首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Yinan gold deposit in the Luxi area of Shandong Province in northeastern China is a skarn-type ore deposit. In this article, we present results from sulphur, lead, carbon–oxygen, and helium–argon isotope chemistry to characterize the ore genesis and source features. We also present rhenium–osmium ages from molybdenite to evaluate the timing of ore formation. The δ34S values of pyrite from the ore deposit range from 0.7‰ to 5.60‰ with a mean at 2.70‰, close to mantle and meteorite sulphur. Among Pb isotopes, 206Pb/204Pb values range from 18.375 to 18.436, 207Pb/204Pb values from 15.694 to 15.8, and 208Pb/204Pb values from 38.747 to 39.067. The δ13C values of calcite associated with the ores range from ?0.2‰ to ?0.5‰ and their δ18O values show variation from 9.4‰ to 12.6‰, suggesting a mixed fluid source. The 3He/4He and 40Ar/36Ar ratios of fluids trapped in pyrite are in the range of 0.27–1.11 Ra and 439.4–826, respectively, with calculated proportion of the mantle-derived He ranging from 3.25% to 14.03% and atmosphere argon ranging from 35.8% to 67.3%. The data suggest that the ore-forming fluids were derived from the crust and were mixed with a distinct contribution of mantle helium. The Re and Os values vary from 32 × 10?6 to 93.02 × 10?6 and from 0.01 × 10?9 to 0.34 × 10?9, respectively. The model ages of molybdenite range from 126.96 ± 1.82 Ma to 129.49 ± 2.04 Ma, with a weighted mean age of 128.08 ± 0.75 Ma and isochron age of 130.3 ± 3 Ma. These ages are close to the age of the associated quartz diorite porphyrite pluton, suggesting a close relationship between Cretaceous magmatism and metallogeny in NE China. A comparison of the Yinan gold deposit in the Luxi area with those of the Jiaodong area shows that the contrast in metallogenic features between the two are linked with the tectonic and geodynamic history.  相似文献   

2.
The Kalatag Cu–Zn–Au district contains a number of economically important Cu deposits in eastern Tianshan in Xinjiang, NW China. Due to the lack of precise mineralization ages, the metallogenesis of this area has long been a matter of debate. In this study, chalcopyrite Re–Os isotope methods are used to date the South Meiling Cu–Zn and Hongshi Cu deposits in the eastern part of Kalatag area.The South Meiling Cu–Zn deposit is hosted in volcanic-sedimentary rocks of the Late Ordovician to Early Silurian Daliugou Formation. The deposit consists of two parts: a concordant massive sulfide ores and discordant vein-type ores located in the footwall strata. The principal ore minerals are pyrite, chalcopyrite, sphalerite, minor tetrahedrite, galena and pyrrhotite. Gangue minerals include quartz, sericite and barite, and minor chlorite, plagioclase and carbonate minerals. The Hongshi Cu deposit represents a hydrothermal vein system hosted in the mafic volcanic rocks of Daliugou Formation. The orebodies are associated with quartz veins and controlled by subsidiary faults of the Kalatag fault. The ore-forming process can be divided into the early, middle and late stages and is characterized by quartz–pyrite, quartz–chalcopyrite–pyrite and quartz–carbonate–gypsum veins, respectively.Re–Os analyses of chalcopyrite from the South Meiling Cu–Zn deposit yield an isochron age of 434.2 ± 3.9 Ma and initial 187Os/188Os ratio of 0.647 ± 0.098 (MSWD = 0.59). Re–Os analyses of chalcopyrite from the Hongshi Cu deposit yield an isochron age of 431.8 ± 2.7 Ma and initial 187Os/188Os ratio of − 0.165 ± 0.075 (MSWD = 0.77). Since chalcopyrite is the primary copper mineral, we interpret these isochron ages as the timing of Cu mineralization, based on field geology and petrographic evidence. These results suggest that the Re–Os ages presented here provide, for the first time, a direct constraint on an early Paleozoic Cu mineralization event of the eastern Tianshan Orogen. The high initial 187Os/188Os ratios (0.647 ± 0.098) ratio of ~ 434 Ma chalcopyrite from the South Meiling deposit suggest that the metal was sourced from a two end-member mixing of crust and mantle materials. Moreover, we propose that the VMS mineral system and hydrothermal vein system of the Kalatag district were related to the south-dipping subduction of the Kalamaili oceanic plate during the Late Ordovician–Silurian.  相似文献   

