首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The Khulais plain lies within a typical arid area in western Saudi Arabia. Groundwater occurs within two aquifers in the area: the alluvium of the wadi system, and the sandy layers of the Cretaceous-Tertiary sedimentary succession. Detailed field investigations and laboratory analysis helped in determining the aquifer properties for each of the water-bearing units. Groundwater movement has been thoroughly studied, and distribution maps prepared to explain the variations in transmissivity, permeability, porosity and specific yield. An attempt has been made to estimate volumes of groundwater flow towards the plain. This study presents a first attempt towards determining groundwater availability in the Cretaceous-Tertiary succession of this part of the world.  相似文献   

2.
Aquifer storage and recovery (ASR) is a valuable tool for managing variations in the supply and demand of freshwater, but system performance is highly dependent upon system-specific hydrogeological conditions including the salinity of the storage-zone native groundwater. ASR systems using storage zones containing saline (>10,000 mg/L of total dissolved solids) groundwater tend to have relatively low recovery efficiencies (REs). However, the drawbacks of low REs may be offset by lesser treatment requirements and may be of secondary importance where the stored water (e.g., excess reclaimed, surface, and storm waters) would otherwise go to waste and pose disposal costs. Density-dependent, solute-transport modeling results demonstrate that the RE of ASR systems using a saline storage zone is most strongly controlled by parameters controlling free convection (e.g., horizontal hydraulic conductivity) and mixing of recharged and native groundwater (e.g., dispersivity and aquifer heterogeneity). Preferred storage zone conditions are moderate hydraulic conductivities (5 to 20 m/d), low degrees of aquifer heterogeneity, and primary porosity-dominated siliclastic and limestones lithologies with effective porosities greater than 5%. Where hydrogeological conditions are less favorable, operational options are available to improve RE, such as preferential recovery from the top of the storage zone. Injection of large volumes of excess water currently not needed into saline aquifers could create valuable water resources that could be tapped in the future during times of greater need.  相似文献   

3.
An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.  相似文献   

4.
5.
A new operational paradigm is presented for small‐scale aquifer storage and recovery systems (ASR) in saline aquifers. Regular ASR is often not feasible for small‐scale storage in saline aquifers because fresh water floats to the top of the aquifer where it is unrecoverable. In the new paradigm, fresh water storage is combined with salt water extraction from below the fresh water cone. The salt water extraction counteracts the buoyancy due to the density difference between fresh water and salt water, thus preventing the fresh water from floating up. The proposed approach is applied to assess the feasibility of ASR for the seasonal storage of fresh water produced by desalination plants in tourist resorts along the Egyptian Red Sea coast. In these situations, the continuous extraction of salt water can be used for desalination purposes. An analytical Dupuit solution is presented for the steady flow of salt water toward a well with a volume of fresh water floating on top of the cone of depression. The required salt water discharge for the storage of a given volume of fresh water can be computed with the analytical solution. Numerical modeling is applied to determine how the stored fresh water can be recovered. Three recovery approaches are examined. Fresh water recovery rates on the order of 70% are achievable when salt water is extracted in high volumes, subsurface impermeable barriers are constructed at a distance from the well, or several fresh water recovery drains are used. The effect of ambient flow and interruptions of salt water pumping on the recovery efficiency are reported.  相似文献   

6.
Two key challenges regarding the design and operation of aquifer recharge and recovery (ARR) systems are evaluating aquifer heterogeneity and understanding hydrochemical interactions. Uncertainty in this respect can impact the volume of recoverable water and the improvement in water quality. The objective of this research is to leverage the advantages of geophysical measurements and hydrochemical sampling to reveal the properties of an ARR site to inform current ARR system operations and future design decisions. Electrical resistivity tomography was used to image the subsurface below two key infiltration/extraction areas of an ARR site in Colorado, USA. Hydrochemical measurements on transects intersecting the geophysical measurements resolved bulk parameters (i.e., total organic carbon, nitrate, and major cations and anions) and trace organic chemicals (e.g., pharmaceuticals, personal care products). Conservative tracers were also used to estimate degrees of mixing and water travel times and to better assess the performance of the ARR site regarding water quality changes and water recovery. The electrical resistivity measurements suggest that certain areas of the infiltration basins have hydraulic connections to the extraction wells through preferential flow paths, compared with other infiltration basins that are separated by fine‐grained materials from their respective extraction wells. The hydrochemical results indicate that consistent improvements in water quality can be achieved in these preferential flow paths within relatively short travel times (<5 d) at this ARR site.  相似文献   

