首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most skarn deposits are closely related to granitoids that intruded into carbonate rocks. The Cihai (>100 Mt at 45% Fe) is a deposit with mineral assemblages and hydrothermal features similar to many other typical skarn deposits of the world. However, the iron orebodies of Cihai are mainly hosted within the diabase and not in contact with carbonate rocks. In addition, some magnetite grains exhibit unusual relatively high TiO2 content. These features are not consistent with the typical skarn iron deposit. Different hydrothermal and/or magmatic processes are being actively investigated for its origin. Because of a lack of systematic studies of geology, mineral compositions, fluid inclusions, and isotopes, the genetic type, ore genesis, and hydrothermal evolution of this deposit are still poorly understood and remain controversial.The skarn mineral assemblages are the alteration products of diabase. Three main paragenetic stages of skarn formation and ore deposition have been recognized based on petrographic observations, which show a prograde skarn stage (garnet-clinopyroxene-disseminated magnetite), a retrograde skarn stage (main iron ore stage, massive magnetite-amphibole-epidote ± ilvaite), and a quartz-sulfide stage (quartz-calcite-pyrite-pyrrhotite-cobaltite).Overall, the compositions of garnet, clinpyroxene, and amphibole are consistent with those of typical skarn Fe deposits worldwide. In the disseminated ores, some magnetite grains exhibit relatively high TiO2 content (>1 wt.%), which may be inherited from the diabase protoliths. Some distinct chemical zoning in magnetite grains were observed in this study, wherein cores are enriched in Ti, and magnetite rims show a pronounced depletion in Ti. The textural and compositional data of magnetite confirm that the Cihai Fe deposit is of hydrothermal origin, rather than associated with iron rich melts as previously suggested.Fluid inclusions study reveal that, the prograde skarn (garnet and pyroxene) formed from high temperature (520–600 °C), moderate- to high-salinity (8.1–23.1 wt.% NaCl equiv, and >46 wt.% NaCl equiv) fluids. Massive iron ore and retrograde skarn assemblages (amphibole-epidote ± ilvaite) formed under hydrostatic condition after the fracturing of early skarn. Fluids in this stage had lower temperature (220°–456 °C) and salinity (8.4–16.3 wt.% NaCl equiv). Fluid inclusions in quartz-sulfide stage quartz and calcite also record similar conditions, with temperature range from 128° to 367 °C and salinity range from 0.2 to 22.9 wt.% NaCl equiv. Oxygen and hydrogen isotopic data of garnet and quartz suggest that mixing and dilution of early magmatic fluids with external fluids (e.g., meteoric waters) caused a decrease in fluid temperature and salinity in the later stages of the skarn formation and massive iron precipitation. The δ18O values of magnetite from iron ores vary between 4.1 and 8.5‰, which are similar to values reported in other skarn Fe deposits. Such values are distinct from those of other iron ore deposits such as Kiruna-type and magmatic Fe-Ti-V deposits worldwide. Taken together, these geologic, geochemical, and isotopic data confirm that Cihai is a diabase-hosted skarn deposit related to the granitoids at depth.  相似文献   

2.
新疆东天山是中国重要铁铜多金属成矿带之一,磁海大型铁矿床位于该成矿带南缘的北山裂谷带内。铁矿体赋存于早期辉绿岩和矽卡岩中,呈透镜状、脉状近平行排列,后期辉绿岩脉穿切早期辉绿岩和矿体。在野外地质调查的基础上,文章对早期辉绿岩和成矿期后辉绿岩脉进行了年代学研究。锆石LA-MC-ICP MS U-Pb测年结果表明,赋矿辉绿岩的形成时代为(286.5±1.8)Ma和(284.8±1.3)Ma,辉绿岩脉形成于(275.8±2.2)Ma,由此限定磁海铁矿床的形成年龄在286~275 Ma,属于早二叠世成矿。结合区域岩浆和构造活动研究成果认为,磁海铁矿床成矿作用与东天山地区早二叠世大规模镁铁质-超镁铁质岩浆作用密切相关,形成于碰撞后伸展构造环境中。  相似文献   

