首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The underpressure observed in the glacial valley Adventdalen at Svalbard is studied numerically with a basin model and analytically with a compartment model. The pressure equation used in the basin model, which accounts for underpressure generation, is derived from mass conservation of pore fluid and solid, in addition to constitutive equations. The compartment model is derived as a similar pressure equation, which is based on a simplified representation of the basin geometry. It is used to derive analytical expressions for the underpressure (overpressure) from a series of unloading (loading) intervals. The compartment model gives a characteristic time for underpressure generation of each interval, which tells when the pressure state is transient or stationary. The transient pressure is linear in time for short‐time spans compared to the characteristic time, and then it is proportional to the weight removed from the surface. We compare different contributions to the underpressure generation and find that porosity rebound from unloading is more important than the decompression of the pore fluid during unloading and the thermal contraction of the pore fluid during cooling of the subsurface. Our modelling shows that the unloading from the last deglaciation can explain the present day underpressure. The basin model simulates the subsurface pressure resulting from erosion and unloading in addition to the fluid flow driven by the topography. Basin modelling indicates that the mountains surrounding the valley are more important for the topographic‐driven flow in the aquifer than the recharging in the neighbour valley. The compartment model turns out to be useful to estimate the orders of magnitude for system properties like seal and aquifer permeabilities and decompaction coefficients, despite its geometric simplicity. We estimate that the DeGeerdalen aquifer cannot have a permeability that is higher than 1 · 10?18 m2, as otherwise, the fluid flow in the aquifer becomes dominated by topographic‐driven flow. The upper value for the seal permeability is estimated to be 1 · 10?20 m2, as higher values preclude the generation and preservation of underpressure. The porosity rebound is estimated to be <0.1% during the last deglaciation using a decompaction coefficient αr = 1 · 10?9 Pa?1.  相似文献   

2.
Classical models of lithosphere thinning predict deep synrift basins covered by wider and thinner post‐rift deposits. However, synextensional uplift and/or erosion of the crust are widely documented in nature (e.g. the Base Cretaceous unconformity of the NE Atlantic), and generally the post‐rift deposits dominate basins fills. Accordingly, several basin models focus on this discrepancy between observations and the classical approach. These models either involve differential thinning, where the mantle thins more than the crust thereby increasing average temperature of the lithosphere, or focus on the effect of metamorphic reactions, showing that such reactions decrease the density of lithospheric rocks. Both approaches result in less synrift subsidence and increased post‐rift subsidence. The synextensional uplift in these two approaches happens only for special cases, that is for a case of initially thin crust, specific mineral assemblage of the lithospheric mantle or extensive differential thinning of the lithosphere. Here, we analyse the effects of shear heating and tectonic underpressure on the evolution of sedimentary basins. In simple 1D models, we test the implications of various mechanisms in regard to uplift, subsidence, density variations and thermal history. Our numerical experiments show that tectonic underpressure during lithospheric thinning combined with pressure‐dependent density is a widely applicable mechanism for synextensional uplift. Mineral phase transitions in the subcrustal lithosphere amplify the effect of underpressure and may result in more than 1 km of synextensional erosion. Additional heat from shear heating, especially combined with mineral phase transitions and differential thinning of the lithosphere, greatly decreases the amount of synrift deposits.  相似文献   

