首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
Troy L Péwé 《Geoforum》1973,4(3):15-26
Ice wedge casts are the most accurate and widespread indicators of past permafrost. Many ice wedge casts exist in Alaska, some in areas of existing ice wedges. In addition to indicating paleotemperature conditions and a wider distribution of permafrost in Wisconsinan time than now, casts in Alaska also indicate permafrost in Iliinoian and pre-lllinoian time. Hundreds of ice wedge casts are now known in temperate North America and are described from about 22 widespread localities coast to coast in Canada and United States. Permafrost existed in late Wisconsinan time, 20,000 to 10,000 years ago, along the glacial border in temperate United States. Later permafrost formed north of the glacial border as the continental ice sheet withdrew exposing drift to the rigorous periglacial climate. Ice wedge casts indicate that the ? 7 °C mean annual air isotherm was about 2000 km farther south in late Wisconsinan time than now.  相似文献   

2.
受气温变化影响,浅层冻土滑坡失稳涉及水分的固液相态转换,是一个复杂的水热力耦合过程。为揭示气温变化对多年冻土斜坡稳定性的影响,基于冻土水热力耦合数值模型,模拟了2020—2024年青海省多年冻土区斜坡水热力演化过程。研究结果表明:水分迁移速率呈周期性变化,每年5—10月活动层融化程度高,总体积含水率变化趋势显著;夏季多年冻土上限以下的高含冰量土层融化产生厚度约15 cm的富水层,孔隙水压难以消散;4年间多年冻土上限下移10.4 cm,导致活动层和富水层的厚度增大,上覆融土下滑力增大、抗滑力减小,土体抗剪强度进一步下降;活动层土体每年产生数厘米冻胀融沉变形,抗剪强度不断劣化,坡脚处最容易形成薄弱带。  相似文献   

3.
This paper describes recent exceptional slope failures in high-mountain, glacial environments: the 2002 Kolka–Karmadon rock–ice avalanche in the Caucasus, a series of ice–rock avalanches on Iliamna Volcano, Alaska, the 2005 Mt. Steller rock–ice avalanche in Alaska, and ice and rock avalanches at Monte Rosa, Italy in 2005 and 2007. Deposit volumes range from 106 to 108 m3 and include rock, ice and snow. Here we focus on thermal aspects of these failures reflecting the involvement of glacier ice and permafrost at all sites, suggesting that thermal perturbations likely contributed to the slope failures. We use surface and troposphere air temperatures, near-surface rock temperatures, satellite thermal data, and recent 2D and 3D thermal modeling studies to document thermal conditions at the landslide sites. We distinguish between thermal perturbations of volcanic-geothermal and climatic origin, and thermal perturbations related to glacier–permafrost interaction. The data and analysis support the view that recent, current and future climatic change increases the likelihood of large slope failures in steep glacierized and permafrost terrain. However, some important aspects of these settings such as the geology and tectonic environment remain poorly understood, making the identification of future sites of large slope instabilities difficult. In view of the potentially large natural disasters that can be caused by such slope failures, improved data and understanding are needed.  相似文献   

4.
应用等效纬度-海拔模型进行地温及多年冻土制图   总被引:2,自引:2,他引:2  
This research presents a method for permafrost mapping in discontinuous permafrost regions based on equivalent latitude/elevation concept in interior Alaska. In winter months, study site has a strong temperature inversion in air up to 700 m elevation. Air temperature data and the effects of slope, aspect and elevation were used to create an equivalent latitude/elevation model. This model was well correlated with mean annual surface temperature (0.79). In this watershed, the thawing index (It≈1 400 ℃*days) at the ground surface and snow depth do not vary greatly from south facing to north facing slopes. The primary controlled factor that determines the mean annual surface temperature was the winter surface temperature. The permafrost stability is effectively controlled by the freezing index. We determined 37.5% of Caribou-Poker Creeks Research Watershed has unstable or thawing permafrost. At least 2.1% of the permafrost in this watershed may have disappeared in the last 90 years due to climate warming. This method makes it possible to evaluate the permafrost stability in the present, past and future.  相似文献   