3.
The Sangan iron skarn deposit is located on the eastern edge of the Sabzevar-Doruneh Magmatic Belt, northeastern Iran. Mineralization occurs at the contact between Eocene igneous rocks and Cretaceous carbonates. The silicate-dominant prograde skarn stage consists of garnet and clinopyroxene, whereas the retrograde stage is dominated by magnetite associated with minor hematite, phlogopite, pyrite, and chalcopyrite. Phase equilibria and mineral chemistry studies reveal that the skarn formed within a temperature range of ∼375° to 580 °C and that the mineralizing fluid evolved from a hot, low oxygen fugacity, alkaline fluid during the silicate-dominant stage to a fluid of relatively lower temperature and higher oxygen fugacity at the magnetite-dominant stage. The δ18O values of magnetite and garnet vary from +3.1 to +7.5‰ and +7.7 to +11.6‰, respectively. The calculated δ18OH2O values of fluid in equilibrium with magnetite and garnet range from +9.8 to +11.1‰ and +10.1 to +14.8‰, respectively. These elevated δ18OH2O values suggest interaction of magmatic water with 18O-enriched carbonates. The high δ34S values (+10.6 to +17.0‰) of pyrite separates from the Sangan iron ore indicate that evaporites had an important role in the evolution of the hydrothermal fluid. Phlogopite separates from the massive ores yield 40Ar/39Ar plateau ages of 41.97 ± 0.2 and 42.47 ± 0.2 Ma, indicating that the skarn formation and associated iron mineralization was related to the oldest episode of magmatism in Sangan at ∼42 Ma. Eocene time marked a peak of magmatic activity and associated skarn in the post-collisional setting in northeastern Iran, whereas Oligo-Miocene magmatic activity and associated skarn in the Urumieh-Dokhtar Magmatic Belt are related to subduction. In addition, skarn mineralization in northeastern and eastern Iran is iron type, but skarn mineralization in the Urumieh-Dokhtar magmatic belt is copper – iron and copper type.  相似文献   

4.
The North China craton hosts numerous iron skarn deposits containing more than 2600 Mt of iron ores, mostly with an average grade of >45 wt% Fe, which have been among the most important source of high-grade iron ores for the last three decades in China. These deposits typically form clusters and can be roughly divided into the western and eastern belts, which are located in the middle of Trans-North China orogen and to the west of the Tan-Lu fault zone in the eastern part of North China craton, respectively. The western belt mainly consists of the southern Taihang district, as well as the Linfen and Taiyuan ore fields, whereas the eastern belt comprises the Luxi and Xu-Huai districts. The Zhangjiawa deposit in the Luxi district has proven reserves of 290 Mt at an average of 46% Fe (up to >65%). The iron mineralization occurs mainly along contact zones between the Kuangshan dioritic intrusion and middle Ordovician marine carbonate rocks that host numerous evaporite intercalations. Titanite grains from the mineralized skarn are closely intergrown with magnetite and retrograde skarn minerals including chlorite, phlogopite and minor epidote, indicating a hydrothermal origin. The titanite grains have extremely low REE contents and low Th/U ratios, consistent with their precipitation directly from hydrothermal fluids responsible for the iron mineralization. Ten hydrothermal titanite grains yield a weighted mean 206Pb/238U age of 131.0 ± 3.9 Ma (MSWD = 0.1, 1σ), which is in excellent agreement with a zircon U-Pb age (130 ± 1 Ma) of the ore-related diorite. This age consistency confirms that the iron skarn mineralization is temporally and likely genetically related to the Kuangshan intrusion. Results from this study, when combined with existing isotopic age data, suggest that iron skarn mineralization and associated magmatism throughout both the eastern and western belts took place coevally between 135 and 125 Ma, with a peak at ca. 130 Ma. As such, those deposits may represent the world's only major Phanerozoic iron skarn concentration hosted in Precambrian cratons. The magmatism and associated iron skarn mineralization coincide temporally with the culmination of lithospheric thinning and destruction of the North China craton, implying a causal link between the two.  相似文献   

5.
Kafang is one of the main ore deposits in the world-class Gejiu polymetallic tin district, SW China. There are three main mineralization types in the Kafang deposit, i.e., skarn Cu–Sn ores, stratiform Cu ores hosted by basalt and stratiform Cu–Sn ores hosted by carbonate. The skarn mainly consists of garnet and pyroxene, and retrograde altered rocks. These retrograde altered rocks are superimposed on the skarn and are composed of actinolite, chlorite, epidote and phlogopite. Major ore minerals are chalcopyrite, pyrrhotite, cassiterite, pyrite and scheelite. Sulfur and Pb isotopic components hint that the sources of different types of mineralization are distinctive, and indicate that the skarn ore mainly originated from granitic magma, whereas the basalt-hosted Cu ores mainly derived from basalt. Microthermometry results of fluid inclusions display a gradual change during the ore-forming process. The homogenization temperature of different types of inclusions continuously decreases from early to late mineralization stages. The salinities and freezing temperatures exhibit similar evolutionary tendencies with the T homogenization, while the densities of the different types keep constant, the majority being less than 1. Oxygen and hydrogen isotopic values (δ18O and δD) of the hydrothermal fluids fall within ranges of 3.1 to 7.7‰ with an average of 6.15‰, calculated at the corresponding homogenization temperature, and − 73 and − 98‰ with an average of − 86.5‰, respectively. Microthermometry data and H–O isotopes indicate that the ore-forming fluid of the Kafang deposit is mainly derived from magma in the early stage and a mixture of meteoric and magmatic water in late stage. Molybdenite Re–Os age of the skarn type mineralization is 83.4 ± 2.1 Ma, and the stratiform ores hosted by basalt is 84.2 ± 7.3 Ma, which are consistent with the LA-ICP-MS zircon age of the Xinshan granite intrusion (83.1 ± 0.4 Ma). The evidence listed above reflects the fact that different ore styles in the Kafang deposit belong to the same mineralization system.  相似文献   