3.
The diagenetic evolution of Permian (Autunian and Saxonian) and Triassic (Buntsandstein) sandstones and mudrocks have been studied over 1000 m sequence from the Sigüenza 44‐3 drill core in the Iberian Range, Spain. We compare and contrast the diagenetic processes in these different lithologies and the timing of clay mineral formation. Moreover, we establish the relationship between clay mineral diagenesis and reservoir potential. Both the Permian and Triassic successions are characterised by conglomerates, sandstones and interbedded mudstones of fluvial origin that change upwards into distal deposits of a fluvio‐deltaic system. The clay minerals are illite, illite‐smectite mixed layers, kaolinite and dickite. The illite content in all sequences is not related to diminished feldspars; it is owing to the initial detrital mineralogical composition of the Autunian sandstones. The effect of feldspar alteration to kaolin minerals has a strong influence on the lost of porosity‐permeability in the Saxonian facies. In contrast, illite and mixed layers illite‐smectite are the main clay rims preserving porosity in the Buntsandstein sandstones. However, fibrous illite is the dominant pore‐filling in the Permian Autunian facies, closing porosity and permeability. Kaolinite and dickite show opposite trends: dickite increases yet kaolinite decreases from Triassic to Permian sandstones. Dickite replaced kaolinite during burial‐thermal evolution of the succession. The δD and δ18O isotopic signatures from silt and clay fractions indicate a mixture of meteoric and marine waters, and suggest a minimum temperature range between 60 and 150 °C for diagenetic pore fluids. The Permian δD values (?24‰ to ?44‰) are relatively similar to Buntsandstein values (?24‰ to ?37‰). However, the Permian δ18O values (+7.6 and +15.3, average of +13.3‰) are generally higher by ca. 6.2‰ compared to the Buntsandstein data (4.8–10.1‰, average +7.1‰). Such a variation is interpreted as the result of mesodiagenetic pore fluid changes. The extensive dickitisation of kaolinite is attributed to increased hydrogen ions resulting from maturation of organic matter. The vitrinite reflectance of organic matter and the modelled thermal history suggest a maximum burial of 3400 m, accomplished 70 Ma ago. The Permo‐Triassic reached the gas window shortly before major uplift, at 65 Ma, when further maturation and hydrocarbon expulsion ceased.  相似文献   

4.
The Ayabacas Formation of southern Peru is an impressive unit formed by the giant submarine collapse of the mid‐Cretaceous carbonate platform of the western Peru back‐arc basin (WPBAB), near the Turonian–Coniacian transition (~90–89 Ma). It extends along the southwestern edge of the Cordillera Oriental and throughout the Altiplano and Cordillera Occidental over >80 000 km2 in map view, and represents a volume of displaced sediments of >10 000 km3. The collapse occurred down the basin slope, i.e. toward the SW. Six zones are characterised on the basis of deformational facies, and a seventh corresponds to the northeastern ‘stable’ area (Zone 0). Zones 1–3 display increasing fragmentation from NE to SW, and are composed of limestone rafts and sheets embedded in a matrix of mainly red, partly calcareous and locally sandy, mudstones to siltstones. In contrast, in Zones 4 and 5 the unit consists only of displaced and stacked limestone masses forming a ‘sedimentary thrust and fold system’, with sizes increasing to the southwest. In Zone 6, the upper part of the limestone succession consists of rafts and sheets stacked over the regularly bedded lower part. The triggering of this extremely large mass wasting clearly ensued from slope creation, oversteepening and seismicity produced by extensional tectonic activity, as demonstrated by the observation of synsedimentary normal faults and related thickness variations. Other factors, such as pore pressure increases or lithification contrasts probably facilitated sliding. The key role of tectonics is strengthened by the specific relationships between the basin and collapse histories and two major fault systems that cross the study area. The Ayabacas collapse occurred at a turning point in the Central Andean evolution. Before the event, the back‐arc basin had been essentially marine and deepened to the west, with little volcanic activity taking place at the arc. After the event, the back‐arc was occupied by continental to near‐continental environments, and was bounded to the southwest by a massive volcanic arc shedding debris and tuffs into the basin.  相似文献   