7.
Zekai Şen  Essam Wagdani 《水文研究》2008,22(12):1788-1795
In arid‐region wadis, groundwater storage lies within shallow Quaternary alluvium deposits, which are connected with the present‐day hydrological cycle and, therefore, are replenished due to occasional runoff and flash flood occurrences. The groundwater resources are precious in these environments; therefore, their potentiality must be assessed with care in the best manner. The aquifer potentiality is calculated after the storativity and transmissivity parameter estimations, which require rather long‐duration field tests with restrictive assumptions in the theoretical model developments, such as the homogeneity and isotropy. It is the main purpose of this paper to expose the fundamentals of the slope‐matching procedure (SMP) and its application for short‐duration field tests in arid‐region aquifers. In this manner, the subsurface hydrogeological behaviours of the bored land pieces at and around the well locations are prospected in a detailed and refined manner. It is shown that in many cases the classical techniques are appropriate, inconvenient and inapplicable with conclusive reliable results and conclusions. The application of the SMP is presented for some aquifer tests from the central western part of the Kingdom of Saudi Arabia. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Ali Subyani  Zekai en 《水文研究》2006,20(20):4373-4380
The rainfall and infiltration elements of the hydrological cycle in arid regions are characterized by temporal and spatial variations that are random and sporadic. Consequently, the chloride concentration in rainfall has a similar behaviour. Despite this, the classical chloride mass balance (CMB) approach only employs arithmetic and weighted averages for recharge estimation. In this paper, the classical CMB method is modified by taking into account some perceived deficiencies in the methodology. The modified CMB method takes into consideration additional statistical parameters, namely variances and the correlation coefficient between variables concerned based on the application of the perturbation method. Strategic aquifer planning in the Kingdom of Saudi Arabia requires a quick method for estimating groundwater recharge in order to determine the temporal management of available water resources. To demonstrate the difference between the classical and the refined CMB methods, both were applied to a representative basin, i.e. Wadi Yalamlam, in the western part of Saudi Arabia. Based on the refined calculations, recharge to groundwater is found to be 11% of the effective annual rainfall. This refined method provides higher recharge rates because it takes into account the actual variability in the variables concerned and can, thus, improve the accuracy of future groundwater recharge estimation studies. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Aquifers show troubling signs of irreversible depletion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. One strategy to sustain the groundwater supply is to recharge aquifers artificially with reclaimed water or stormwater via managed aquifer recharge and recovery (MAR) systems. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data‐driven, real‐time control. This paper presents a laboratory scale proof‐of‐concept study that demonstrates the capability of a real‐time, simulation‐based control optimization algorithm to ease the operational challenges of MAR systems. Central to the algorithm is a model that simulates water flow and transport of dissolved chemical constituents in the aquifer. The algorithm compensates for model parameter uncertainty by continually collecting data from a network of sensors embedded within the aquifer. At regular intervals the sensor data is fed into an inversion algorithm, which calibrates the uncertain parameters and generates the initial conditions required to model the system behavior. The calibrated model is then incorporated into a genetic algorithm that executes simulations and determines the best management action, for example, the optimal pumping policy for current aquifer management goals. Experiments to calibrate and validate the simulation‐optimization algorithm were conducted in a small two‐dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. Results from initial experiments validated the feasibility of the approach and suggested that our system could improve the operation of full‐scale MAR facilities.  相似文献   