3.
Re–Os dating of disseminated ore from the Kalatongke Cu–Ni sulfide mineral deposit, Xinjiang, Northwest (NW) China, yields an apparent isochron age of 433 ± 31 Ma with an apparent initial 187Os/188Os (433 Ma) ratio of 0.197 ± 0.027. This apparent age is older than not only the zircon U–Pb age of the host intrusion (287 ± 5 Ma, Han et al., 2004) but also the stratigraphic age of the intruded country rock. Thus, the regression line is a pseudo-isochron. However, previous Re–Os dating of massive ores of the same deposit yielded an age that is consistent, within analytical uncertainty, with the zircon U–Pb age (Zhang et al., 2008). This relationship is similar to that observed in the Jinchuan deposit, NW China. Therefore, we suggested that the same mechanism, post-segregation diffusion of Os (Yang et al., 2008), is applicable to the Kalatongke deposit.Re–Os isotopic studies of Kalatongke, Jinchuan and representative magmatic Cu–Ni sulfide deposits suggest that the massive ores of mafic–ultramafic-rock-associated Cu–Ni sulfide deposits would yield geologically meaningful Re–Os age, whereas a pseudo-isochron would be obtained for the disseminated ores. Therefore, to obtain a geologically meaningful Re–Os age, the type of the deposit, the type of the ore and the ore-forming process should be taken into account.  相似文献   

4.
Abundant organic inclusions are present in the Qinglong antimony deposit. However, the source rocks of these organic matters have not been reliably identified. Recently, a paleo–oil reservoir was found in the Qinglong antimony deposit. In view of similar components of gaseous hydrocarbon, we propose that the organic matters observed in inclusions in Qinglong antimony deposit would come from this paleo–oil reservoir. We used the Re–Os dating method to determine the age of the bitumen from this paleo–oil reservoir, and obtained an isochron age of 254.3±2.8 Ma. The age indicates that the oilgeneration from source rock occurred in the early Late Permian, earlier than the Sb mineralization age(~148±8.5 Ma) in the Qinglong antimony deposit area. After oil generation from Devonian source rock, first and secondary migration, the crude oil have probably entered into the fractures and pores of volcanic rocks and limestone and formed a paleo–oil reservoir in the western wing of Dachang anticline. As burial process deepened, the crude oil has turned into natural gas, migrates into the core of Dachang anticline and formed a paleo–gas reservoir. The hydrocarbons(including CH_4) in the reservoirs can serve as reducing agent to provide the sulfur required for Sb mineralization through thermal chemical reduction of sulfates. Therefore, the formation of oil–gas in the area is a prerequisite for the Sb mineralization in the Qinglong antimony deposit.  相似文献   