5.
Magnetostratigraphy from the Kashi foreland basin along the southern margin of the Tian Shan in Western China defines the chronology of both sedimentation and the structural evolution of this collisional mountain belt. Eleven magnetostratigraphic sections representing ~13 km of basin strata provide a two‐ and three‐dimensional record of continuous deposition since ~18 Ma. The distinctive Xiyu conglomerate makes up the uppermost strata in eight of 11 magnetostratigraphic sections within the foreland and forms a wedge that thins southward. The basal age of the conglomerate varies from 15.5±0.5 Ma at the northernmost part of the foreland, to 8.6±0.1 Ma in the central (medial) part of the foreland and to 1.9±0.2, ~1.04 and 0.7±0.1 Ma along the southern deformation front of the foreland basin. These data indicate the Xiyu conglomerate is highly time‐transgressive and has prograded south since just after the initial uplift of the Kashi Basin Thrust (KBT) at 18.9±3.3 Ma. Southward progradation occurred at an average rate of ~3 mm year?1 between 15.5 and 2 Ma, before accelerating to ~10 mm year?1. Abrupt changes in sediment‐accumulation rates are observed at 16.3 and 13.5 Ma in the northern part of the foreland and are interpreted to correspond to southward stepping deformation. A subtle decrease in the sedimentation rate above the Keketamu anticline is determined at ~4.0 Ma and was synchronous with an increase in sedimentation rate further south above the Atushi Anticline. Magnetostratigraphy also dates growth strata at <4.0, 1.4±0.1 and 1.4±0.2 Ma on the southern flanks the Keketamu, Atushi and Kashi anticlines, respectively. Together, sedimentation rate changes and growth strata indicate stepped migration of deformation into the Kashi foreland at least at 16.3, 13.5, 4.0 and 1.4 Ma. Progressive reconstruction of a seismically controlled cross‐section through the foreland produces total shortening of 13–21 km and migration of the deformation front at 2.1–3.4 mm year?1 between 19 and 13.5 Ma, 1.4–1.6 mm year?1 between 13.5 and 4.0 Ma and 10 mm year?1 since 4.0 Ma. Migration of deformation into the foreland generally causes (1) uplift and reworking of basin‐capping conglomerate, (2) a local decrease of accommodation space above any active structure where uplift occurs, and hence a decrease in sedimentation rate and (3) an increase in accumulation on the margins of the structure due to increased subsidence and/or ponding of sediment behind the growing folds. Since 5–6 Ma, increased sediment‐accumulation (~0.8 mm year?1) and gravel progradation (~10 mm year?1) rates appear linked to higher deformation rates on the Keketamu, Atushi and Kashi anticlines and increased subsidence due to loading from both the Tian Shan and Pamir ranges, and possibly a change in climate causing accelerated erosion. Whereas the rapid (~10 mm year?1) progradation of the Xiyu conglomerate after 4.0 Ma may be promoted by global climate change, its overall progradation since 15.5 Ma is due to the progressive encroachment of deformation into the foreland.  相似文献   

6.
The Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), recovered the first Cenozoic sedimentary sequence from the central Arctic Ocean. ACEX provided ground truth for basin scale geophysical interpretations and for guiding future exploration targets in this largely unexplored ocean basin. Here, we present results from a series of consolidation tests used to characterize sediment compressibility and permeability and integrate these with high‐resolution measurements of bulk density, porosity and shear strength to investigate the stress history and the nature of prominent lithostratigraphic and seismostratigraphic boundaries in the ACEX record. Despite moderate sedimentation rates (10–30 m Myr?1) and high permeability values (10?15–10?18 m2), consolidation and shear strength measurements both suggest an overall state of underconsolidation or overpressure. One‐dimensional compaction modelling shows that to maintain such excess pore pressures, an in situ fluid source is required that exceeds the rate of fluid expulsion generated by mechanical compaction alone. Geochemical and sedimentological evidence is presented that identifies the Opal A–C/T transformation of biosiliceous rich sediments as a potential additional in situ fluid source. However, the combined rate of chemical and mechanical compaction remain too low to fully account for the observed pore pressure gradients, implying an additional diagenetic fluid source from within or below the recovered Cenozoic sediments from ACEX. Recognition of the Opal A–C/T reaction front in the ACEX record has broad reaching regional implications on slope stability and subsurface pressure evolution, and provides an important consideration for interpreting and correlating the spatially limited seismic data from the Arctic Ocean.  相似文献   

7.
Four Mesozoic–Cenozoic palaeothermal episodes related to deeper burial and subsequent exhumation and one reflecting climate change during the Eocene have been identified in a study of new apatite fission‐track analysis (AFTA®) and vitrinite reflectance data in eight Danish wells. The study combined thermal‐history reconstruction with exhumation studies based on palaeoburial data (sonic velocities) and stratigraphic and seismic data. Mid‐Jurassic exhumation (ca. 175 Ma) was caused by regional doming of the North Sea area, broadly contemporaneous with deep exhumation in Scandinavia. A palaeogeothermal gradient of 45 °C km?1 at that time may be related to a mantle plume rising before rifting in the North Sea. Mid‐Cretaceous exhumation affecting the Sorgenfrei–Tornquist Zone is probably related to late Albian tectonic movements (ca. 100 Ma). The Sole Pit axis in the southern North Sea experienced similar inversion and this suggests a plate‐scale response along crustal weakness zones across NW Europe. Mid‐Cenozoic exhumation affected the eastern North Sea Basin and the onset of this event correlates with a latest Oligocene unconformity (ca. 24 Ma), which indicates a major Scandinavian uplift phase. The deeper burial that caused the late Oligocene thermal event recognized in the AFTA data reflect progradation of lower Oligocene wedges derived from the uplifting Scandinavian landmass. The onset of Scandinavian uplift is represented by an earliest Oligocene unconformity (ca. 33 Ma). Late Neogene exhumation affected the eastern (and western) North Sea Basin including Scandinavia. The sedimentation pattern in the central North Sea Basin shows that this phase began in the early Pliocene (ca. 4 Ma), in good agreement with the AFTA data. These three phases of Cenozoic uplift of Scandinavia also affected the NE Atlantic margin, whereas an intra‐Miocene unconformity (ca. 15 Ma) on the NE Atlantic margin reflects tectonic movements of only minor amplitude in that area. The study demonstrates that only by considering episodic exhumation as an inherent aspect of the sedimentary record can the tectonic evolution be accurately reconstructed.  相似文献   