10.
Surface water is a scarce resource in Namibia with about sixty percent of Namibia's population dependent on groundwater for drinking purposes. With increasing population, the country faces water challenges and thus groundwater resources need to be managed properly. One important aspect of Integrated Water Resources Management is the protection of water resources, including protection of groundwater from contamination and over-exploitation. This study explores vulnerability mapping as a basic tool for protecting groundwater resources from pollution. It estimates groundwater vulnerability to pollution in the upper Niipele sub-basin of the Cuvelai-Etosha in Northern Namibia using the DRASTIC index. The DRASTIC index uses GIS to estimate groundwater vulnerability by overlaying different spatially referenced hydrogeological parameters that affect groundwater contamination. The study assesses the discontinuous perched aquifer (KDP) and the Ohangwena multi-layered aquifer 1 (KOH-1). For perched aquifers, point data was regionalized by a hydrotope approach whereas for KOH-1 aquifer, inverse distance weighting was used. The hydrotope approach categorized different parts of the hydrogeological system with similar properties into five hydrotopes. The result suggests that the discontinuous perched aquifers are more vulnerable than Ohangwena multi-layered aquifer 1. This implies that vulnerability increases with decreasing depth to water table because contaminants have short travel time to reach the aquifer when they are introduced on land surface. The nitrate concentration ranges between 2 and 288 mg/l in perched aquifers while in Ohangwena multi-layered aquifer 1, it ranges between 1 and 133 mg/l. It was observed that perched aquifers have high nitrate concentrations than Ohangwena 1 aquifer, which correlates well with the vulnerability results.  相似文献   

11.
Guo H  Jiao JJ 《Ground water》2007,45(3):362-367
Land reclamation in coastal areas may have a significant effect on local ground water systems. Steady-state analytic solutions based on Dupuit and Ghyben-Herzberg assumptions are derived to evaluate this effect. Two situations are considered, both with ground water flow resulting from precipitation recharge: the coastal aquifer of an extensive landmass and an island. The results show that after reclamation, the water table rises and the salt water-fresh water interface moves seaward. The degree of these changes depends on the extent of reclamation and the hydraulic conductivity of the fill material. For the island situation, the reclamation displaces the ground water divide and changes the ground water conditions in the entire island. An unintended advantage of the reclamation is an increase of fresh ground water resource because the reclaimed land can be an additional aquifer and rain recharge takes place over a larger area.  相似文献   

12.
Regular aquifer storage recovery, ASR, is often not feasible for small‐scale storage in brackish or saline aquifers because fresh water floats to the top of the aquifer where it is unrecoverable. Flow barriers that partially penetrate a brackish or saline aquifer prevent a stored volume of fresh water from expanding sideways, thus increasing the recovery efficiency. In this paper, the groundwater flow and mixing is studied during injection, storage, and recovery of fresh water in a brackish or saline aquifer in a flow‐tank experiment and by numerical modeling to investigate the effect of density difference, hydraulic conductivity, pumping rate, cyclic operation, and flow barrier settings. Two injection and recovery methods are investigated: constant flux and constant head. Fresh water recovery rates on the order of 65% in the first cycle climbing to as much as 90% in the following cycles were achievable for the studied configurations with constant flux whereas the recovery efficiency was somewhat lower for constant head. The spatial variation in flow velocity over the width of the storage zone influences the recovery efficiency, because it induces leakage of fresh water underneath the barriers during injection and upconing of salt water during recovery.  相似文献   

13.
Shallow sloping drainage tunnels dug into the hillsides to intercept water tables are an important source of water supply in many semi-arid countries. This paper deals with the modelling of such drainage tunnels, with particular reference to the aflaj (singular falaj) of Oman; factors affecting their flow, their response to recharge and their imposition on the surrounding aquifer are investigated. The equations governing groundwater flow in unconfined aquifers are modified to realistically reproduce the observed flow response. In this way the effect of falaj flow can be incorporated into the strategy for the management of scarce water resources. The modelling results show that the falaj flow follows an exponential recession and its rate is related to aquifer geometry and parameters. The results have been used to estimate the contributing length of aflaj under various hydrological conditions and to indicate the most likely recharge mechanism for a falaj situated in wadi gravels. Furthermore, the close resemblance between the predicted falaj flow and field flow measurements, from Oman, is a measure of the model's applicability.  相似文献   