6.
In this paper, we present U–Pb ages and trace element compositions of titanite from the Ruanjiawan W–Cu–Mo skarn deposit in the Daye district, eastern China to constrain the magmatic and hydrothermal history in this deposit and provide a better understanding of the U–Pb geochronology and trace element geochemistry of titanite that have been subjected to post-crystallization hydrothermal alteration. Titanite from the mineralized skarn, the ore-related quartz diorite stock, and a diabase dike intruding this stock were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Titanite grains from the quartz diorite and diabase dike typically coexist with hydrothermal minerals such as epidote, sericite, chlorite, pyrite, and calcite, and display irregular or patchy zoning. These grains have low LREE/HREE and high Th/U and Lu/Hf ratios, coupled with negative Eu and positive Ce anomalies. The textural and compositional data indicate that titanite from the quartz diorite has been overprinted by hydrothermal fluids after being crystallized from magmas. Titanite grains from the mineralized skarn are texturally equilibrated with retrograde skarn minerals including actinolite, quartz, calcite, and epidote, demonstrating that these grains were formed directly from hydrothermal fluids responsible for the mineralization. Compared to the varieties from the quartz diorite stock and diabase dike, titanite grains from the mineralized skarn have much lower REE contents and LREE/HREE, Th/U, and Lu/Hf ratios. They have a weighted mean 206Pb/238U age of 142 ± 2 Ma (MSWD = 0.7, 2σ), in agreement with a zircon U–Pb age of 144 ± 1 Ma (MSWD = 0.3, 2σ) of the quartz diorite and thus interpreted as formation age of the Ruanjiawan W–Cu–Mo deposit. Titanite grains from the ore-related quartz diorite have a concordant U–Pb age of 132 ± 2 Ma (MSWD = 0.5, 2σ), which is 10–12 Ma younger than the zircon U–Pb age of the same sample and thus interpreted as the time of a hydrothermal overprint after their crystallization. This hydrothermal overprint was most likely related to the emplacement of the diabase dike that has a zircon U–Pb age of 133 ± 1 Ma and a titanite U–Pb age of 131 ± 2 Ma. The geochronological results thus reveal two hydrothermal events in the Ruanjiawan deposit: an early one forming the Wu–Cu–Mo ores related to the emplacement of the quartz diorite stock and a later one causing alteration of the quartz diorite and its titanite due to emplacement of diabase dike. It is suggested that titanite is much more susceptible to hydrothermal alteration than zircon. Results from this study also highlight the utilization of trace element compositions in discriminating titanite of magmatic and hydrothermal origins, facilitating a more reasonable interpretation of the titanite U–Pb ages.  相似文献   

7.
《Ore Geology Reviews》2007,30(3-4):307-324
The area of the Middle–Lower Yangtze River valley, Eastern China, extending from Wuhan (Hubei province) to western Zhenjiang (Jiangsu province), hosts an important belt of Cu–Au–Mo and Fe deposits. There are two styles of mineralization, i.e., skarn/porphyry/stratabound Cu–Au–Mo–(Fe) deposits and magnetite porphyry deposits in several NNE-trending Cretaceous fault-bound volcanic basins. The origin of both deposit systems is much debated. We dated 11 molybdenite samples from five skarn/porphyry Cu–Au–Mo deposits and 5 molybdenite samples from the Datuanshan stratabound Cu–Au–Mo deposit by ICP-MS Re–Os isotope analysis. Nine samples from the same set were additionally analyzed by NTIMS on Re–Os. Results from the two methods are almost identical. The Re–Os model ages of 16 molybdenite samples range from 134.7 ± 2.3 to 143.7 ± 1.6 Ma (2σ). The model ages of the five samples from the Datuanshan stratabound deposit vary from 138.0 ± 3.2 to 140.8 ± 2.0 Ma, with a mean of 139.3 ± 2.6 Ma; their isochron age is 139.1 ± 2.7 Ma with an initial Os ratio of 0.7 ± 8.1 (MSWD = 0.29). These data indicate that the porphyry/skarn systems and the stratabound deposits have the same age and suggest an origin within the same metallogenic system. Albite 40Ar/39Ar dating of the magnetite porphyry deposits indicates that they formed at 123 to 125 Ma, i.e., 10–20 Ma later. Both mineralization styles characterize transitional geodynamic regimes, i.e., the period around 140 Ma when the main NS-trending compressional regime changed to an EW-trending lithospheric extensional regime, and the period of 125–115 Ma of dramatic EW-trending lithospheric extension.  相似文献   