8.
Integrated geohistory analysis performed on high‐resolution stratigraphy of Venezia 1 and Lido 1 wells (Quaternary–Pliocene interval) and low‐resolution stratigraphy of a simulated well extending Lido 1 down to the base of Cenozoic (Palaeocene–Miocene interval) is used to reconstruct the interplay between subsidence and sedimentation that occurred in the Venice area (eastern Po Plain) during the last 60 Myr, and to discuss the relationships between calculated subsidence rates and time resolution of stratigraphic data. Both subsidence and sedimentation are mostly related to the tectonic evolution of the belts that surround the Venice basin, influencing the lithosphere vertical motions and the input of clastic sediments through time. In particular, two subsidence phases are recorded between 40–33.5 and 32.5–24 Myr (0.13 and 0.14 mm year?1, respectively), coeval with tectonic phases in the Dinaric belt. Vice versa, during the main South‐Alpine orogenic phase (middle–late Miocene), quiescence or little uplift (?0.03 mm year?1) reflects the location of the Venice area close to the peripheral bulge of the South‐Alpine foreland system. Early Pliocene evolution is characterised by a number of subsidence/uplift events, among which two uplifts occurred between 5–4.5 and 3–2.2 Myr (at ?0.4 and ?0.2 mm year?1, respectively) and can be correlated with tectonic motions in the Apennines. During the last million years, the Venice area was initially characterised by uplift (?0.6 mm year?1 rising to ?1.5 mm year?1 between 0.4 and 0.38 Myr), eventually replaced by subsidence at a rate ranging between 1.6 and 1.0 mm year?1 up to 0.12 Myr and then decreased to 0.4 mm year?1, as an average, up to present. Our results highlight that time resolution of the stratigraphic dataset deeply influences the order of magnitude obtained for the calculated subsidence rate. This is because subsidence seems to have worked through short‐lived peaks (in the order of 105 years), alternating with long relatively quiescent intervals. This suggests caution when components of subsidence are deduced by subtracting long‐term to short‐term subsidence rate.  相似文献   

9.
Topographic change in regions of active deformation is a function of rates of uplift and denudation. The rate of topographic development and change of an actively uplifting mountain range, the Santa Monica Mountains, southern California, was assessed using landscape attributes of the present topography, uplift rates and denudation rates. Landscape features were characterized through analysis of a digital elevation model (DEM). Uplift rates at time scales ranging from 104 to 106 years were constrained with geological cross-sections and published estimates. Denudation rate was determined from sediment yield data from debris basins in southern California and from the relief of rivers set into geomorphic surfaces of known age. First-order morphology of the Santa Monica Mountains is set by large-scale along-strike variations in structural geometry. Drainage spacing, drainage geometry and to a lesser extent relief are controlled by bedrock strength. Dissection of the range flanks and position of the principal drainage divide are modulated by structural asymmetry and differences in structural relief across the range. Topographic and catchment-scale relief are ≈300–900 m. Mean denudation rate derived from the sediment yield data and river incision is 0.5±0.3 mm yr?1. Uplift rate across the south flank of the range is ≈0.5±0.4 mm yr?1 and across the north flank is 0.24±0.12 mm yr?1. At least 1.6–2.7 Myr is required to create either the present topographic or the catchment-scale relief based on either the mean rates of denudation or uplift. Although the landscape has had sufficient time to achieve a steady-state form, comparison of the time-scale of uplift and denudation rate variation with probable landscape response times implies the present topography does not represent the steady-state form.  相似文献   