5.
The Zhongdian area in Yunnan, southwestern China, located at the southern end of the Yidun volcano-magmatic arc that was formed during the Triassic westward subduction of the Gaze-Litang Ocean, hosts numerous Triassic large porphyry and skarn deposits. The arc suffered Jurassic to Cretaceous arc-continental orogenic collision and Cenozoic intracontinental strike-slip shearing. The Hongshan Cu (–Mo–Pb–Zn) deposit is potentially a large deposit and contains two ore types: 1) predominant layered skarn Cu–(Pb–Zn) ores along marble-hornfels contacts; and 2) minor crosscutting vein-type Cu–Mo mineralization. Previous research forwards a two-stage genetic model without sufficient dating evidence, supposing the skarn mineralization is related to the Triassic calc-alkalic intrusions and the vein-type mineralization related to Cretaceous quartz monzonite porphyries. Re–Os dating of molybdenite from vein-type ores and quartz monzonite porphyries and that of pyrrhotite from skarn ores are presented here to constrain the mineralization age and rebuild the genetic model. Analyses of eight molybdenite samples yield an isochron age of 79.7 ± 3.1 Ma (MSWD = 9.2) for the vein-type mineralization and a model age of 81.9 ± 1.1 Ma for the quartz monzonite porphyries. Isotope data on seven pyrrhotite samples from the skarn ores yield an isochron age of 79 ± 16 Ma z(MSWD = 8.4). The Re–Os ages for the two ore types are concordant within analytical errors, indicating that the Hongshan deposit was formed in the Late Cretaceous. Elevated Re contents in molybdenite (13.65 to 63.91 μg/g) and extremely radiogenic initial 187Os/188Os ratios in pyrrhotite (0.7673 to 0.8184; weighted average 0.796 ± 0.038), together with elevated γOs values in pyrrhotite (507 to 547; average 528) imply a significant crustal component in the ore-forming materials that was likely derived from a lower crustal reservoir. Combined with the tectonic evolution of the Zhongdian area and geochemical characteristics of corresponding intrusions, the ages of mineralization obtained in this study indicate that the Hongshan deposit was formed in a post-collision setting with a genetic relationship to the emplacement of the quartz monzonite porphyry. These results provide significant new information for the study and exploration of the Late Cretaceous metallogeny in the Zhongdian area.  相似文献   

6.
The black shale series that formed in the Ediacaran–Cambrian transition are important stratigraphic records of the co-evolution of the paleo-ocean, -climate, and -biology. In this study, we measured Re–Os isotopic compositions of the black shale in the Niutitang Formation from the Gezhongwu section in Zhijin, Guizhou Province. The samples had high Re and Os contents, with Re ranging from 21.27 to 312.78 ng/g and Os ranging from 0.455 to 7.789 ng/g. The Re–Os isotope isochron age of 522.9 ± 8.6 Ma implies deposition of the Niutitang black shale predated the Chengjiang Fauna, providing an age constraint for the expansion of oceanic anoxia in the study area. The initial 187Os/188Os ratio of 0.826 ± 0.026 indicates that enhanced continental weathering might have triggered the expansion of the oceanic anoxia.  相似文献   

7.
The Dachang tin-polymetallic district, Guangxi, China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sediments adjacent to the underlying Cretaceous Longxianggai granite (91–97 Ma). The Lamo Zn–Cu deposit is a typical skarn deposit in the district and occurs at the contact zone between the Upper Devonian limestone and the granite. The ore minerals mainly consist of sphalerite, arsenopyrite, pyrrhotite, galena, chalcopyrite, and minor molybdenite. However, the age of mineralization and source of the metals are not well constrained. In this study, we use the molybdenite Re–Os dating method and in-situ Pb isotopes of sulfides from the Lamo deposit for the first time in order to directly determine the age of mineralization and the tracing source of metals. Six molybdenite samples yielded a more accurate Re–Os isochron age of 90.0 ± 1.1 Ma (MSWD = 0.72), which is much younger than the reported garnet Sm–Nd isochron age of 95 ± 11 Ma and quartz fluid inclusions Rb–Sr isochron age of 99 ± 6 Ma. This age is also interpreted as the age of Zn–Cu skarn mineralization in the Dachang district. Further, in this study we found that in-situ Pb isotopes of sulfides from the Lamo deposit and feldspars in the district’s biotite granite and granitic porphyry dikes have a narrow range and an overlap of Pb isotopic compositions (206Pb/204Pb = 18.417–18.594, 207Pb/204Pb = 15.641–15.746, and 208Pb/204Pb = 38.791–39.073), suggesting that the metals were mainly sourced from Cretaceous granitic magma.  相似文献   