8.
Cihai and Cinan are Permian magnetite deposits related to mafic-ultramafic intrusions in the Beishan region, Xinjiang, NW China. The Cihai mafic intrusion is dominantly composed of dolerite, gabbro and fine-grained massive magnetite ore, while gabbro, pyrrhotite + pyrite-bearing clinopyroxenite and magnetite ore comprise the major units in Cinan. Clinopyroxene occurs in both deposits as 0.1–2 mm in diameter subhedral to anhedral grains in dolerite, gabbro and clinopyroxenite. High FeO contents (11.7–28.9 wt%), low SiO2 (43.6–54.3 wt%) and Al2O3 contents (0.15–6.08 wt%), and low total REE and trace element contents of clinopyroxene in the Cinan clinopyroxenite imply crystallization early, at high pressure. This clinopyroxene is FeO-rich and Si and Ti-poor, consistent with the clinopyroxene component of large-scale Cu-Ni sulfide deposits in the Eastern Tianshan and Panxi ares, as well as Tarim mafic intrusion and basalt, implying the Cinan mafic intrusion and sulfide is related to tectonic activity in the Tarim LIP. The similar mineral chemistry of clinopyroxene, apatite and magnetite in the Cihai and Cinan gabbros (e.g., depleted LREE, negative Zr, Hf, Nb and Ta anomalies in clinopyroxene, lack of Eu anomaly in apatite and similarity of oxygen fugacity as indicated by V in magnetite), indicate similar parental magmatic characteristics. Mineral compositions suggest a crystallization sequence of clinopyroxenite/with a small amount of sulfide – gabbro – magnetite ore in the Cinan deposit, and magnetite ore – gabbro – dolerite in Cihai. The basaltic magma was emplaced at depth, with magnetite segregation (and formation of the Cinan magnetite ores) occurring in relatively low fO2 conditions, after clinopyroxenite and gabbro fractional crystallization. The evolved Fe-rich basaltic magma rapidly rose to intermediate or shallow depths, forming an immiscible Fe-Ti oxide magma as fO2 increased and leaving a Fe-poor residual magma in the chamber. The residual magmas was emplaced at different levels in the crust, forming the Cihai gabbro and dolerite, respectively. Finally, the immiscible Fe-Ti oxide magma was emplaced into the earlier formed dolerite because of late magma pulse uplift, resulting in a distinct boundary between the magnetite ores and dolerite.  相似文献   

9.
The large scale Mesozoic magmatism and related metallogeny in the Taihang Mountains (TM) provide important clues for the lithospheric thinning of the North China Craton (NCC). Among the ore deposits, the vein gold mineralization of Shihu in the Fuping region and the skarn ore deposit of Xishimen in the Wu'an region represent typical Mesozoic metallogeny in the TM. In the Shihu gold mine, the Mapeng batholith is dominantly composed of monzogranite and granodiorite, whereas, the Wu'an pluton in the Xishimen iron mine mainly comprises monzonite and diorite. Here we present zircon LA–ICP-MS U–Pb data from 8 samples which reveal the timing of magmatism in the TM as ca. 130 Ma, which is contemporaneous with the large-scale metallogeny in the margins of the NCC. The δ34S values recorded in the sulfide minerals from the Shihu gold deposit and the Xishimen skarn iron deposit show a range of 2.2‰–5.0‰, and 11.6‰–18.7‰, respectively. Helium isotopic compositions of fluid inclusions in pyrite from the Shihu gold deposit vary from 0.12 to 1.98 Ra (where Ra is the 3He/4He ratio of air = 1.39 × 10? 6), with calculated mantle helium values of 1.4%–25%, whereas, those of the Xishimen skarn iron deposit range from 0.06 to 0.19 Ra, with calculated mantle helium of 0.7%–2.2%. The S–He–Ar isotopic data suggest a lower crustal origin for the ore-forming components, with variable inputs of mantle source. The large population of inherited zircons in our samples, with 207Pb/206Pb ages ranging between 2500 Ma and 1800 Ma, also supports crustal participation. Our data reveal that the Shihu gold deposit witnessed greater mantle input than the Xishimen skarn iron deposit, suggesting that the continental lithosphere is markedly thinner under the Fuping region than that under the Wu'an region. Our interpretation is also supported by published data from two ultra-broadband high-precision magnetotelluric sounding profiles across the TM region showing a variation in the lithosphere thickness from 155 km to 70 km while moving from the south (Wu'an region) to the north (Fuping region). Our study suggests that inhomogeneous lithospheric thinning in the central NCC occurred at least as early as ca. 130 Ma ago.  相似文献   

