首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment transport in ice-covered channels   总被引:1,自引:0,他引:1  
The existence of ice cover has important effects on sediment transport and channel morphology for rivers in areas with an annual occurrence of an ice season. The interaction of sediment transport and s...  相似文献   

2.
To be able to understand year-round river channel evolution both at present and in the future, the spatial variation of the flow characteristics and their sediment transport capabilities under ice cover need to be detected. As the measurements done through cross-sectional drill holes cover only a small portion of the river channel area, the numerical simulations give insight into the wider spatial horizontal variation of the flow characteristics. Therefore, we simulate the ice-covered flow with a hydrodynamic two-dimensional (2D) model in a meandering subarctic river (Pulmanki River, Finland) in mid-winter conditions and compare them to the pre-winter open-channel low flow situation. Based on the simulations, which are calibrated with reference measurements, we aim to detect (1) how ice-covered mid-winter flow characteristics vary spatially and (2) the erosion and sedimentation potential of the ice-covered flow compared to open-channel conditions. The 2D hydrodynamic model replicated the observed flow characteristics in both open-channel and ice-covered conditions. During both seasons, the greatest erosional forces locate in the shallow sections. The narrow, freely flowing channel area found in mid-winter cause the main differences in the spatial flow variation between seasons. Despite the causes of the horizontal recirculating flow structures being similar in both seasons, the structures formed in different locations depended on whether the river was open or ice covered. The critical thresholds for particle entrainment are exceeded more often in open-channel conditions than during ice-covered flow. The results indicate spatially extensive sediment transport in open-channel conditions, but that the spatial variability and differences in depositional and erosional locations increase in ice-covered conditions. Asymmetrical bends and straight reaches erode throughout the year, whereas symmetrical, smaller bends mainly erode in open-channel conditions and are prone to deposition in winter. The long ice-covered season can greatly affect the annual morphology of the submerged channel. © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
A two-dimensional model was developed to study the effect of ice cover on the transportation competence of ice-covered flows. The model is based on the equations of motion, impurity transfer, turbulence energy, and the ratio of turbulent energy to turbulent kinetic energy with allowance made to the effect of turbulent energy bursts on solid surfaces bounding the flow. The turbulent bursts on solid boundaries of open and ice-covered flows are shown to have no effect on the structure of flows, characterized by their aver-aged characteristics, but considerably change the distribution of suspended sediment concentrations.  相似文献   

4.
1 INTRODUCTIONFor many hydraulic engineering problems, the analysis of flow and bed level variations in openchannels is a fundamental prerequisite. forcal methOds fOr alluvial rivers are well develoPednowadays as far as onediInensional descriPtions are concemed. A cOmPrhensive analysis of Ihe wellknown models is Presented by Habersack(l998). HOwever, for a number of Problems such as channelwidening, flow pattem close to sPuds and etc. a more deailed knowledge of the bed level behavio…  相似文献   

5.
Sediment export from glaciated basins involves complex interactions between ice flow, basal erosion and sediment transfer in subglacial and proglacial streams. In particular, we know very little about the processes associated with sediment transfer by subglacial streams. The Haut Glacier d'Arolla (VS, Switzerland) was investigated during the summer melt season of 2015. LiDAR survey revealed positive surface changes in the ablation zone, indicating glacier uplift, at the end of the morning during the period of peak ablation. Instream measures of sediment transport showed that suspended load and bedload responded differently to diurnal flow variability. Suspended load depended on the availability of fine material whereas bedload depended mainly on the competence of the flow. Interpretation of these results allowed development of a conceptual model of subglacial sediment transport dynamics. It is based upon the mechanisms of clogging (deposition) and flushing (transport/erosion) in sub-glacial channels as forced by diurnal flow variability. Through the melt season, the glacier hydrological response evolves from being buffered by glacier snow cover with a poorly developed subglacial drainage system to being dominated by more rapid ice melt with a more hydraulically efficient subglacial channel system. The resultant changes in the shape of diurnal discharge hydrographs, and notably higher peak flows and lower base flows, causes sediment transport to become discontinuous, with overnight clogging and late morning flushing of subglacial channels. Overnight clogging may be sufficient to reduce subglacial channel size, creating temporarily pressurized flow and lateral transfer of water away from the subglacial channels, leading to the late morning glacier surface uplift. However, without further data, we cannot exclude other hypotheses for the uplift. © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
Velocity profiles and incipient motion of frazil particles under ice cover   总被引:1,自引:0,他引:1  
A series of experiments for the incipient motion of frazil particles under ice cover have been carried out in laboratory under different flow and boundary conditions.Measurements on flow velocities across the measuring cross-section at different water depths have been conducted.Based on these experiments under both ice-covered and open flow conditions,the impacts of solid boundary(such as ice cover and flume sidewall) on the distribution of flow velocity profiles have been discussed.The criteria for the inc...  相似文献   