8.
Previous prospectivity modelling for epithermal Au–Ag deposits in the Deseado Massif, southern Argentina, provided regional-scale prospectivity maps that were of limited help in guiding exploration activities within districts or smaller areas, because of their low level of detail. Because several districts in the Deseado Massif still need to be explored, prospectivity maps produced with higher detail would be more helpful for exploration in this region.We mapped prospectivity for low- and intermediate-sulfidation epithermal deposits (LISEDs) in the Deseado Massif at both regional and district scales, producing two different prospectivity models, one at regional scale and the other at district-scale. The models were obtained from two datasets of geological evidence layers by the weights-of-evidence (WofE) method. We used more deposits than in previous studies, and we applied the leave-one-out cross validation (LOOCV) method, which allowed using all deposits for training and validating the models. To ensure statistical robustness, the regional and district-scale models were selected amongst six combinations of geological evidence layers based on results from conditional independence tests.The regional-scale model (1000 m spatial resolution), was generated with readily available data, including a lithological layer with limited detail and accuracy, a clay alteration layer derived from a Landsat 5/7 band ratio, and a map of proximity to regional-scale structures. The district-scale model (100 m spatial resolution) was generated from evidence layers that were more detailed, accurate and diverse than the regional-scale layers. They were also more cumbersome to process and combine to cover large areas. The evidence layers included clay alteration and silica abundance derived from ASTER data, and a map of lineament densities. The use of these evidence layers was restricted to areas of favourable lithologies, which were derived from a geological map of higher detail and accuracy than the one used for the regional-scale prospectivity mapping.The two prospectivity models were compared and their suitability for prediction of the prospectivity in the district-scale area was determined. During the modelling process, the spatial association of the different types of evidence and the mineral deposits were calculated. Based on these results the relative importance of the different evidence layers could be determined. It could be inferred which type of geological evidence could potentially improve the modelling results by additional investigation and better representation.We conclude that prospectivity mapping for LISEDs at regional and district-scales were successfully carried out by using WofE and LOOCV methods. Our regional-scale prospectivity model was better than previous prospectivity models of the Deseado Massif. Our district-scale prospectivity model showed to be more effective, reliable and useful than the regional-scale model for mapping at district level. This resulted from the use of higher resolution evidential layers, higher detail and accuracy of the geological maps, and the application of ASTER data instead of Landsat ETM + data. District-scale prospectivity mapping could be further improved by: a) a more accurate determination of the age of mineralization relative to that of lithological units in the districts; b) more accurate and detailed mapping of the favourable units than what is currently available; c) a better understanding of the relationships between LISEDs and the geological evidence used in this research, in particular the relationship with hydrothermal clay alteration, and the method of detection of the clay minerals; and d) inclusion of other data layers, such as geochemistry and geophysics, that have not been used in this study.  相似文献   

9.
The Lavrion ore district contains carbonate-replacement and vein-type Pb–Zn–Ag deposits as well as low-grade porphyry Mo, Cu–Fe skarn, and minor breccia-hosted Pb–Zn–Cu sulfide mineralization. These ore types are spatially related to a Late Miocene granodiorite intrusion (7 to 10 Ma), and various sills and dikes of mafic to felsic composition. Samples of sphalerite and pyrite from the Ilarion carbonate replacement deposit, and galena from Vein 80 (vein-type mineralization) in the Adami deposit show heterogeneous Re–Os values. These values were partially disturbed by hydrothermal activity associated with the formation of hydrothermal veins (e.g., Vein 80). A plot of initial 187Os/188Os versus 1/Oscommon ratios for pyrite and sphalerite from the Ilarion deposit form a mixing line (r2?=?0.78) between high concentration crustal-like and low concentration mantle-like end-members, or two crustal end-members one of which was more radiogenic than the other. Based on the Re–Os systematics and previously published geological and geochemical evidence, the most plausible explanation for the Re–Os isotope data is that ore-forming components were derived from mixed sources, one of which was a radiogenic crustal source from schists and carbonates probably near intrusion centers and the other, intrusive rocks in the district that are less radiogenic. Although the Re and Os concentrations of galena from Vein 80 are above background values they cannot be used as a chronometer. However, the results of the current study suggest that although pyrite, sphalerite, and galena are poor geochronometers in this ore deposit, due to partial open-system behavior, they still yield valuable information on the origin of the source rocks in the formation of bedded replacement and vein mineralization in the Lavrion district.  相似文献   

