首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Experimental study has been carried out under a clear-water scour condition to explore the local scour around semi-elliptical model bridge abutments with armor-layer bed, compared with the local scour process around semi-circular abutment. Two types of model bridge abutments, namely semi-elliptical and semi-circular abutments have been used in this experimental study. The model abutments had a ratio of streamwise length of abutment to the length of abutment transverse to the flow of 2 for semi-circular abutments and 3 for semi-elliptical abutments. In total, 50 Experiments have been designed and conducted under different flow conditions such as bed shear velocities, flow depth, and dimensions of bridge abutment model, as well as grain size of the bed material. Based on these experiments, the scour process around bridge abutments has been assessed. The dependence of the equilibrium scour depth of the scour hole on hydraulic variables has been studied. Empirical equation describing the equilibrium scour depth of the scour hole around bridge abutments has been developed.  相似文献   

2.
The current study aims to investigate the characteristics of scour topography around High-Rise Structure Foundations(HRSFs)via physical modeling tests.Clear-water scour tests with a uniform non-cohesive bed are modeled under the action of unidirectional steady flows.Time variations of the erosion and deposition topography are measured.The results show that deposition downstream of the first dune behind the HRSF is not located on the centerline of the wake.The deposition pattern indicates that a long steady wake region exists behind the permeable foundation.The scour depth around an HRSF is much less than that around a monopile because of the structural permeability,which gives rise to the bleed flow and a weakened downflow and horseshoe vortex.Additionally,the asymmetry of the HRSF affects the scour rate but not the final equilibrium scour depth.The average scour slope decreases along the direction of the flow.On the contrary,the scour radial distance increases along the direction of the flow,with the average value changing from 1.36De to 2.35De(where De is the equivalent diameter of the foundation).Furthermore,the scour hole around the HRSF is serrated rather than smooth owing to the presence of multiple piles.Empirical formulae are suggested for estimating the evolution of scour depth and volume.These laboratory experiments provide reference information for relevant numerical modeling studies and can be applied to guide engineering designs in an ocean area.  相似文献   

3.
In the current study, 108 flume experiments with non-uniform, cohesionless sediments have been done to investigate the local scour process around four pairs of side-by-side bridge piers under both open channel and ice-covered flow conditions. Similar to local scour around bridge piers under open channel conditions and a single bridge pier, it was observed in the experiments that the maximum scour depth always occurred at the upstream face of the pier under ice-covered conditions. Further, the smaller the pier size and the greater the spacing distance between the bridge piers, the weaker the horseshoe vortices around the bridge piers, and, thus, the shallower the scour holes around them. Finally, empirical equations were developed to estimate the maximum scour depth around two side-by-side bridge piers under both open channel and ice-covered flow conditions.  相似文献   

4.
The local scour around bridge abutments has been an active research topic for many decades. But very few studies have been conducted regarding the impacts of ice cover on the local scour phenomenon aro...  相似文献   

5.
Local scour around cylinders in a side-by-side or tandem arrangement under clear-water conditions is investigated numerically. Large eddy simulations with a Smagorinsky subgrid model are combined with a ghost-cell immersed boundary method, and details of the bed scouring are realized with sophisticated sediment and morphodynamic models. The scour patterns and depths in the two-cylinder cases are shown to be significantly influenced by the cylinder spacing. The features of the scour evolution, depth, and flow fields for a range of cylinder spacings are discussed. The maximum scour depth in the side-by-side cylinder cases increases as the distance between the cylinders decreases, whereas in the tandem cases, it tends to initially increase with increasing distance between the cylinders, after which it gradually decreases beyond the peak point. The maximum scour depths and trends computed using the present model show good agreement with the measured data in the literature.  相似文献   