7.
8.
We exploit a natural experiment in Boulder Creek, a ~ 30 km2 drainage in the Santa Cruz mountains, CA, USA to explore how an abrupt increase in the caliber of bedload sediment along a bedrock channel influences channel morphology in an actively uplifting landscape. Boulder Creek's bedrock channel, which is entirely developed on weak sedimentary rock, has a high flow shear stress that is about 3.5 times greater where it transports coarse (~ 22 cm D50) diorite in the lower reaches in comparison with the upstream section of the creek that transports only relatively finer bedload (~2 cm D50) derived from weak sedimentary rocks. In addition, Boulder Creek's channel abruptly widens and shallows downstream and transitions from partial to nearly continuous alluvial cover where it begins transporting coarse diorite. Boulder Creek's tributary channels are also about three times steeper where they transport diorite bedload, and within the Santa Cruz mountains channels in sedimentary bedrock are systematically steeper when >50% of their catchment area is within crystalline basement rocks. Despite this clear control of coarse sediment size on channel slopes, the threshold of motion stress for bedload, alone, does not appear to control channel profile slopes here. Upper Boulder Creek, which is starved of coarse sediment, maintains high flow shear stresses well in excess of the threshold for motion. In contrast, lower Boulder Creek, with a greater coarse sediment supply, exerts high flow stresses much closer to the threshold for motion. We speculate that upper Boulder Creek has evolved to sustain partial alluvial cover and transfer greater energy to the bed via bedload impacts to compensate for its low coarse sediment supply. Thus bedload supply, bedrock erosion efficiency, and grain size all appear to influence channel slopes here. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
We report bedload data and acoustic impulse measurements due to particle impact from the Pitzbach in Austria. Impulse counts can be viewed as a measure of the energy delivered to the bed by moving particles. Impulse counts show a large scatter even for the same discharge and bedload supply. This scatter is due to varying grain size distribution, grain shape, mode of transport of the sediment particles and spatial and temporal distribution of the sediment load. The mean impulse count at given hydraulic conditions may increase or decrease with increasing sediment supply, suggesting that both tools and cover effects are active on the channel bed. Dependent on the local balance between sediment supply and transport capacity, either effect may be dominant at different locations along the cross‐section at the same time. Furthermore, the same bed location may respond to increasing sediment supply as tools‐dominated at some discharges and cover‐dominated at other discharges. Our observations may have implications for modelling of bedrock erosion in landscape evolution models and of bedrock channel morphology. Erosion models that do not incorporate both tools and cover effects are not sufficient to describe observations. Furthermore, a local erosion law cannot in general be used to describe erosion averaged over the channel cross‐section. The changing balance between sediment supply and transport capacity with increasing discharge highlights that a single representative discharge is not sufficient to capture the full erosion dynamics. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
In August 2005 severe flood events occurred in the Alps. A sediment routing model for steep torrent channel networks called SETRAC has been applied to six well‐documented case study streams with substantial sediment transport in Austria and Switzerland. For these streams information on the sediment budget along the main channel is available. Flood hydrographs were reconstructed based on precipitation data and stream gauges in neighbouring catchments. Different scenarios are modelled and discussed regarding sediment availability and the effect of armouring and macro‐roughness on sediment transport calculations. The simulation results show the importance of considering increased flow resistance for small relative flow depth when modelling bedload transport during high‐intensity flood events in torrents and mountain rivers. Without any correction of increased flow resistance using a reduced energy slope, the predicted bedload volumes are about a factor of 10 higher on average than the observed values. Simulation results were also used for a back‐calculation of macro‐roughness effects from bedload transport data, and compared with an independent estimate of flow resistance partitioning based on flow resistance data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Using field observations at four gauging stations along the Inner Mongolia Reach of the Yellow River in China, this paper explores effects of the ice on the hydraulics of this river reach for four different conditions, namely: under open channel flow, during ice-running period, the ice-covered period, and the river break-up period. The rating curves were found to be well recognized under open channel situations, but were sometimes poorly defined and extremely variable under ice conditions. The results also show that the water level is insensitive to flowing ice prior to freeze-up. However, significant, but hardly surprising, variations were observed during ice-covered conditions. The rating curves for both the ice covered condition and river ice breakup period are developed and some related hydraulic issues are examined. Additionally, the impacts of the ice accumulation and associated riverbed deformation during ice period on the rating curves are discussed.  相似文献   