10.
The Ayazmant Fe–Cu skarn deposit is located approximately 20 km SE of Ayval?k or 140 km N of Izmir in western Turkey. The skarn occurs at the contact between metapelites and the metabasites of the Early Triassic K?n?k Formation and the porphyritic hypabyssal intrusive rocks of the Late Oligocene Kozak Intrusive Complex. The major, trace, and rare earth-element geochemical analysis of the igneous rocks indicate that they are I-type, subalkaline, calc-alkaline, metaluminous, I-type products of a high-level magma chamber, generated in a continental arc setting. The 40Ar–39Ar isochron age obtained from biotite of hornfels is 20.3 ± 0.1 Ma, probably reflecting the age of metamorphic–bimetasomatic alteration which commenced shortly after intrusion into impure carbonates. Three stages of skarn formation and ore development are recognized: (1) Early skarn stage (Stage I) consisting mainly of garnet with grossular-rich (Gr75–79) cores and andradite-rich (Gr36–38) rims, diopside (Di94–97), scapolite and magnetite; (2) sulfide-rich skarn (Stage II), dominated by chalcopyrite with magnetite, andraditic garnet (Ad8489), diopside (Di6575) and actinolite; and (3) retrograde alteration (Stage III) dominated by actinolite, epidote, orthoclase, phlogopite and chlorite in which sulfides are the main ore phases. 40Ar–39Ar age data indicate that potassic alteration, synchronous or postdating magnetite–pyroxene–amphibole skarn, occurred at 20.0 ± 0.1 Ma. The high pyroxene/garnet ratio, plus the presence of scapolite in calc-silicate and associated ore paragenesis characterized by magnetite (± hematite), chalcopyrite and bornite, suggests that the bulk of the Ayazmant skarns were formed under oxidized conditions. Oxygen isotope compositions of pyroxene, magnetite and garnet of prograde skarn alteration indicate a magmatic fluid with δ18O values between 5.4 and 9.5‰. On the basis of oxygen isotope data from mineral pairs, the early stage of prograde skarn formation is characterized by pyroxene (Di94–97)-magnetite assemblage formed at an upper temperature limit of 576 °C. The lower temperature limit for magnetite precipitation is estimated below 300 °C, on the basis of magnetite–calcite pairs either as fracture-fillings or massive ore in recrystallized limestone-marble. The sulfide assemblage is dominated by chalcopyrite with subordinate molybdenite, pyrite, cubanite, bornite, pyrrhotite, galena, sphalerite and idaite. Gold–copper mineralization formed adjacent to andradite-dominated skarn which occurs in close proximity to the intrusion contacts. Native gold and electrum are most abundant in sulfides, as fine-grained inclusions; grain size with varying from 5 to 20 µm. Sulfur isotope compositions obtained from pyrrhotite, pyrite, chalcopyrite, sphalerite and galena form a narrow range between ? 4.8 and 1.6‰, suggesting the sulfur was probably mantle-derived or leached from magmatic rocks. Geochemical data from Ayazmant shows that Cu is strongly associated with Au, Bi, Te, Se, Cd, Zn, Pb, Ni and Co. The Ayazmant mineralizing system possesses all the ingredients of a skarn system either cogenetic with, or formed prior to a porphyry Cu(Au–Mo) system. The results of this study indicate that the Aegean Region of Turkey has considerable exploration potential for both porphyry-related skarns and porphyry Cu and Au mineralization.  相似文献   

11.
The recently discovered Zhuxi W–Cu ore deposit is located within the Taqian–Fuchun Ore Belt in the southeastern edge of the Yangtze Block, South China. Its inferred tungsten resources, based on new exploration data, are more than 280 Mt by 2016. At least three paragenetic stages of skarn formation and ore deposition have been recognized: prograde skarn stage; retrograde stage; and hydrothermal sulfide stage. Secondly, greisenization, marmorization and hornfels formation are also observed. Scheelite and chalcopyrite are the dominant metal minerals in the Zhuxi deposit and their formation was associated with the emplacement of granite stocks and porphyry dykes intruded into the surrounding Carboniferous carbonate sediments (Huanglong and Chuanshan formations) and the Neoproterozoic slate and phyllites. The scheelite was mostly precipitated during the retrograde stage, whereas the chalcopyrite was widely precipitated during the hydrothermal sulfide stage. A muscovite 40Ar/39Ar plateau age of about 150 Ma is interpreted as the time of tungsten mineralization and molybdenite Re–Os model ages ranging from 145.9 ± 2.0 Ma to 148.7 ± 2.2 Ma (for the subsequent hydrothermal sulfide stage of activity) as the time of the copper mineralization. Our new molybdenite Re–Os and muscovite 40Ar/39Ar dating results, along with previous zircon U–Pb age data, indicate that the hydrothermal activity from the retrograde stage to the last hydrothermal sulfide stage lasted up to 5 Myr, from 150.6 ± 1.5 to 145.9 ± 1 Ma, and is approximately coeval or slightly later than the emplacement of the associated granite porphyry and biotite granite. The new ages reported here confirm that the Zhuxi tungsten deposit represents one of the Mesozoic magmatic–hydrothermal mineralization events that took place in South China in a setting of lithospheric extension during the Late Jurassic (160–150 Ma). It is suggested that mantle material played a role in producing the Zhuxi W–Cu mineralization and associated magmatism.  相似文献   