10.
The Eastern Tianshan Orogenic Belt of the Central Asian Orogenic Belt and the Beishan terrane of the Tarim Block, NW China, host numerous Fe deposits. The Cihai Fe deposit (>90 Mt at 45.6 % Fe) in the Beishan terrane is diabase-hosted and consists of the Cihai, Cinan, and Cixi ore clusters. Ore minerals are dominantly magnetite, pyrite, and pyrrhotite, with minor chalcopyrite, galena, and sphalerite. Gangue minerals include pyroxene, garnet, hornblende and minor plagioclase, biotite, chlorite, epidotite, quartz, and calcite. Pyrite from the Cihai and Cixi ore clusters has similar Re–Os isotope compositions, with ~14 to 62 ppb Re and ≤10?ppt common Os. Pyrrhotite has ~5 to 39 ppb Re and ~0.6 ppb common Os. Pyrite has a mean Re–Os model age of 262.3?±?5.6 Ma (n?=?13), in agreement with the isochron regression of 187Os vs. 187Re. The Re–Os age (~262 Ma) for the Cihai Fe deposit is within uncertainty in agreement with a previously reported Rb–Sr age (268?±?25 Ma) of the hosting diabase, indicating a genetic relationship between magmatism and mineralization. Magnetite from the Cihai deposit has Mg, Al, Ti, V, Cr, Co, Ni, Mn, Zn, Ga, and Sn more elevated than that of typical skarn deposits, but both V and Ti contents lower than that of magmatic Fe–Ti–V deposits. Magnetite from these two ore clusters at Cihai has slightly different trace element concentrations. Magnetite from the Cihai ore cluster has relatively constant trace element compositions. Some magnetite grains from the Cixi ore cluster have higher V, Ti, and Cr than those from the Cihai ore cluster. The compositional variations of magnetite between the ore clusters are possibly due to different formation temperatures. Combined with regional tectonic evolution of the Beishan terrane, the Re–Os age of pyrite and the composition of magnetite indicate that the Cihai Fe deposit may have derived from magmatic–hydrothermal fluids related to mafic magmatism, probably in an extensional rift environment.  相似文献   

11.
12.
Apparent Re–Os ages of some magmatic sulfide ore deposits are older than the zircon and baddeleyite U–Pb ages which are interpreted as the formation age of the host intrusions. The Jinchuan Ni–Cu–PGE deposit of China, the world's third largest, is such a case. We report apparent Re–Os isochron ages of 1117 ± 67 Ma, 1074 ± 120 Ma and 867 ± 75 Ma with initial 187Os/188Os ratios of 0.120 ± 0.012, 0.162 ±0.017 and 0.235 ± 0.027 for disseminated ores, sulfides from the disseminated ores and massive ores from Jinchuan, respectively. Using these data and Re–Os ages from the literature, we find that the oldest apparent Re–Os age and lowest initial Os isotope ratio are from disseminated ores which contain small amounts of sulfide minerals, the highest initial Os isotope ratios and youngest apparent Re–Os ages, consistent with the zircon and baddeleyite U–Pb ages, are from massive ores containing 90–100 modal% sulfide, and net-textured ores with about 25 modal% sulfides yield apparent Re–Os ages and initial Os ratios intermediate between those of the disseminated and massive ores.Because Os diffusion between sulfides is inhibited by the intervening silicates even at high temperatures, re-equilibration did not occur in the disseminated ore and the samples retained the Os ratios of the contaminated magma, leading to geologically meaningless ages that are older than the formation age of the rocks. While Os-bearing sulfide minerals and magnetite show low closure temperatures of Os diffusion and the sulfide minerals in the massive ore are closely connected with each other, facilitating fast diffusion of Os, re-equilibration of Os was achieved during cooling of the ore from about 850 °C after the segregation to about 400 °C. Thus, an age corresponding to the formation time and an elevated initial Os ratio were yielded by the massive ore. Os isotopes in the net-textured ore behave in the way intermediate between the disseminated and massive ores. Pb isotope data support the Os results. Disseminated ores have heterogeneous Pb isotope ratios whereas Pb in the massive ores is more uniform, consistent with Pb isotopic equilibration in the massive ores, but not in the disseminated ores.  相似文献   