10.
Subsidence analyses from the Betic Cordillera, southeast Spain   总被引:1,自引:0,他引:1  
Fifty‐four Mesozoic–Cenozoic stratigraphic sections from the Betic Cordillera of southeast Spain have been analysed in order to estimate the timing and amount of lithospheric stretching that occurred at the western end of the Tethyan Ocean since the Hercynian Orogeny. The standard backstripping technique has been used in order to calculate the water‐loaded subsidence of basement for each section. Water‐loaded subsidence curves were then inverted in order to determine the variation of lithospheric strain rate as a function of time, which yields estimates of timing, magnitude and intensity of stretching. Rifting commenced during the Late Permian/Early Triassic times and continued intermittently throughout the Mesozoic in response to the opening of the Tethyan Ocean to the east and the opening of the Atlantic Ocean to the west. Two major events in the Permo‐Triassic/Early Jurassic and the Late Jurassic/Early Cretaceous can be clearly identified. Stretching factors are generally small (1.1–1.25) probably because the Betic Cordillera was located at the westernmost end of the Tethys. Peak strain rates of ~10?15 s?1 were obtained for Mesozoic rift events and these values are in broad agreement with those obtained throughout the Tethyan Realm. We have also analysed the Neogene extensional event, which played an important role in forming the existing Mediterranean Sea. A combination of well‐log information and calibrated seismic reflection data was modelled. Peak strain rates in these younger basins are almost one order of magnitude faster than those estimated for the Mesozoic basins. These higher values appear to be typical of back‐arc extensional basins elsewhere. To the west and north of the Betic Cordillera, the Guadalquivir foreland basin developed as extension took place further east. Backstripped sections from this basin clearly record the northward migration of foreland basin subsidence through time.  相似文献   

11.
An inferred burial and exhumation history of Pennsylvanian strata in the central Appalachian foreland basin is constrained by integrating palaeothermometers, geochronometers and estimated palaeogeothermal gradients. Vitrinite reflectance data and fluid inclusion homogenization temperatures indicate that burial of Lower and Upper Pennsylvanian strata of the Appalachian Plateau in West Virginia exceeded ~4.4 km during the late Permian and occurred at a rate of ~100 m Myr?1. Exhumation rates of ~10 m Myr?1 from the late Permian to the early Cretaceous are constrained using maximum burial conditions and published apatite fission track (AFT) ages. AFT and radiogenic helium ages indicate exhumation rates of ~30–50 m Myr?1 from the early to late Cretaceous. Radiogenic helium dates and present day sampling depths indicate that exhumation rates from the late Cretaceous to present were ~25 m Myr?1. Exhumation rates for Upper and Lower Pennsylvanian strata within the Appalachian Plateau are remarkably similar. Early slow exhumation was possibly driven primarily by isostatic rebound associated with Triassic rifting. The later, more rapid exhumation can be attributed to thermal expansion followed by lithospheric flexure related to sediment loading along the passive margin.  相似文献   

12.
The Upper Mississippian (ca. 325 Ma) Pride Shale and Glady Fork Member in the Central Appalachian Basin comprise an upward‐coarsening, ca. 60‐m‐thick succession of prodeltaic‐delta front, interlaminated fine‐grained sandstones and mudstones gradational upwards into mouth‐bar and distributary‐channel sandstones. Analysis of laminae bundling in the Pride Shale reveals a hierarchy of tidal cycles (semi‐diurnal, fortnightly neap‐spring) and a distinct annual cyclicity resulting from seasonal fluvial discharge. These tidal rhythmites thus represent high‐resolution chronometers that can be used in basin analysis. Annual cycles average 10 cm in thickness, thus the bulk of the Pride Shale‐Glady Fork Member in any one vertical section is estimated to have accumulated in ca. 600 years. Progradational clinoforms are assumed to have had dips of 0.3–3° with a median dip of 1.7°; the latter infilled a NE‐SW oriented foreland trough up to 300 km long by 50 km wide in the relatively short time period of 90 kyr. The total volume of sediment in the Pride basin is ca. 900 km3 which, for an average sediment density of 2700 kg m?3, equates to a total mass of ca. 2.4 × 106 Mt. Thus, mass sediment load can be estimated as 27 Mt yr?1. For a drainage basin area of 89 000 km2, based on the scale of architectural channel elements and cross‐set thicknesses in the incised‐valley‐fill deposits of the underlying Princeton Formation, suspended sediment yields are estimated at ca. 310 t km?2 yr?1 equating to a mechanical denudation rate of ca. 0.116 mm yr?1. Calculated sediment yields and inferred denudation rates are comparable to modern rivers such as the Po and Fly and are compatible with a provenance of significant relief and a climate characterized by seasonal, monsoonal discharge. Inferred denudation rates also are consistent with average denudation rates for the Inner Piedmont Terrane of the Appalachians based on flexural modelling. The integration of stratigraphic architectural analysis with a novel chronometric application highlights the utility of sedimentary archives as a record of Earth surface dynamics.  相似文献   