12.
Diabase dykes in Cihai, Beishan region, NW China are spatially and temporally associated with ‘Cornwall-type’ iron deposits. U–Pb dating of zircons from a diabase dyke using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) yields an age of 128.5 ± 0.3 Ma, indicating an Early Cretaceous crystallization age. Most of the diabases show low Mg-numbers, suggesting evolved magmas. The diabase dykes show typical ophitic or sub-ophitic textures, and are dominantly composed of phenocrysts of plagioclase (40–50%) and clinopyroxene (30–45%), with minor and varying amounts of biotite and hornblende (1–5%), and minor disseminated magnetite (∼5%). Their mineralogy reflects magma differentiation under relatively low oxygen fugacity conditions. The diabase dykes are characterized by minor variation in SiO2 (44.67–49.76 wt.%) and MnO (0.14–0.26 wt.%), but show a marked range of Al2O3 (10.66–14.21 wt.%), total Fe2O3 (9.52–13.88 wt.%), TiO2 (0.66–2.82 wt.%) and relatively high MgO (4.87–9.29 wt.%) with an Mg# value [atomic Mg/(Mg + Fe2+)] of up to 66. The Cihai diabases possibly experienced fractional crystallization of olivine + clinopyroxene and minor crustal contamination during the differentiation process. Prominent negative Nb, Ta and Ti anomalies suggest derivation from subduction-modified mantle. Furthermore, the rocks have relatively unradiogenic Sr- and Nd-isotopic ratios. These characteristics probably reflect partial melting of a subduction component in the source mantle lithosphere through heat input from an upwelling asthenospheric mantle. Such processes probably occurred within an extensional setting during the Early Cretaceous in the Beishan area. The iron-rich fluids were derived from deep sources, and the iron ores were concentrated through a convection cell driven by temperature gradients established by the intrusion of the diabase sills. The combined processes of subduction-related enrichment in the source, shallow depth of emplacement, and the involvement of large-scale circulation of basinal brines from an evaporitic source are inferred to have contributed to the formation of the ‘Cornwall-type’ mineralization in Cihai.  相似文献   

13.
The Zhongdian area in Yunnan, southwestern China, located at the southern end of the Yidun volcano-magmatic arc that was formed during the Triassic westward subduction of the Gaze-Litang Ocean, hosts numerous Triassic large porphyry and skarn deposits. The arc suffered Jurassic to Cretaceous arc-continental orogenic collision and Cenozoic intracontinental strike-slip shearing. The Hongshan Cu (–Mo–Pb–Zn) deposit is potentially a large deposit and contains two ore types: 1) predominant layered skarn Cu–(Pb–Zn) ores along marble-hornfels contacts; and 2) minor crosscutting vein-type Cu–Mo mineralization. Previous research forwards a two-stage genetic model without sufficient dating evidence, supposing the skarn mineralization is related to the Triassic calc-alkalic intrusions and the vein-type mineralization related to Cretaceous quartz monzonite porphyries. Re–Os dating of molybdenite from vein-type ores and quartz monzonite porphyries and that of pyrrhotite from skarn ores are presented here to constrain the mineralization age and rebuild the genetic model. Analyses of eight molybdenite samples yield an isochron age of 79.7 ± 3.1 Ma (MSWD = 9.2) for the vein-type mineralization and a model age of 81.9 ± 1.1 Ma for the quartz monzonite porphyries. Isotope data on seven pyrrhotite samples from the skarn ores yield an isochron age of 79 ± 16 Ma z(MSWD = 8.4). The Re–Os ages for the two ore types are concordant within analytical errors, indicating that the Hongshan deposit was formed in the Late Cretaceous. Elevated Re contents in molybdenite (13.65 to 63.91 μg/g) and extremely radiogenic initial 187Os/188Os ratios in pyrrhotite (0.7673 to 0.8184; weighted average 0.796 ± 0.038), together with elevated γOs values in pyrrhotite (507 to 547; average 528) imply a significant crustal component in the ore-forming materials that was likely derived from a lower crustal reservoir. Combined with the tectonic evolution of the Zhongdian area and geochemical characteristics of corresponding intrusions, the ages of mineralization obtained in this study indicate that the Hongshan deposit was formed in a post-collision setting with a genetic relationship to the emplacement of the quartz monzonite porphyry. These results provide significant new information for the study and exploration of the Late Cretaceous metallogeny in the Zhongdian area.  相似文献   