6.
In this work, investigation on the development of local scour around an oblong pier in a 180 degree flume bend is presented. Scour hole can cause failure of the bridge especially during the river floods. In this study, the use of oblong collars for reducing the effects of local scour at a bridge pier is presented together with the time aspect of the scour development. Tests were conducted using one oblong pier in positions of 60degree under one flow conditions. The study was conducted using a physical hydraulic model operated under clear-water conditions in cohesionless bed material. In this study, the time development of the local scour around the oblong pier fitted with and without collar plates was studied. Investigated was the effect of size and elevation collar on the time development of scour and its efficacy at preventing scour at a bridge pier. The time development of the scour hole around the model pier with and without a collar installed was compared with similar studies on bridge piers. The results of the model study indicated that the maximum depth of scour is highly dependent on the experimental duration. It was observed that, as the minimum depth of scour occurs for the square collar at width of 3B placed at elevation of 0.1B below the bed and the size of a collar plate increases, the scour decreases. Measuring depth of scouring based on experimental observation, an empirical relation is developed with regression coefficient 95%.  相似文献   

7.
Large wood (LW) transport can increase greatly during floods, leading to accumulations at river infrastructures. To mitigate the potential flood hazard, racks are a common method to retain LW upstream of endangered settlements or infrastructures. The majority of LW retention racks consist of vertical bars and, therefore, disrupt bedload transport. It can be hypothesized that inclined racks reduce backwater rise and local scour, as wood will block the upper part of the rack, thereby increasing the open flow cross-section below the accumulation. Flume experiments were conducted under clear water conditions to analyse backwater rise and local scour as a function of (1) rack inclination, (2) hydraulic inflow condition, (3) uniform bed material, and (4) LW volume. In addition, the first experiments were performed under live bed scour conditions to study the effect of bedload transport on local scour and backwater rise. Based on the experiments, backwater rise and local scour decrease with decreasing rack angle to the horizontal. LW predominantly accumulated at the upper part of the rack, leading to an open flow cross-section below the accumulation. The effect of rack angle was included in existing design equations for backwater rise and local scour depth. In addition, the first experiments with bedload transport resulted in smaller backwater rise and local scour depth. This study contributes to an enhanced process understanding of wood retention and bedload transport at rack structures and an improved design of LW retention racks. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
The scouring around bridge foundations is a significant concern in civil engineering. Several research has been conducted experimentally and numerically to study the maximum scour depth around the foundations of a bridge in open channel conditions. In cold regions, where ice forms on lakes, reservoirs, and rivers, the interaction between ice and hydraulic structures is further complicated. The flow distribution varies significantly leading to deeper and larger scouring around bridge foundations....  相似文献   

9.
This paper presents an experimental study on the local bed morphology and grain size characteristics around an impermeable spur dyke.A series of experiments are conducted with different types of sedime...  相似文献   

10.
Spur dikes are river training structures that have been extensively used worldwide for towards enhancing flood control and the stability of embankments and riverbanks.However,scour around spur dikes can be a major problem affecting their stability and hydraulic performance.The precise computation of temporal scour depth at spur dikes is very important for the design of economical and safe spur dikes.This study focuses on experimentally assessing the temporal variation of scour depth around a vertical wall spur dike and identifying the parameters,which mostly influence spur dike performance for a channel bed surface comprised of sand-gravel mixtures.In the current study,the authors did physical experiments in a flume based study to obtain new data,aimed at deriving a new predictive model for spur dike scour and comparing its performance to others found in the literature.It was found that the dimensionless temporal scour depth variation increases with an increase in(i)the threshold velocity ratio,(ii)the densimetric Froude number of the bed surface sediment mixture,(iii)the flow shallowness(defined as the ratio of the approach flow depth,y,to the spur dike’s transverse length,l),and(iv)the flow depth-particle size ratio.It is also concluded that the temporal scour depth variation in the sediment mixture is influenced by the non-uniformity of sediment and decreases with an increase in the non-uniformity of the sediment mixture.A new mathematical model is derived for the estimation of temporal scour depths in sand-gravel sediment mixtures.The proposed equation has been calibrated and validated with the experimental data,demonstrating a good predictive capacity for the estimation of temporal scour depth evolution.  相似文献   