13.
We analyse a regional 2D seismic section of the Mexican Ridges foldbelt (MRFB), western Gulf of Mexico, and construct excess‐area diagrams for each of the structures comprising the foldbelt to estimate shortening, the onset of folding and the degradation of the folded seafloor. From the chronostratigraphy, we derive rates of tectonic and superficial mass transport and illustrate how they change across the MRFB. The resulting tectonic transport in the MRFB is 11.8 km forming a train of twelve buckle folds above a detachment at a depth of ca. 6 s of two‐way travel time, with an average strain of ca. 10%. The fold train grew at a mean uplift rate of ca. 0.21 mm year?1. Cross‐sectional balancing demonstrates that shortening balances the down‐slip motion of the Quetzalcoatl extensional system (QES), suggesting that horizontal compaction, volume loss and other penetrative deformation mechanisms are negligible. By assuming steady‐state denudation, we are able to distinguish sediments derived locally from sediments transported from distant sources. The constant of mass diffusivity, a parameter controlling the degradation rate, is ca. 0.42 m2 year ?1, which is characteristic of rapid, episodic, superficial mass movements. The combined sedimentation rate from both, local and distal sources is ca. 0.23 mm year ?1. Those values are not constant; structures proximal to the continental shelf are rising rapidly and are being degraded more intensely than those in the distal part of the MRFB, where sedimentation outweighs tectonic uplift. Our results indicate deformation initiated up to 3 Myr earlier than estimated from stacking patterns. Moreover, we find deformation started synchronously during the Late Miocene throughout the MRFB and not in two episodes as the stacking relations suggest. The discrepancy can be explained by a delay in the sedimentary response to folding. During early fold growth, nearly constant thickness strata are deposited before a progressive unconformity and other converging geometries develop. The development of growth strata is fast in the folds near the QES, which are being uplifted rapidly and degraded vigorously. Under these conditions, the stratigraphic relations give only a broad estimate of the pretectonic/syntectonic limit when compared to the excess‐area method. On the other hand, the development of growth strata took twice as much time for folds near the abyssal plain, which are being uplifted at a slower rate and where degradation is less intense. Consequently, the delay takes more time, and the use of stratigraphic relations introduces an even more pronounced bias towards younger ages in the identification of the onset of folding.  相似文献   

14.
ABSTRACT The Alkyonides half‐graben is separated from the Gerania Range to the south by active faults whose offshore traces are mapped in detail. The East Alkyonides and Psatha Faults have well‐defined, Holocene‐active tip zones and cannot be extrapolated from the onshore Skinos Fault into a single continuous surface trace. During the late Quaternary, catchments draining the step‐faulted range front have supplied sediment to alluvial fans along a subsiding marine ramp margin in the hangingwall of the Skinos Fault, to shelf ledge fans on the uplifting footwall to the East Alkyonides Fault and to the Alepochori submarine fan in the hangingwall of the latter. During late Pleistocene lowstand times (c. 70–12 ka), sediment was deposited in Lake Corinth as fan deltas on the subsiding Skinos shelf ramp which acted as a sediment trap for the adjacent 360 m deep submarine basin plain. At the same time, the uplifting eastern shelf ledge was exposed, eroded and bypassed in favour of deposition on the Alepochori submarine fan. During Holocene times, the Skinos bajada was first the site of stability and soil formation, and then of substantial deposition before modern marine erosion cut a prominent cliffline. The uplifting eastern shelf ledge has developed substantial Holocene fan lobe depositional sequences as sediment‐laden underflows have traversed it via outlet channels. We estimate mean Holocene displacement rates towards the tip of the Psatha Fault in the range 0.7–0.8 mm year?1. Raised Holocene coastal notches indicate that this may be further partitioned into about 0.2 mm year?1 of footwall uplift and hence 0.5–0.6 mm year?1 of hangingwall subsidence. Holocene displacement rates towards the tip of the active East Alkyonides Fault are in the range 0.2–0.3 mm year?1. Any uplift of the West Alkyonides Fault footwall is not keeping pace with subsidence of the Skinos Fault hangingwall, as revealed by lowstand shelf fan deltas which show internal clinoforms indicative of aggradational deposition in response to relative base‐level rise due to active hangingwall subsidence along the Skinos Fault. Total subsidence here during the last 58 kyr lowstand interval of Lake Corinth was some 20 m, indicating a reduced net displacement rate compared to estimates of late Holocene (< 2000 bp ) activity from onshore palaeoseismology. This discrepancy may be due to the competition between uplift on the West Alkyonides Fault and subsidence on the onshore Skinos Fault, or may reflect unsteady rates of Skinos Fault displacement over tens of thousands of years.  相似文献   