5.
Extremely ice-rich syngenetic permafrost, or yedoma, developed extensively under the cold climate of the Pleistocene in unglaciated regions of Eurasia and North America. In Alaska, yedoma occurs in the Arctic Foothills, the northern part of the Seward Peninsula, and in interior Alaska. A remarkable 33-m-high exposure along the lower Itkillik River in northern Alaska opened an opportunity to study the unmodified yedoma, including stratigraphy, particle-size distribution, soil carbon contents, morphology and quantity of segregated, wedge, and thermokarst-cave ice. The exposed permafrost sequence comprised seven cryostratigraphic units, which formed over a period from > 48,000 to 5,000 14C yr BP, including: 1) active layer; 2) intermediate layer of the upper permafrost; 3–4) two yedoma silt units with different thicknesses of syngenetic ice wedges; 5) buried peat layer; 6) buried intermediate layer beneath the peat; and 7) silt layer with short ice wedges. This exposure is comparable to the well known Mus-Khaya and Duvanny Yar yedoma exposures in Russia. Based on our field observations, literature sources, and interpretation of satellite images and aerial photography, we have developed a preliminary map of yedoma distribution in Alaska.  相似文献   

6.
全球气候变化下青藏公路沿线冻土变化响应模型的研究   总被引:16,自引:17,他引:16  
利用英国Hadley气候预测与研究中心GCM模型HADCM2预测的气温变化背景,分别提取青藏公路沿线地区在2009年,2049年和2099年的气温参数,考虑年平均气温和年平均地温的关系及年平均地温与海拔,纬度的关系模型,多年冻土下界分布模型和地温带分带,建立青藏公路沿线多年冻土下界分布的响应模型和多年冻土地温带的响应模型,研究结果表明,2009年青藏公路沿线的冻土变化较小,多年冻土极稳定带,稳定带和基本稳定带仅发生微弱的变化,基本稳定过渡带和不稳定带变化较大,多年冻土,逐渐退化,2049年青藏公路沿线多年冻土各地温带变化较大,但仍以基本稳定过渡带和不稳定带变化最大,多年冻土发生较大范围的退化;2099年后青藏公路沿线冻土发生了很大的变化,多年冻土发生大面积的退化,融区面积逐渐增大,多年冻土地温带也发生了较大的变化,其中多年冻土上带仅保留了稳定带,极稳定带全部消失,稳定带和基本稳定带全部转化为不稳定带。  相似文献   

7.
Ice wedges are wedge-shaped masses of ice, oriented vertically with their apices downward, a few millimeters to many meters wide at the top, and generally less than 10 m vertically. Ice wedges grow in and are confined to humid permafrost regions. Snow, hoar frost, or freezing water partly fill winter contraction cracks outlining polygons, commonly 5–20 m in diameter, on the surface of the ground. Moisture comes from the atmosphere. Increments of ice, generally 0.1–2.0 mm, are added annually to wedges which squeeze enclosing permafrost aside and to the surface to produce striking surface patterns. Soil wedges are not confined to permafrost. One type, sand wedges, now grows in arid permafrost regions. Sand wedges are similar in dimensions, patterns, and growth rates to ice wedges. Drifting sand enters winter contraction cracks instead of ice. Fossil ice and sand wedges are the most diagnostic and widespread indicators of former permafrost, but identification is difficult. Any single wedge is untrustworthy. Evidence of fossil ice wedges includes: wedge forms with collapse structures from replacement of ice; polygonal patterns with dimensions comparable to active forms having similar coefficients of thermal expansion; fabrics in the host showing pressure effects; secondary deposits and fabric indicative of a permafrost table; and other evidence of former permafrost. Sand wedges lack open-wedge, collapse structures, but have complex, nearly vertical, crisscrossing narrow dikelets and fabric. Similar soil wedges are produced by wetting and drying, freezing and thawing, solution, faulting, and other mechanisms. Many forms are multigenetic. Many socalled ice-wedge casts are misidentified, and hence, permafrost along the late-Wisconsinan border in the United States was less extensive than has been proposed.  相似文献   