13.
The Beiya gold–polymetallic orefield, with gold reserves of 305 t, is one of the most representative porphyry-skarn orefields in the Jinshajiang–Ailaoshan Cu–Au ore belt within the Sanjiang region of southwest China. The orefield contains seven deposits: the Wandongshan, Hongnitang, Dashadi, Bijiashan, Weiganpo, Matouwan, and Bailiancun deposits. In this paper we report on the geochemistry and geochronology of porphyries associated with mineralization from the seven deposits. The results show that all the porphyries have similar geochemistry, with high alkalinity, high contents of SiO2, Al2O3, K2O, and Sr, high K2O/Na2O ratios, low MgO, Y, and Yb contents, enrichments in Ba, K, and Pb, depletions in P, Ti, Nb, and Ta, and non-evident to weak Eu depletions (δEu = 0.42–0.99). In the SiO2 vs. Th/Ce diagram, the porphyry samples are distributed in the area of thickened lower crust, and in the Sr/Y vs. Y and La/Yb vs. Yb diagrams, the porphyries broadly followed the batch-melting trend of amphibolite containing up to 10% garnet. LA-MC-ICP-MS zircon U–Pb dating analysis suggests that the porphyries were emplaced between 34.62 ± 0.25 and 36.72 ± 0.25 Ma. They were coeval with lamprophyres (34 to 36 Ma) in the Beiya area and with potassic–ultrapotassic intrusive rocks (40 to 35 Ma) within the Jinshajiang–Ailaoshan magmatic belt, indicating possible genetic relation between these rock types. We suggest that the porphyries in the Beiya gold–polymetallic orefield were derived from the partial melting of a K-rich mafic source in the thickened lower crust, with the melting triggered by asthenospheric upwelling following the removal of lower lithospheric mantle.  相似文献   

14.
The Yushui Cu-polymetallic deposit, which is associated with Ag, Pb, and Zn, is located in the middle part of the Yongan–Meixian Late Paleozoic Hercynian depression. It was discovered in eastern Guangdong Province in the late 1980s and is one of the richest copper deposits in China with high-grade copper averaging 3.25% and locally reaching 50–60%. The main ore body is located along the unconformity between the Upper Carboniferous Hutian Group limestone and the Lower Carboniferous Zhongxin Formation quartz sandstone with a bedded and lenticular morphology. The ores exhibit massive textures dominated by chalcopyrite, bornite, chalcocite, pyrite, sphalerite, galena, and a trace amount of argentite. Although researchers began studying the Yushui deposit in the early 1990s, the ore genesis remains controversial because of the lack of precise mineralisation age constraints. In this study, direct Re–Os dating of Cu sulphides aided in facilitating a better understanding of the timing of formation of the Yushui deposit. This study is the first attempt to use the Re–Os isotopic system for directly dating chalcopyrite and bornite ores for the Yushui deposit. The contents of Re, common Os, 187Re and 187Os in nine sulphides are 1.68–219.35 ppb, 0.003–0.427 ppb, 1.05–137.31 ppb, and 0.045–0.734 ppb, respectively. The isotope data yielded an isochron age of 308 ± 15 Ma (mean square weighted deviates = 2.4) using the 87Re/188Os–187Os/188Os plot, which is interpreted to represent the age of formation for these sulphides, suggesting that the mineralisation age of the Yushui deposit is close to the age of the host rocks. The 187Os/188Os initial value obtained from the Re–Os isochron is 1.81 ± 0.34, which corresponds to the γOs value of + 1349. This value indicates that the ore-forming materials were derived from the crust without mixing with materials from the mantle, and that the Yushui massive sulphide deposit may be of sedimentary exhalative origin.  相似文献   