11.
The effects of different submerged obstacle longitudinal bars with different arrangement densities on the flow profile and morphology of a scour hole were investigated under clear water conditions. Acoustic Doppler velocimetry(ADV) data were applied to plot the vertical distributions of three-dimensional velocities and turbulent contours.The experimental results indicate that arrangement density(also can represent porosity),structural material(flexible or solid),and the sidewall effect are the main factors impacting turbulent kinetic energy and the morphology of scour holes.For flexible vegetation,the maximum turbulent kinetic energy near the bed surface increased with the arrangement density.For the same structure,the depth and the magnitude of the lateral expansion of the scour hole also increased with the arrangement density.The flexible vegetation reduced the depth of the scour hole because of deflection and arrangement density.The larger volumes of scour found in the upstream and middle sections of solid structures compare well to those in flexible vegetation.The deflection of porous flexible vegetation transported the turbulent kinetic energy downstream,reduced the turbulent kinetic energy near the sediment bed,and increased the stability of the bars.Flexible vegetation bars are able to protect the bank and the bed of a river under normal conditions,making them a good alternative design in the management and restoration of rivers.  相似文献   

12.
I.INTRODUCTIONhiverchannelsaresubjecttocontinuouschangeingeometryduetoillteraCtionbetWeentheflowanderodibleboundaries.Ofconcerntothedesignersofoilpipelinesacrossariver,bridgesandhydraulicworksistheproblemofscourwhichcanunderminetheStructures.Scouratsiteofbridgesandhydraulicworksoccursduetoconstrictedflowandexistenceofbridgepiers.SuchatabOfscouroccursonlyinashortsection,usuallyillthesameorderofthelengthofthehydraulicworksorbridges.Therefore,thispatternofscouriscalledlocalscour.Man}rresea…  相似文献   

13.
We study erosion depth and sediment fluxes for wave-induced sheet-flow, and their dependency on grain size and streaming. Hereto, we adopt a continuous two-phase model, applied before to simulate sheet-flow of medium and coarse sized sand. To make the model applicable to a wider range of sizes including fine sand, it appears necessary to adapt the turbulence closure of the model. With an adapted formulation for grain–carrier flow turbulence interaction, good reproductions of measured erosion depth of fine, medium and coarse sized sand beds are obtained. Also concentration and velocity profiles at various phases of the wave are reproduced well by the model. Comparison of sediment flux profiles from simulations for horizontally uniform oscillatory flow as in flow tunnels and for horizontally non-uniform flow as under free surface waves, shows that especially for fine sand onshore fluxes inside the sheet-flow layer increase under influence of progressive wave effects. This includes both the current-related and the wave-related contribution to the period-averaged sheet-flow sediment flux. The simulation results are consistent with trends for fine and medium sized sediment flux profiles observed from tunnel and flume experiments. This study shows that the present two-phase model is a valuable instrument for further study and parameterization of sheet-flow layer processes.  相似文献   

14.
It is widely recognized that high supplies of fine sediment, largely sand, can negatively impact the aquatic habitat quality of gravel‐bed rivers, but effects of the style of input (chronic vs. pulsed) have not been examined quantitatively. We hypothesize that a continuous (i.e. chronic) supply of sand will be more detrimental to the quality of aquatic habitat than an instantaneous sand pulse equal to the integrated volume of the chronic supply. We investigate this issue by applying a two‐dimensional numerical model to a 1 km long reach of prime salmonid spawning habitat in central Idaho. Results show that in both supply scenarios, sand moves through the study reach as bed load, and that both the movement and depth of sand on the streambed mirrors the hydrograph of this snowmelt‐dominated river. Predictions indicate greater and more persistent mortality of salmonid embryos under chronic supplies than pulse inputs, supporting our hypothesis. However, predicted mortality varies both with salmonid species and location of spawning. We found that the greatest impacts occur closer to the location of the sand input under both supply scenarios. Results also suggest that reach‐scale morphology may modulate the impact of sand loads, and that under conditions of high sand loading climate‐related increases in flow magnitude could increase embryo mortality through sand deposition, rather than streambed scour. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
《国际泥沙研究》2016,(2):159-163
Roughened horizontal aprons are bed covering scour countermeasures constructed downstream of stilling basins and other places where scour hole may develop. In these cases scour occurs at the edge of the apron which can lead to failure of the apron. In the present study, 24 experimental tests were carried out on four different aprons with (2, 5, 10 and 14.28 mm) roughness heights and two different bed material sizes of 0.8 and 1.4 mm under different flow conditions. The results indicated that as the roughness height of apron increases, a significant reduction in the scour depth occurs.  相似文献   