8.
Fundamental knowledge of groundwater systems in areas of permafrost is often lacking. The likelihood of finding good quality groundwater resources of acceptable quantities generally decreases as the areal coverage of permafrost increases. In areas of continuous permafrost, the probability of finding areas of groundwater recharge and discharge are minimal. Still, in northeastern Alaska (USA), the presence of numerous springs and associated downstream aufeis formations clearly indicates that there has to be a groundwater system with the required complementary areas of groundwater recharge and transmission. Recharge zones and transmission pathways in this area of extensive permafrost, however, are essentially unknown. This study shows that the recharge occurs on the south side of the Brooks Range in northeastern Alaska, where extensive limestone outcrops are found. The transmission zone is beneath the permafrost, with discharge occurring through the springs via taliks through the permafrost (where faults are present) and also likely at the northern edge of the permafrost along the Beaufort Sea coast.  相似文献   

9.
Sorted circles, polygons, and stripes are reported from Alaska, Greenland, Baffin Island, Antarctica, and New Hampshire. From these studies and key references, all cases are found to have: (1) a mixed parent material, commonly till, composed of a wide range of clast sizes unsorted below frost table, (2) gutter depressions containing the largest stones and carrying summer drainage, and (3) tabular stones on edge in the gutters showing expansion-squeezing from the sides. The size of the unit cells, gutter to gutter, is a function of mean maximum clast size: smallest chips making forms 10 cm diameter across and largest forms 20 m across. The slope determines the shape: polygons, and nets form on slopes up to 2 or 4° depending upon amount of water and fines. Ellipses form on 3 to 6° slopes, and stripes form on 4 to 11° slopes. Clearly shape is an effect of solifluction. Lastly, time involves seasons of sporadic sorting until there is a stable end form with lichen-covered stone gutters and tundra-covered soil centers. The up-and-out mechanism, described by Corté, is the best known for the primary sorting. Larger sorted forms (2–20 m in diameter) are reported almost exclusively where nearly continuous permafrost exists. They form where the mean annual temperature is below ? 4°C. Former permafrost is indicated where lichen and turf are dense and not overturned and where measured motion is nil. Small forms (under 1 m in diameter) are generated in a year or two where there is only deep annual freezing (0.1–2 m), but no permafrost.  相似文献   

10.
封闭条件下抛石路堤降温效果及机理的试验研究   总被引:22,自引:13,他引:9  
在多年冻土地区道路工程的修筑与维护中, 如何保证多年冻土不退化所采取措施的长期可靠度问题日益为人们所关注. 通过室内试验研究了实际工程中半开放半封闭抛石路堤受到风沙或积雪填埋后,在不同温度变幅条件下的降温效果. 实验结果发现: 在满足一定厚度时, 封闭条件下的块石层仍具有良好的降温效果, 具有可变等效导热系数的特性, 在实验中充分体现了"热二极管效应". 在外界温度变幅较大的条件下, 降温速度和降温效率均大于温度变幅较小的情况. 通过对块石层顶底温差与其顶部温度变化关系, 以及块石层内温度场特征的分析, 证实了封闭块石层内自然对流的真实存在和对流的运动发展趋势. 试验结果为抛石路堤降温的长期可靠性提供了依据.  相似文献   

11.
青藏铁路块石气冷结构路堤下冻土温度场变化分析   总被引:18,自引:7,他引:11  
马巍  吴青柏  程国栋 《冰川冻土》2006,28(4):586-595
基于青藏铁路沿线多年冻土区温度监测断面,选取了不同冻土分区中的8个块石路堤结构(块石路基、块石护坡、块石路基加块石护坡)断面,对其下温度场的变化分析研究.结果表明:经过2~3个冻融循环后,块石结构路堤下冻土上限已抬升了1.4~5.3 m,说明块石路堤结构已起到了积极调节下伏冻土温度的作用.结果也显示,在上限抬升的同时,其下部的冻土地温也在升高,但是这种过程已逐渐被块石路堤结构的降温所抑制,而这种抑制程度受控于不同的冻土区域.在不同的冻土分区中,无论是何种形式的块石路堤结构,其降温趋势是不同的.Ⅳ和Ⅲ冻土区块石路堤基底的负温积累比较明显,而I和Ⅱ区的较弱.  相似文献   

