰冻河流受水动力、冻融耦合作用,岸滩崩塌机理复杂,开展其岸坡稳定性研究对河势控制和河流综合治理具有重要意义。以松花江干流大顶子山航电枢纽下游近坝段为例,采用BSTEM断面尺度模型,对河岸崩塌过程进行了模拟,定量分析了冻融作用对河岸稳定性的影响。研究结果表明:涨水期河岸稳定性相对较高,洪水期和退水期稳定性相对较低,为崩岸多发时期;冻融作用会使河岸稳定安全系数Fs提前达到不稳定临界值,即与不考虑冻融作用相比,河岸提前崩塌,且考虑冻融作用的崩塌宽度更接近实测值,累计冲刷崩塌总量增幅约为7%~41%。研究结果可为季节性冰冻河流岸滩崩塌及河道演变研究提供一定借鉴和参考。  相似文献   

16.
Stochastic erosion of composite banks in alluvial river bends   总被引:2,自引:0,他引:2       下载免费PDF全文
The erosion of composite river banks is a complex process involving a number of factors including fluvial erosion, seepage erosion, and cantilever mass failure. To predict the rate of bank erosion with these complexities, a stochastic bank erosion model is suitable to define the probability distribution of the controlling variables. In this study, a bank erosion model in a river bend is developed by coupling several bank erosion processes with an existing hydrodynamic and morphological model. The soil erodibility of cohesive bank layers was measured using a submerged jet test apparatus. Seasonal bank erosion rates for four consecutive years at a bend in the Brahmaputra River, India, were measured by repeated bankline surveys. The ability of the model to predict erosion was evaluated in the river bend that displayed active bank erosion. In this study, different monsoon conditions and the distribution functions of two variables were considered in estimating the stochastic bank erosion rate: the probability of the soil erodibility and stochastic stage hydrographs for the nth return period river stage. Additionally, the influences of the deflection angle of the streamflow, longitudinal slope of river channel, and bed material size on bank erosion rate were also investigated. The obtained stochastic erosion predictions were compared with the observed distribution of the annual‐average bank erosion rate of 45 river bends in the Brahmaputra River. The developed model appropriately predicted the short‐term morphological dynamics of sand‐bed river bends with composite banks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Meandering rivers have dynamic evolution characteristics of lateral migration and longitudinal creeping movement, and studies on the migration rate of meandering rivers have both scientific and practical significance for understanding the evolution process. A river source region often is sparsely populated and lacks long-term monitoring data, making it difficult to estimate the migration rate of river bends. In the source region of the Yellow River, located in the northeastern part of the Qinghai-Tibet Plateau, China, meandering rivers have extensively developed. Combined with field investigation and sampling in the source region in 2016 and 2017, 9 river bends in the middle Baihe River were selected to attempt estimation of migration rates of the river bends using tree ring analysis. The tree core and disc samples were collected using an increment borer and a crosscut saw, and the ages of the trees were estimated based on tree ring analysis. A method for estimating the migration rate of river bends based on the relation between positions and ages of trees grown on the point bars in inner banks is proposed. The estimated migration rates of the 9 river bends of the Baihe River ranged 0.38–6.10 m/yr, and the migration rates were found to be related to the flow rate, channel slope, height of the outer bank, and width of the river valley. The maximum migration rate was determined to be at the No. 9 River Bend where the ratio of the meander-bend radius to the channel width (R/W) was 2.31, which is consistent with previous findings that the bend migration is most rapid in the ‘migration phase’. The proposed method for estimating the migration rate of river bends provides a potential alternative option for future study on the morphodynamic process of a meandering river.  相似文献   

18.
This paper describes the morphology, sequential development and general sedimentology of concave-bank benches on the Murrumbidgee River of southeastern Australia, and also notes their important role in floodplain formation on certain meandering rivers in western Canada. Benches form against the concave bank (cut-bank) of abruptly curving bends immediately upstream of the point of maximum curvature. As a result of flow deflection against the upstream limb of the convex bank, the channel widens here and produces a zone of expanded flow facilitating flow separation near the upstream limb of the concave bank. Sedimentation within this zone starts with a longitudinal-shaped bar of medium sand forming a platform isolated even at low flow by a narrow secondary channel against the concave bank. Aggradation of the longitudinal-shaped bar with fine sand, mud and organic matter permits the establishment of trees. Further sedimentation, particularly around the young trees, results in the formation of a fully developed bench isolated by the secondary channel from the remainder of the floodplain only during high flows. Observations on confined meandering rivers in western Canada provide evidence of substantial floodplain formation by concave-bank bench accretion, a process distinctly different in character to the more familiar mechanism of lateral point-bar accretion. Furthermore, the preservation of abundant organic debris means that extensive bench deposits may be a source of locally useful natural gas from within floodplain sediments.  相似文献   

19.
Salt marsh cliff erosion in the Oosterschelde, due to basal scour and small-scale failure, was monitored during a two-year period using reference stakes. The composite marsh cliffs have a cantilever profile. Their stability is evaluated from beam failure analysis. A model is proposed, in which the cantilever weight is taken as the motive force; the major resistive force is the tensile strength. By substituting height, undermining width and soil mechanical properties of the cliff in the model, one can identify the cliffs that are likely to fail. Salt marsh cliffs, which combine a large tensile strength due to roots at the top of the profile with a large compressive stress at the cliff base due to the sandy texture of the subsoil, display the highest resistance to beam failure. The critical cliff dimensions, observed in the field, correspond with the values calculated from the proposed model of beam failure.  相似文献   

20.
Streambank erosion is a pathway for sediment and nutrient loading to streams, but insufficient data exist on the magnitude of this source. Riparian protection can significantly decrease streambank erosion in some locations, but estimates of actual sediment load reductions are limited. The objective of this research was to quantify watershed‐scale streambank erosion and estimate the benefits of riparian protection. The research focused on Spavinaw Creek within the Eucha‐Spavinaw watershed in eastern Oklahoma, where composite streambanks consist of a small cohesive topsoil layer underlain by non‐cohesive gravel. Fine sediment erosion from 2003 to 2013 was derived using aerial photography and processed in ArcMap to quantify eroded area. ArcMap was also utilized in determining the bank retreat rate at various locations in relation to the riparian vegetation buffer width. Box and whisker plots clearly showed that sites with riparian vegetation had on average three times less bank retreat than unprotected banks, statistically significant based on non‐parametric t‐tests. The total soil mass eroded from 2003 to 2013 was estimated at 7.27 × 107 kg yr.?1, and the average bank retreat was 2.5 m yr.?1. Many current erosion models assume that fluvial erosion is the dominant stream erosion process. Bank retreat was positively correlated with stream discharge and/or stream power, but with considerable variability, suggesting that mass wasting plays an important role in streambank erosion within this watershed. Finally, watershed monitoring programs commonly characterize erosion at only a few sites and may scale results to the entire watershed. Selection of random sites and scaling to the watershed scale greatly underestimated the actual erosion and loading rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号