16.
This paper presents the results of comprehensive laboratory experiments to investigate the effects of hooked-collar on the scour development around a vertical pier with a lenticular cross section. The flow around the pier was uniform, steady, and under the clear-water condition. The axial scour profiles for cases without and with a lenticular hooked-collar were measured and the effects of hooked-collar dimensions and elevation from the bed were examined. To compute the efficiency of hooked-colla...  相似文献   

17.
Results of an experimental study on the countermeasure of scour depth at circular piers are presented. Experiments were conducted for pier scour with and without a splitter plate under a steady, uniform clear-water flow condition. The results of pier scour without splitter plate were used as a reference. Different combinations of lengths and thicknesses of splitter plates were tested attaching each of them to a pier at the upstream vertical plane of symmetry. Two different median sediment sizes (d 50 = 0.96 and 1.8 mm) were considered as bed sediment. The experimental results show that the scour depth consistently decreases with an increase in splitter plate length, while the scour depth remains independent of splitter plate thickness. In addition, temporal evolution of scour depth at piers with and without a splitter plate is observed. The best combination is found to be with a splitter plate thickness of b/5 and a length of 2b. Here, b denotes the pier diameter. An empirical formula for the estimation of equilibrium scour depth at piers with splitter plates is obtained from a multiple linear regression analysis of the experimental data. The flow fields for various combinations of circular piers with and without splitter plate including plain bed and equilibrium scour conditions were measured by using an acoustic Doppler velocimeter. The turbulent flow fields for various configurations are investigated by plotting the velocity vectors and the turbulent kinetic energy contours on vertical and horizontal planes. The splitter plate attached to the pier deflects the approach flow and thus weakens the strength of the downflow and the horseshoe vortex, being instrumental in reducing the equilibrium scour depth at piers. The proposed method of pier scour countermeasure is easy to install and cost effective as well.  相似文献   

18.
Scour and flow field around a spur dike in a 90° bend   总被引:2,自引:1,他引:1  
Spur dike is an important element in river training that creates rapid variations in flow field, sediment transport and bed topography. The mechanism of flow and sediment transport in a channel bend is very complex, especially when a spur dike is constructed in a bend. Most of previous investigations on flow behavior and scour around spur dike were carried out in straight channels. In this paper results of experiments on flow field and scour around a spur dike in a 90 degree channel bend are presented. Sand with uniform grain size was used as the bed material. Experiments were conducted for different locations and different lengths of spur dikes at the bend with different values of discharge. The three dimensional flow fields around a spur dike were investigated. The maximum depth of scour was correlated to the Froude numbers, lengths and the locations of spur dike in the bend.  相似文献   

19.
Spur dike is an important element in fiver training that creates rapid variations in flow field, sediment transport and bed topography. The mechanism of flow and sediment transport in a channel bend is very complex, especially when a spur dike is constructed in a bend. Most of previous investigations on flow behavior and scour around spur dike were carried out in straight channels. In this paper results of experiments on flow field and scour around a spur dike in a 90 degree channel bend are presented, Sand with uniform grain size was used as the bed material, Experiments were conducted for different locations and different lengths of spur dikes at the bend with different values of discharge, The three dimensional flow fields around a spur dike were investigated, The maximum depth of scour was correlated to the Froude numbers, lengths and the locations of spur dike in the bend.  相似文献   

20.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号