12.
地下水渗流对冻土区模型桩力学特性的影响分析   总被引:3,自引:3,他引:0  
为了研究冻土区地下水的渗流效应对桩基的荷载传递规律的影响,考虑到桩身轴力、桩侧冻结应力和桩周土温度对桩基承载力均有影响,依据室内模拟试验,分别模拟了无地下水、桩顶水有温度效应、桩底水有温度效应、桩顶水有温度及渗流效应、桩底水有温度及渗流效应5种不同工况下地下水对冻土桩基承载力的影响。试验结果表明:无论是桩顶水还是桩底水,在接近地下水处,同时有温度效应及渗流效应的轴力值变化比仅有温度效应时的小,当地下水为桩底水时加载后的桩轴力小于地下水为桩顶水时的轴力值;桩底水引起的桩侧冻结应力变化幅度比桩顶水大,地下水的温度效应使得部分冻土温度升高而融化,而地下水的渗流效应进一步增大了冻土融化范围,使得桩基力学特性发生改变,进而影响了桩基承载力。  相似文献   

13.
Cryoplanation terraces are bedrock steps or terraces on ridge crests and hilltops. The tread or “flat” area is 10 to several hundred meters wide and long and slopes from 1 to 5° parallel to the ridge crests. Terrace scarps may be from 1 to 75 m high. Terraces are cut into all bedrock types and are best developed on closely jointed, fine-grained bedrock. The scarps and treads are covered with frost-rived rubble 1 to 2 m thick. The rubble on treads is perennially frozen at a depth of 1 to 2 m or less on sharp but inactive terraces in Alaska.Cryoplanation terraces exist in many parts of the world in present or past periglacial environments. They occur chiefly in nonglaciated regions and near the general altitude of snowline. Cryoplanation terraces form by scarp retreat as the result of nivation. Surficial debris is removed across the terrace tread by mass-wasting. Terrace morphology depends mainly upon climate, bedrock type, and terrace orientation.No climatic data are available from active terraces. Indirect evidence indicates that climatic requirements include low snowfall and cold summer temperatures. Shallow permafrost is necessary to provide moisture and a base for mass movement as well as a base for nivation.Hundreds of sharp but inactive terraces occur in some areas in Alaska where the summer temperature is colder than 10°C. When these terraces were active, temperatures were colder. Recent work in Alaska indicates that terraces were active in some areas when the mean July temperature was about 4°C. The mean annual air temperature probably was in the neighborhood of ′12°C or colder.  相似文献   

14.
中国的多年冻土──过去与现在   总被引:14,自引:0,他引:14       下载免费PDF全文
邱国庆  程国栋 《第四纪研究》1995,15(1):13-22,97
中国多年冻土区的总面积约占中国陆地面积的22.4%,达2150000km2。多年冻土的分布特征受气候条件在三度空间的变化所制约。自晚更新世以来,其分布情况已有相当的变化。在东次冰期最盛期,东北地区多年冻土南界曾推进到北纬41—42°,在全新世暖期,南界向北退缩,但晚更新世形成的冰楔和多年冻土至今仍存在于大兴安岭北部,全新世中期严寒期冻土有所扩展并形成冰楔。随着气候变化,中国西部高山和高原区高海拔冻土的分布下界已上移800—1000m,但高山和高原的主要部分仍处于冰缘环境,有的地方在全新世还发育了共生型多年冻土。  相似文献   

15.
基于气候干燥度的青藏高原多年冻土区分类新方案   总被引:2,自引:0,他引:2  
采取综合分析与主导因素相结合的原则, 阐明了青藏高原各大地貌单元的大气环流及自然景观特征, 描述了高原多年冻土形成和分布格局. 基于综合地域分异规律, 以年降水量和干燥度(蒸发/降水)作为主要指标, 并参考年平均气温、气温年较差及年平均空气湿度等, 结合地形因素将高原多年冻土划分为: 湿润型、亚湿润型、半干旱型、干旱型和极干旱型五种类型, 并对各类多年冻土的代表性地区的冻土特征分别进行论述. 该分类方法适合于小比例尺的冻土测绘和制图.  相似文献   