15.
Aeolian sedimentation across an Ammophila arenaria‐dominated foredune was assessed for eight months using sand traps. This research aimed to ascertain if such foredunes act as a barrier to transport between beaches and hinterland dune systems. At Mason Bay, sand was transported across the foredune at rates of up to 10 kg.hour?1per 100 m length of coast at wind velocities of 31 m.s?1. Results were compared with computational fluid dynamics modelled airflows and foredune volume changes. Saltation was important for up to 17 m past the stoss face. Rates of transport were well short of rates of volume gain. Approximately 2% or less of stoss face suspended sediment transport reached the hinterland. The foredune is primarily a sand sink.  相似文献   

16.
Backstripping analysis of the Bass River and Ancora boreholes from the New Jersey coastal plain (Ocean Drilling Project Leg 174AX) provides new Late Cretaceous sea‐level estimates and corroborates previously published Cenozoic sea‐level estimates. Compaction histories of all coastal plain boreholes were updated using porosity–depth relationships estimated from New Jersey coastal plain electric logs. The new porosity estimates are considerably lower than those previously calculated at the offshore Cost B‐2 well. Amplitudes and durations of sea‐level variations are comparable in sequences that are represented at multiple boreholes, suggesting that the resultant curves are an approximation of regional sea level. Both the amplitudes and durations of third‐order (0.5–5 Myr) cycles tend to decrease from the Late Cretaceous to the late Miocene. Third‐order sea‐level amplitudes in excess of 60 m are not observed. Long‐term (108–107 years) sea level was approximately constant at 30–80 m in the Late Cretaceous, rose to a maximum early Eocene value of approximately 100–140 m, and then fell through the Eocene and Oligocene.  相似文献   

17.
Origin of the in situ stress field in south-eastern Australia   总被引:3,自引:0,他引:3  
The in situ stress field of south‐eastern Australia inferred from earthquake focal mechanisms and bore‐hole breakouts is unusual in that it is characterised by large obliquity between the maximum horizontal compressive stress orientation (SHmax) and the absolute plate motion azimuth. The evolution of the neotectonic strain field deduced from historical seismicity and both onshore and offshore faulting records is used to address the origin of this unusual stress field. Strain rates derived from estimates of the seismic moment release rate (up to ~10?16 s?1) are compatible with Quaternary fault–slip rates. The record of more or less continuous tectonic activity extends back to the terminal Miocene or early Pliocene (10–5 Ma). Terminal Miocene tectonic activity was characterised by regional‐scale tilting and local uplift and erosion, now best preserved by unconformities in offshore basins. Plate‐scale stress modelling suggests the in situ stress field reflects increased coupling of the Australian and Pacific Plate boundary in the late Miocene, associated with the formation of the Southern Alps in New Zealand.  相似文献   

18.
The Panoche Giant Injection Complex (PGIC; California) constitutes the most complete sandstone intrusion network yet described, and is an excellent analogue for subsurface hydrocarbon reservoirs modified by sand remobilisation. Sandstone dykes and sills were intruded during the Late Palaeocene into slope mudstones of the Great Valley forearc basin, and are exposed for more than 300 km2. The PGIC consists of dykes and sills and represents upwards infilling of natural hydraulic fractures sourced from highly overpressured Cretaceous sand bodies. Over 1300 orientation measurements show that dykes are almost randomly oriented with only a slight orientation bias trending NE–SW, N–S or NW–SE, suggesting either a horizontally isotropic state of stress during intrusion or modification of stress by newly‐formed fractures that override the remote stress. Dykes are segmented in a pattern consistent with radial propagation with fingering towards tips similar to that observed for other mixed mode fractures. Kinematic indicators reveal there was no systematic sense of opening for the intrusions. This is interpreted as the result of short‐range mechanical interactions. Cross‐cutting relationships between injections imply a diachronous timing and a fluid pressure in the source units that was in excess of the lithostatic load. Finally we document a suite of minor structures within the host section that allowed the strain of the forcefully intruded sand to be accommodated.  相似文献   