14.
Kim KY  Chon CM  Park KH 《Ground water》2007,45(6):723-728
Salt water intrusion is a key issue in dealing with exploitation, restoration, and management of fresh ground water in coastal aquifers. Constant monitoring of the fresh water-salt water interface is necessary for proper management of ground water resources. This study presents a simple method to estimate the depth of the fresh water-salt water interface in coastal aquifers using two sets of pressure data obtained from the fresh and saline zones within a single borehole. This method uses the density difference between fresh water and saline water and can practically be used at coastal aquifers that have a relatively sharp fresh water-salt water interface with a thin transition zone. The proposed method was applied to data collected from a coastal aquifer on Jeju Island, Korea, to estimate the variations in the depth of the interface. The interface varied with daily tidal fluctuations and heavy rainfall in the rainy season. The estimated depth of the interface showed a good agreement with the measured electrical conductivity profile.  相似文献   

15.
There is little knowledge available about infiltration and evaporation processes in wadi channels in arid regions. This work was conducted to determine the actual evaporation from bare soils in wadi channels in the south-western region of the Kingdom of Saudi Arabia. The estimation of soil evaporation is highly dependent on the availability of moisture in the upper layers of alluvial wadis, in which the areal rainfall, flood hydrograph and soil properties play a significant part. The study was conducted by estimating the actual evaporation using soil moisture data, precipitation and runoff depths in a representative basin. The results are compared with potential rates. The actual rates were 1.5 mm/day immediately after a rainy day and then decreased to 0.42 mm/day. The minimum rate was about 0.1–0.2 mm/day during the dry season. The potential rates were about 9.5 mm/day in June and July, decreasing to 3.5 mm/day in December and January.  相似文献   

16.
Access to fresh water is one of the major issues of northern and sub-Saharan Africa. The majority of the fresh water used for drinking and irrigation is obtained from large ground water basins where there is minor contemporary recharge and the aquifers cross national borders. These aquifers include the Nubian Aquifer System shared by Chad, Egypt, Libya, and Sudan; the Iullemeden Aquifer System, extending over Niger, Nigeria, Mali, Benin, and Algeria; and the Northwest Sahara Aquifer System shared by Algeria, Libya, and Tunisia. These resources are subject to increased exploitation and may be severely stressed if not managed properly as witnessed already by declining water levels. In order to make appropriate decisions for the sustainable management of these shared water resources, planners and managers in different countries need an improved knowledge base of hydrological information. Three technical cooperation projects related to aquifer systems will be implemented by the International Atomic Energy Agency, in collaboration with the United Nations Educational, Scientific and Cultural Organization and United Nations Development Programme/Global Environmental Facility. These projects focus on isotope hydrology studies to better quantify ground water recharge and dynamics. The multiple isotope approach combining commonly used isotopes 18O and 2H together with more recently developed techniques (chlorofluorocarbons, 36Cl, noble gases) will be applied to improve the conceptual model to study stratification and ground water flows. Moreover, the isotopes will be an important indicator of changes in the aquifer due to water abstraction, and therefore they will assist in the effort to establish a sustainable ground water management.  相似文献   