13.
Using field observations at four gauging stations along the Inner Mongolia Reach of the Yellow River in China, this paper explores effects of the ice on the hydraulics of this river reach for four different conditions, namely: under open channel flow, during ice-running period, the ice-covered period, and the river break-up period. The rating curves were found to be well recognized under open channel situations, but were sometimes poorly defined and extremely variable under ice conditions. The results also show that the water level is insensitive to flowing ice prior to freeze-up. However, significant, but hardly surprising, variations were observed during ice-covered conditions. The rating curves for both the ice covered condition and river ice breakup period are developed and some related hydraulic issues are examined. Additionally, the impacts of the ice accumulation and associated riverbed deformation during ice period on the rating curves are discussed.  相似文献   

14.
The alluvial cover in channels with non-alluvial beds is a major morphologic feature in these rivers and has important geomorphic and ecologic functions. Although controls on the extent of the alluvial cover have been previously researched, little is known about the role of channel meanders in shaping the three-dimensional morphology and bedload transport rates in these rivers. Flume experiments were conducted in a fixed-bed sinuous channel scaled from an engineered urban river. A fully graded sediment supply mixture was fed into the bare channel at rates ranging between 0.3 and 1.2 times the estimated channel capacity under constant discharge. The three-dimensional morphology and surface texture of the alluvial cover were captured using photogrammetry, and the sediment output was periodically measured and sieved. A stable alluvial cover was achieved under all sediment supply conditions that coincided with a sediment transport equilibrium. The sediment supply rate controlled the final areal extent, mass and volume of the alluvial cover, while cover developed as a periodic series of stable bars ‘fixed’ by the channel planform. The alluvial cover development followed consistent trajectories relative to angular position around bends but developed to a greater degree and higher elevation with increasing sediment supply. The stable cover extent had a logarithmic relationship with the relative sediment supply, while the final mass, volume and bar height had linear relationships. The final channel morphology was characterized by fine-textured point bars with flat tops and steep margins connected by coarse riffle features. The outside of banks between bend apexes remained bare, even at sediment supply conditions exceeding the channel capacity. The length of the exposed outer banks followed predictable linear relationships with the total cover extent. Insights from this study can provide guidance for the management of channels with non-alluvial boundaries and provide validation for models of sinuous bedrock channel abrasion. © 2020 John Wiley & Sons, Ltd.  相似文献   