14.
The Dahongshan iron deposit is hosted in the Paleoproterozoic submarine metavolcanic rocks of the Dahongshan Group in the Yangtze Block, South China. LA-ICP-MS dating of hydrothermal zircon grains from the genetically associated albitite and dolomite albitite show ca. 2008 Ma ages that are consistent with the zircon ages from the host metavolcanic rocks (ca. 2012 Ma), and postdated the post-ore diabase dike (ca. 1724 Ma), marking the Dahongshan iron deposit as the oldest submarine volcanic-hosted deposit so far as known. The ore-hosting metavolcanic rocks in the Dahongshan deposit have low Ni (9.1–77.4 ppm), Cr (1.0–63.0 ppm) and Co contents (5.6–62.9 ppm), suggesting the fractionation of olivine, clinopyroxene and plagioclase within the magma chamber. The major and trace element features of the alkaline to tholeiitic metavolcanic rocks are consistent with high-degree partial melting of the mantle wedge metasomatized by melts enriched in high field strength elements (HFSEs), which were derived from the subducted slab in volcanic arc setting. Based on an evaluation of the morphology of orebody, ore fabrics, petrology and melt-fluid inclusions, as well as the geochemical characteristics of the major ore mineral (magnetite), we correlate the iron mineralization in the Dahongshan deposit with hydrothermal process induced by the high-temperature, high-salinity and Fe-rich brines derived through magmatic exsolution. The similar characteristic of Ce and Eu anomalies of the Dahongshan iron deposit and banded iron formations (BIFs) suggest that the Dahongshan deposit was formed in reducing environment, although the two types of iron ores were generated through distinct processes with hydrothermal processes dominating for the submarine volcanic-hosted iron deposits whereas the BIFs were formed through chemical precipitation.  相似文献   

15.
This paper contributes to the understanding of the genesis of epigenetic, hypogene BIF-hosted iron deposits situated in the eastern part of Ukrainian Shield. It presents new data from the Krivoy Rog iron mining district (Skelevatske–Magnetitove deposit, Frunze underground mine and Balka Severnaya Krasnaya outcrop) and focuses on the investigation of ore genesis through application of fluid inclusion petrography, microthermometry, Raman spectroscopy and baro-acoustic decrepitation of fluid inclusions. The study investigates inclusions preserved in quartz and magnetite associated with the low-grade iron ores (31–37% Fe) and iron-rich quartzites (38–45% Fe) of the Saksaganskaya Suite, as well as magnetite from the locally named high-grade iron ores (52–56% Fe). These high-grade ores resulted from alteration of iron quartzites in the Saksaganskiy thrust footwall (Saksaganskiy tectonic block) and were a precursor to supergene martite, high-grade ores (60–70% Fe). Based on the new data two stages of iron ore formation (metamorphic and metasomatic) are proposed.The metamorphic stage, resulting in formation of quartz veins within the low-grade iron ore and iron-rich quartzites, involved fluids of four different compositions: CO2-rich, H2O, H2O–CO2 N2–CH4)–NaCl(± NaHCO3) and H2O–CO2 N2–CH4)–NaCl. The salinities of these fluids were relatively low (up to 7 mass% NaCl equiv.) as these fluids were derived from dehydration and decarbonation of the BIF rocks, however the origin of the nahcolite (NaHCO3) remains unresolved. The minimum P–T conditions for the formation of these veins, inferred from microthermometry are Tmin = 219–246 °C and Pmin = 130–158 MPa. The baro-acoustic decrepitation analyses of magnetite bands indicated that the low-grade iron ore from the Skelevatske–Magnetitove deposit was metamorphosed at T = ~ 530 °C.The metasomatic stage post-dated and partially overlapped the metamorphic stage and led to the upgrade of iron quartzites to the high-grade iron ores. The genesis of these ores, which are located in the Saksaganskiy tectonic block (Saksaganskiy ore field), and the factors controlling iron ore-forming processes are highly controversial. According to the study of quartz-hosted fluid inclusions from the thrust zone the metasomatic stage involved at least three different episodes of the fluid flow, simultaneous with thrusting and deformation. During the 1st episode three types of fluids were introduced: CO2–CH4–N2 C), CO2 N2–CH4) and low salinity H2O–N2–CH4–NaCl (6.38–7.1 mass% NaCl equiv.). The 2nd episode included expulsion of the aqueous fluids H2O–N2–CH4–NaCl(± CO2, ± C) of moderate salinities (15.22–16.76 mass% NaCl equiv.), whereas the 3rd event involved high salinity fluids H2O–NaCl(± C) (20–35 mass% NaCl equiv.). The fluids most probably interacted with country rocks (e.g. schists) supplying them with CH4 and N2. The high salinity fluids were most likely either magmatic–hydrothermal fluids derived from the Saksaganskiy igneous body or heated basinal brines, and they may have caused pervasive leaching of Fe from metavolcanic and/or the BIF rocks. The baro-acoustic decrepitation analyses of magnetite comprising the high-grade iron ore showed formation T = ~ 430–500 °C. The fluid inclusion data suggest that the upgrade to high-grade Fe ores might be a result of the Krivoy Rog BIF alteration by multiple flows of structurally controlled, metamorphic and magmatic–hydrothermal fluids or heated basinal brines.  相似文献   