16.
多年冻土南界附近青藏铁路路基下的冻土退化   总被引:1,自引:0,他引:1  
基于2006-2012年青藏铁路多年冻土区唐古拉山南侧安多断面地温监测资料,分析了多年冻土南界附近路基下多年冻土的退化过程及其影响因素.结果表明:该监测断面天然场地多年冻土退化表现为多年冻土天然上限下降与多年冻土地温升高,观测期内多年冻土天然上限下降0.29 m,下降速率为4 cm·a-1;路基下10 m处多年冻土温度升高0.03℃,升温速率为0.004℃·a-1.该监测断面路基左路肩下多年冻土退化表现为多年冻土人为上限下降、多年冻土地温升高、多年冻土下限抬升以及多年冻土厚度减少.观测期内多年冻土人为上限下降0.41 m,下降速率为6 cm·a-1;路基下10 m处多年冻土地温升高0.06℃,升温速率为0.009℃·a-1;多年冻土下限抬升0.50 m,抬升速率为7 cm·a-1;多年冻土厚度减少0.90 m,减少速率为13 cm·a-1.工程作用是导致路基下多年冻土退化的主要原因,气温升温与局地因素中的冻结层上水发育促进了这一退化过程.路基下融化夹层的出现,导致多年冻土垂向上由衔接型变为不衔接型.  相似文献   

17.
The greatest thicknesses of permafrost in Great Britain most likely occurred during the last glacial–interglacial cycle, as this is when some of the coldest conditions occurred during the last 1 000 000 years. The regional development of permafrost across Great Britain during the last glacial–interglacial cycle was modelled from a ground surface temperature history based on mean annual temperatures and the presence of glacier ice. To quantify the growth and decay of permafrost, modelling was undertaken at six locations across Great Britain that represent upland glaciated, lowland glaciated, upland unglaciated and lowland unglaciated conditions. Maximum predicted permafrost depths derived in this academic study range between several tens of metres to over 100 m depending upon various factors including elevation, glacier ice cover, geothermal heat flux and air temperature. In general, the greatest maximum permafrost thicknesses occur at upland glaciated locations, with minimum thickness at lowland sites. Current direct geological evidence for permafrost is from surface or shallow processes, mainly associated with the active layer. Further research is recommended to identify the imprint of freeze/thaw conditions in permanently frozen porous rocks from beneath the active layer.  相似文献   

18.
在气候变暖背景下,北半球多年冻土呈现不同程度的退化趋势,冻土升温、活动层增厚、地下冰消融改变了区域工程地质条件、地形地貌,不仅对寒区环境和工程稳定性造成潜在的威胁,还影响着这些地区的气候、水文和生态过程.因此,准确评估和预估多年冻土热状况的变化具有重要科学和实践意义.现有用于模拟多年冻土热状况的各类模式重点考虑了近地表...  相似文献   

19.
The “upper pit” at the Lost Chicken placer gold mine in east central Alaska contains fossils that provide information on the flora and insect fauna of interior Alaska just before the onset of global cooling at 2.5 myr. Fossils come from sediments interbedded with the Lost Chicken tephra (dated at 2.9 ± 0.4 myr—early Late Pliocene) and portray the floodplain and valley of a small creek within a region dominated by a coniferous forest richer in genera and species than the present one. Climate was wetter and less continental, and there was probably little or no permafrost. At least one other Pliocene tephra (the Fortymile tephra) occurs at the site and is also associated with plant and insect fossils. Among these fossils are extinct plants and insects like those found at other Tertiary sites in northern Canada and Alaska. The Lost Chicken sequence is the same age as the Beaufort Formation on Meighen Island, more than 1000 km to the north. Like Lost Chicken, Meighen Island sediments contain fossils representing a diverse boreal environment. This shows that the latitudinal climate gradient during early Late Pliocene time was shallower than at present and the boreal forest had a far greater latitudinal span than now.  相似文献   

20.
黄河源区冻土特征及退化趋势   总被引:9,自引:8,他引:9  
黄河源区位于青藏高原多年冻土区东北部边缘地带,是季节冻土、岛状多年冻土和在大片连续多年冻土并存地带.多年冻土层在垂向分布上有衔接状和不衔接状两大类.不衔接状又可分为浅埋藏(8m)、深埋藏(8m)和双层多年冻土等形式.从20世纪80年代以来,源区气温以0.02℃.a-1增温率持续上升,人类经济活动日益增强,导致冻土呈区域性退化.多年冻土下界普遍升高50~80m,最大季节冻深平均减少了0.12m,浅层地下水温度上升0.5~0.7℃.冻土退化总体趋势是由大片状分布逐渐变为岛状、斑状分布,多年冻土层变薄,冻土面积缩小,融区范围扩大.部分多年冻土岛完全消失变为季节冻土.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号