15.
The West Qinling Orogen (WQO) in Central China Orogenic Belt contains numerous metasedimentary rock-hosted gold deposits (>2000 t Au), which mainly formed during two pulses: one previously recognized in the Late Triassic to Early Jurassic (T3–J1) and one only recently identified in the Late Jurassic to Early Cretaceous (J3–K1). Few studies have focused on the origin and geotectonic setting of the J3–K1 gold deposits.Textural relationships, LA-ICP-MS trace element and sulfur isotope compositions of pyrites in hydrothermally altered T3 dykes within the J3–K1 Daqiao deposit were used to constrain relative timing relationships between mineralization and pyrite growth in the dykes, and to characterize the source of ore fluid. These results are integrated with an overview of the regional geodynamic setting, to advance understanding of the tectonic driver for J3–K1 hydrothermal gold systems. Pyrite in breccia- and dyke-hosted gold ores at Daqiao have similar chemical and isotopic compositions and are considered to be representative of J3–K1 gold deposits in WQO. Co/Ni and sulfur isotope ratios suggest that ore fluids were derived from underlying Paleozoic Ni- and Se-rich carbonaceous sedimentary rocks. The geochemical data do not support the involvement of magmatic fluids. However, in the EQO (East Qinling Orogen), J3–K1 deposits are genetically related to magmatism. Gold mineralization in WQO is contemporaneous with magmatic deposits in the EQO and both are mainly controlled by NE- and EW-trending structures produced by changes in plate motion of the Paleo-Pacific plate as it was subducted beneath the Eurasian continent. We therefore infer that the J3–K1 structural regime facilitated the ascent of magma in the EQO and metamorphic fluids in the WQO with consequent differences in the character of contemporaneous ore deposits. If this is correct, then the far-field effects of subduction along the eastern margin of NE Asia extended 1000's of km into the continental interior.  相似文献   

16.
The east-central part of Jilin Province, located on the eastern continental margin of northeast China along the eastern Xing–Meng orogenic belt, hosts more than 10 large- and medium-scale Mo deposits. The major types of mineralization include porphyry, skarn, and quartz vein. To better understand the formation and distribution of porphyry Mo deposits in this area, we investigated the geological characteristics of the deposits and applied molybdenite Re–Os isotope dating to constrain the age and source of mineralization. The results, combined with existing data, show that: (a) the Daheishan Mo deposit yields an isochron age of 168.7 ± 3.1 Ma; (b) the Shuangshan Mo deposit yields an isochron age of 171.6 ± 1.6 Ma; (c) the Liushengdian Mo deposit yields a weighted mean model age of 168.7 ± 1.4 Ma; (d) the Jiapigou Mo deposit yields a weighted mean model age of 196 ± 4 Ma; and (e) the Sancha Mo deposit yields a weighted mean model age of 183.1 ± 1.8 Ma. Therefore, the Mo mineralization occurred in the Early–Middle Jurassic (196–167 Ma), during the late stages of magmatism or during the late evolution of magma chambers. The geodynamic setting at this time was dominated by subduction of the paleo-Pacific Plate beneath the Eurasian continent. The rhenium content of molybdenite varies from 0.2 to 99.7 ppm, suggesting that the ore-forming materials may come from a crustal source or a mixed crustal and mantle source.  相似文献   