17.
Zekai Şen 《水文研究》2008,22(3):356-365
There is a real need for more research on regionalization of flood estimation methods in arid zones. Such estimations are important because reliable long‐term storm rainfall and corresponding runoff measurements are commonly unavailable. This is the situation in many parts of the Kingdom of Saudi Arabia. Hence, it is necessary to develop a new approach, one that suits the conditions found in the Kingdom, which depend on available, but incomplete measurements and catchment morphological features. In this paper, a modified methodology based on the classical Snyder approach is proposed and it is referred to as the Saudi Geological Survey (SGS) approach in order to reflect works of this kind within the Survey. The basis of the methodology has two phases, namely, logical and empirical. The former phase is valid for any part of the world whether humid or arid, but the latter phase is location specific, which in the case of this paper, is the Arabian Peninsula. The application of the methodology is presented for Wadi Baysh, a major wadi in the south‐western part of the Kingdom. Furthermore, a synthetic unit hydrograph (UH) methodology based on a Gamma distribution function is also presented with applications to some of the Wadi Baysh sub‐basins. For this purpose, a dimensionless UH has been obtained, which is special for the area. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Freshwater resources in the arid Arabian Peninsula, especially transboundary aquifers shared by Saudi Arabia, Jordan, and Iraq, are of critical environmental and geopolitical significance. Monthly Gravity Recovery and Climate Experiment (GRACE) satellite‐derived gravity field solutions acquired over the expansive Saq transboundary aquifer system were analysed and spatiotemporally correlated with relevant land surface model outputs, remote sensing observations, and field data to quantify temporal variations in regional water resources and to identify the controlling factors affecting these resources. Our results show substantial GRACE‐derived terrestrial water storage (TWS) and groundwater storage (GWS) depletion rates of ?9.05 ± 0.25 mm/year (?4.84 ± 0.13 km3/year) and ?6.52 ± 0.29 mm/year (?3.49 ± 0.15 km3/year), respectively. The rapid decline is attributed to both climatic and anthropogenic factors; observed TWS depletion is partially related to a decline in regional rainfall, while GWS depletions are highly correlated with increasing groundwater extraction for irrigation and observed water level declines in regional supply wells.  相似文献   

19.
Geoelectric and hydrologic surveys during spring tides revealed the spatiotemporal distribution of groundwater quality produced by tidal forcing in Fongafale Islet, Funafuti Atoll, Tuvalu. The observed low resistivity showed that saline water largely immersed the surficial Holocene aquifer, indicating that there is no thick freshwater lens in Fongafale Islet, unlike in other atoll islands of comparable size. Half of the islet was constructed by reclaiming the original swamp with porous, highly permeable coral blocks; this reclaimed area should not be considered as part of the islet width for calculation of the expected thickness of the freshwater lens. The degree of aquifer salinization depends on the topographic characteristics and the hydrologic controls on the inland propagation of the tidal forcing. Large changes in bulk resistivity and the electrical conductivity of groundwater from wells indicate that periodic salinization in phase with the semidiurnal tides was occurring widely, especially in areas at lower elevation than the high-tide level and in reclaimed areas with high permeability. Thin sheets of nearly fresh and brackish water were observed in the surficial aquifer in areas above the high-tide level and in taro swamps, respectively. The thinness of the brackish and freshwater sheets suggests that the taro swamps and the fresh groundwater resources of the islet are highly vulnerable to salinization from anticipated sea-level rise. An understanding of the inherent geologic and topographic features of an atoll is necessary to evaluate the groundwater resources of the atoll and assess the vulnerability of its water resources to climate change.  相似文献   

20.
During the last decade, the exploitation of the existing water resources in the Asir region of the Kingdom of Saudi Arabia has considerably increased due to both the decrease in annual precipitation and the added population pressures from the growing tourist industry. To face the conventional water shortage, attention has been mainly focused on desalination of water. To save the region from severe water shortage, additional new water sources that are low-cost and renewable must be identified. There exists an alternative source of water such as fog water harvesting. Fog forms in the Asir Region more frequently between December and February compared to the other months of the year. This paper presents the study of the climatic conditions in the Asir region of the Kingdom to identify the most suitable location for fog water collection as well as design and testing of two large fog collectors (LFCs) of size 40?m2 along with standard fog collectors (SFCs) of 1?m2 in that region. During the period from 27 December 2009 to 9 March 2010, a total of 3,128.4 and 2,562.4 L of fog water were collected by the LFC at two sites in the Al-Sooda area of the Asir region, near Abha. Experimental results indicate that fog water collection can be combined with rain water harvesting systems to increase water yield during the rainy season. The quality of the collected fog water was analyzed and compared to the World Health Organization (WHO) drinking water standards and found to be potable. An economic analysis was carried out for the proposed method of obtaining fresh water from the fog. The study suggests a clear tendency that in terms of both quality and magnitude of yield, fog is a viable source of water and can be successfully used to supplement water supplies in the Asir region of the Kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号