15.
The morphological active width, defined as the lateral extent of bed material displacement over time, is a fundamental parameter in multi‐threaded gravel‐bed rivers, linking complex channel dynamics to bedload transport. Here, results are presented from five constant discharge experiments, and three event hydrographs, covering a range of flow strengths and channel configurations for which morphological change, bedload transport rates, and stream power were measured in a physical model. Changes in channel morphology were determined via differencing of photogrammetrically‐derived digital elevation models (DEMs) of the model surface generated at regular intervals over the course of ~115 h of experimental runs. Independent measures of total bedload output were made using downstream sediment baskets. Results indicate that the morphological active width increases with total and dimensionless stream power and is strongly and positively correlated with bulk change (total volume of bed material displaced over time) and active braiding intensity (ABI). Although there is considerable scatter due to the inherent variability in braided river morphodynamics, the active width is positively correlated with independent measurements of bedload transport rate. Active width, bulk change, and bedload transport rates were all negligible below a dimensionless stream power threshold value of ~ 0.09, above which all increase with flow strength. Therefore, the active width could be used as a general predictor of bulk change and bedload transport rates, which in turn could be approximated from total and dimensionless stream power or ABI in gravel‐bed braided rivers. Furthermore, results highlight the importance of the active width, rather than the morphological active depth, in predicting volumes of change and bedload transport rates. The results contribute to the larger goals of better understanding braided river morphodynamics, creating large high‐resolution datasets of channel change for model calibration and validation, and developing morphological methods for predicting bedload transport rates in braiding river systems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
Complex flow processes at river bifurcations and the influence of the layout of a bifurcation make it difficult to predict sediment distribution over the downstream branches in case bedload transport dominates. In one‐dimensional models we need a nodal point relationship that prescribes the distribution of sediment over the downstream branches. We have identified which factors need to be included in such a relationship for the division of bedload transport at bifurcations. Next, irrotational flow theory for idealized geometries has been used to derive a simple physics‐based nodal point relationship that accounts for the effects of helical flow in the situation that a channel takes off under an angle from a straight main channel. This first step towards a complete nodal point relationship is applicable to bedload transport situations if the flow is clearly curved and if there is no pronounced bed topography. The relationship has been tested against data from a unique set of laboratory measurements, numerical data and data from a scale model of the Rhine bifurcation at Pannerden in the Netherlands. We find that the derived model yields a reasonable prediction of the sediment division over the downstream branches, and yields better predictions than the Wang et al. model for the situation considered. Considering the relative complexity and limited accuracy of the nodal point relationship for the effect of helical flow alone, however, we conclude thatderiving a practical physics‐based 1‐D relationship including all relevant processes is not feasible. We therefore recommend 2‐D or 3‐D modelling for all cases in general where morphological evolution depends on the division of bedload transport at bifurcations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Field data are essential in evaluating the adequacy of predictive equations for sediment transport. Each dataset based on the sediment transport rates and other relevant information gives an increased understanding and improved quantification of different factors influencing the sediment transport regime in the specific environment. Data collected for 33 sites on 31 mountain streams and rivers in Central Idaho have enabled the analysis of sediment transport characteristics in streams and rivers with different geological, topographic, morphological, hydrological, hydraulic, and sedimentological characteristics. All of these streams and rivers have armored, poorly sorted bed material with the median particle size of surface layer coarser than the subsurface layer. The fact that the largest particles in the bedload samples did not exceed the median particle size of the bed surface material indicates that the armor layer is stable for the observed flow discharges (generally bankfull or less, and in some cases two times higher than bankfull discharge). The bedload transport is size‐selective. The transport rates are generally low, since sediment supply is less than the ability of flow to move the sediment for one range of flow discharges, or, the hydraulic ability of the stream is insufficient for entrainment of the coarse bed material. Detailed analyses of bedload transport rates, bedload and bed material characteristics were performed for each site. The obtained results and conclusions are used to identify different influences on bedload transport rates in analyzed gravel‐bed rivers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This review displays over 700 rates of sediment transport by oscillatory flow from 20 sources. Sediments include fine sands to pebbles, both of quartz and of lightweight materials, and the transport rates in water range over seven orders of magnitude. Most data are average gross (to and fro) bedload rates collinear with laboratory flow over a horizontal sediment bed, although other situations with net transport, suspended load, or oblique field waves are considered.As peak flow velocity nears twice the threshold velocity for sediment motion, bedload appears to be fully developed and the transport rate is near that given by a simple formula including flow frequency and peak velocity, and sediment size and density. At lesser peak velocities, bedload rates are markedly smaller and distinctly different regimes of sediment mobilization and transport may be identified.  相似文献   

19.
Understanding bedload transport fluctuations in rivers is crucial for complementing the existing knowledge on sediment transport theory. In this contribution, we use a natural-scale laboratory flume to analyse bedload transport fluctuations in non-uniform sand under normal flow conditions. Based on the significance of downward seepage, we incorporate the seepage effect on bedload transport over a non-uniform sand bed channel. The weight of the dry material was measured, and the volumetric transport rate per unit width (bedload transport rate) was estimated. An important observation is that the bedload transport rate initially rapidly increases with time and reaches a maximum value. Based on experimental data, we propose an empirical expression to estimate temporal bedload transport. In addition, an empirical model for bedload transport is proposed by incorporating downward seepage among other variables. The performance of several existing bedload transport formulae was also taken into account by the experimental datasets.  相似文献   

20.
A 1:50 scale hydraulic model was designed, based on Froude number similarity and using hydrological and sediment data from a small braided gravel-bed river (the North Branch of the Ashburton River, Canterbury, New Zealand). Eighteen experiments were conducted; seven using steady flows, and eleven using unsteady flows. The experiments were carried out in a 20 m × 3 m tilting flume equipped with a continuous sediment feed and an automated data acquisition and control system. In all experiments water at 30°C was used to reduce viscosity-related scale effects. Analyses of the experimental data revealed that bedload transport rates in braided channels are highly variable, with relative variability being inversely related to mean bedload transport rate. Variability was also found to be cyclic with short-term variations being caused by the migration of bedforms. Bedload transport was found to be more efficient under steady flow than under unsteady flow, and it was postulated that this is caused by a tendency for channel form to evolve towards a condition which maximizes bedload transport for the occurring flow. Average bedload transport rate was found to vary with channel form, although insufficient measurements were made to define a relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号