17.
《International Geology Review》2012,54(12):1481-1491
ABSTRACT

Liaoning Province in China is an area known for the occurrence of numerous copper and/or molybdenum deposits of variable size. However, the age of mineralization and tectonic setting in this region are still a subject of debate. In this study we describe the geology of these deposits and apply zircon U–Pb and molybdenite Re–Os isotopic dating to constrain their ages and define the metallogenic epochs of this province. The Huatong Cu–Mo deposit yields molybdenite Re–Os model ages of 127.6–126.3 Ma and an isochron age of 127.4 ± 0.7 Ma. The Dongbeigou Mo deposit yields molybdenite Re–Os model ages of 132.6–127.1 Ma, an isochron age of 128.1 ± 5.1 Ma, and a zircon U–Pb age of 129.4 ± 0.3 Ma for the associated monzogranite. The granodiorite associated with the Wanbaoyuan Cu–Mo deposit yields a zircon U–Pb age of 128.4 ± 1.1 Ma; the plagiogranite associated with the Yaojiagou Mo deposit yields an age of 167.5 ± 0.9 Ma; and the biotite–plagioclase gneiss from the Shujigou Cu deposit yields an age of 2549.4 ± 5.6 Ma. These results, together with previous geochronology data, show that intense Cu–Mo porphyry and skarn mineralization were coeval with Early–Middle Jurassic and Early Cretaceous granitic magmatism. The former was associated with the orogeny that followed the collision of the Siberian and North China plates and the resulting closure of the palaeo-Asian Ocean, and the latter with rifting that followed the subduction of the palaeo-Pacific Plate and associated lithospheric thinning. Volcanogenic massive sulfide Cu deposit. mineralization took place much earlier, in the late Archaean, and was related to continent–continent collision, palaeo-ocean closure, the formation of a united continental landmass, bimodal volcanism, magma emplacement, and subsequent metamorphism and deformation of syn-collisional granites.  相似文献   

18.
Sharang is a low-fluorine, calc-alkaline porphyry Mo deposit hosted mainly in a granite porphyry of a multi-stage plutonic complex in the northern Gangdese metallogenic belt, largely with stockwork and ribbon-textured mineralization. The observed age estimates suggest that the formation of the magmatic host complex (52.9–51.6 Ma) and the ore deposit itself (52.3 Ma) occurred during the main stage of the India–Asia collision. The host rocks are characterized by lower zircon εHf(t) values than those of the pre-ore and post-ore rocks. This suggests that the Lhasa terrane basement might play an important role in the formation of Sharang ore-forming intrusions. In view of the framework of magmatic–metallogenic events we suggest that slab roll-back may have induced melting of juvenile crust and ancient continental complexes during the India–Asia collision. This proposal focuses exploration for additional molybdenum deposits on the collision zone.  相似文献   

19.
A recently recognized molybdenum (Mo) metallogenic belt is present within and adjacent to the northern part of the North China Craton (NCC). More than 20 Mo deposits are present in the belt, including the Sadaigoumen and Dacaoping porphyry deposits located in the Fengning region of the northern part of Hebei Province. The Sadaigoumen deposit has a Re–Os molybdenite weighted mean age of 236.5 ± 2.2 Ma (MSWD = 1.4, n = 6), which is more reliable than existing dates and is interpreted as the precise age for formation of the deposit. The Dacaoping Mo deposit is about 100 million years younger, with a Re–Os molybdenite isochron age of 140.1 ± 3.4 Ma (2σ, MSWD = 0.26, n = 5), which is within error of the weighted mean age of 139.4 ± 0.9 Ma. The ages of the two deposits show that there are at least two episodes of Mo porphyry formation in the Fengning region. In combination with the regional geological evolution of this part of the craton margin, we propose that the Triassic Mo event at Sadaigoumen is associated with a collisional event during the closure of the ancient Asian Ocean, whereas the Early Cretaceous Mo event at Dacaoping is associated with lithospheric thinning of the NCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号