19.
The North Sakhalin Basin in the western Sea of Okhotsk has been the main site of sedimentation from the Amur River since the Early Miocene. In this article, we present regional seismic reflection data and a Neogene–Recent sediment budget to constrain the evolution of the basin and its sedimentary fill, and consider the implications for sediment flux from the Amur River, in particular testing models of continental‐scale Neogene drainage capture. The Amur‐derived basin‐fill history can be divided into five distinct stages: the first Amur‐derived sediments (>21–16.5 Ma) were deposited during a period of transtension along the Sakhalin‐Hokkaido Shear Zone, with moderately high sediment flux to the basin (71 Mt year?1). The second stage sequence (16.5–10.4 Ma) was deposited following the cessation of transtension, and was characterised by a significant reduction in sediment flux (24 Mt year?1) and widespread retrogradation of deltaic sediments. The third (10.4–5.3 Ma) and fourth (5.3–2.5 Ma) stages were characterised by progradation of deltaic sediments and an associated increase in sediment flux (48–60 Mt year?1) to the basin. Significant uplift associated with regional transpression started during this time in southeastern Sakhalin, but the north‐eastward propagating strain did not reach the NE shelf of Sakhalin until the Pleistocene (<2.5 Ma). This uplift event, still ongoing today, resulted in recycling of older deltaic sediments from the island of Sakhalin, and contributed to a substantially increased total sediment flux to the adjacent basinal areas (165 Mt year?1). Adjusted rates to discount these local erosional products (117 Mt year?1) imply an Amur catchment‐wide increase in denudation rates during the Late Pliocene–Pleistocene; however, this was likely a result of global climatic and eustatic effects, combined with tectonic processes within the Amur catchment and possibly a smaller drainage capture event by the Sungari tributary, rather than continental‐scale drainage capture involving the entire upper Amur catchment.  相似文献   

20.
A complex basin evolution was studied using various methods, including thermal constraints based on apatite fission‐track (AFT) analysis, vitrinite reflectance (VR) and biomarker isomerisation, in addition to a detailed analysis of the regional stratigraphic record and of the lithological properties. The study indicates that (1) given the substantial amount of data, the distinction and characterisation of successive stages of heating and burial in the same area are feasible, and (2) the three thermal indicators (AFT, VR and biomarkers) yield internally consistent thermal histories, which supports the validity of the underlying kinetic algorithms and their applicability to natural basins. All data pertaining to burial and thermal evolution were integrated in a basin model, which provides constraints on the thickness of eroded sections and on heat flow over geologic time. Three stages of basin evolution occurred in northern Switzerland. The Permo‐Carboniferous strike–slip basin was characterised by high geothermal gradients (80–100°C km?1) and maximum temperature up to 160°C. After the erosion of a few hundreds of metres in the Permian, the post‐orogenic, epicontinental Mesozoic basin developed in Central Europe, with subsidence triggered by several stages of rifting. Geothermal gradients in northern Switzerland during Cretaceous burial were relatively high (35–40°C km?1), and maximum temperature typically reached 75°C (top middle Jurassic) to 100°C (base Mesozoic). At least in the early Cretaceous, a stage of increased heat flow is needed to explain the observed maturity level. After erosion of 600–700 m of Cretaceous and late Jurassic strata during the Paleocene, the wedge‐shaped Molasse Foreland Basin developed. Geothermal gradients were low at this time (≤20°C km?1). Maximum temperature of Miocene burial exceeded that of Cretaceous burial in proximal parts (<35 km from the Alpine front), but was lower in more distal parts (>45 km). Thus, maximum temperature as well as maximum burial depth ever reached in Mesozoic strata occurred at different times in different regions. Since the Miocene, 750–1050 m were eroded, a process that still continues in the proximal parts of the basin. Current average geothermal gradients in the uppermost 2500 m are elevated (32–47°C km?1). They are due to a Quaternary increase of heat flow, most probably triggered by limited advective heat transport along Paleozoic faults in the crystalline basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号