16.
The Yangyang iron-oxide–apatite deposit in South Korea has undergone multiple episodes of igneous activity, deformation, hydrothermal alteration, and iron-oxide–apatite (IOA) mineralization. The iron orebodies occur as concordant- to discordant-layered lenticular or massive magnetite and/or magnetite–pyrite ores. The iron mineralization occurs along a N–S-trending shear zone within the Yangyang syenite, which experienced both early ductile and later brittle deformations. Alteration was caused mainly by the injection of hydrothermal fluid through the shear zone, leading to Fe–P mineralization. We recognize multiple stages of alteration in the Yangyang deposit, based on a paragenesis that is defined by distinct mineral assemblages including Na–Ca–K alteration phases (e.g., albite, diopside, actinolite, and biotite) and accessory minerals containing high field strength elements (e.g., apatite, sphene, allanite, and monazite). The alteration around the magnetite ore body shows an evolutionary trend from Ca (–Na) alteration, through K to phyllic alterations. The Fe–P mineralization is associated with the Ca–K and K alteration products. The iron orebodies are hosted by deformed and altered syenite, which intruded the Paleoproterozoic gneiss complexes at 233 ± 1 Ma (SHRIMP U–Pb zircon age) in a post-collisional tectonic setting. LA-ICP-MS U–Pb dating of REE-rich sphene and apatite from the iron ores and alteration products yields Fe mineralization ages of 216 ± 3 Ma (sphene) and 212 ± 13 Ma (apatite). This is the first time, which IOA-type mineralization in the Korean Peninsula was dated as Triassic age related to post-collisional magmatism within the Gyeonggi Massif, South Korea. The U–Pb system was subsequently reset (208 ± 3 Ma–sphene and 151 ± 13 Ma–apatite) by Jurassic and Cretaceous magmatism. This unique geological evolution was responsible for Mesozoic metal enrichment and remobilization into suitable structural traps in the Yangyang district.  相似文献   

17.
The Tieshan Fe–Cu deposit is located in the Edong district, which represents the westernmost and largest region within the Middle–Lower Yangtze River Metallogenic Belt (YRMB), Eastern China. Skarn Fe–Cu mineralization is spatially associated with the Tieshan pluton, which intruded carbonates of the Lower Triassic Daye Formation. Ore bodies are predominantly located along the contact between the diorite or quartz diorite and marbles/dolomitic marbles. This study investigates the mineral chemistry of magnetite in different skarn ore bodies. The contrasting composition of magnetite obtained are used to suggest different mechanisms of formation for magnetite in the western and eastern part of the Tieshan Fe–Cu deposit. A total of 178 grains of magnetite from four magnetite ore samples are analyzed by LA–ICP–MS, indicating a wide range of trace element contents, such as V (13.61–542.36 ppm), Cr (0.003–383.96 ppm), Co (11.12–187.55 ppm) and Ni (0.19–147.41 ppm), etc. The Ti/V ratio of magnetite from the Xiangbishan (western part of the Tieshan deposit) and Jianshan ore body (eastern part of the Tieshan deposit) ranges from 1.32 to 5.24, and 1.31 to 10.34, respectively, indicating a relatively reduced depositional environment in the Xiangbishan ore body. Incorporation of Ti and Al in magnetite are temperature dependent, which hence propose that the temperature of hydrothermal fluid from the Jianshan ore body (Al = 3747–9648 ppm, with 6381 ppm as an average; Ti = 381.7–952.0 ppm, with 628.2 ppm as an average) was higher than the Xiangbishan ore body (Al = 2011–11122 ppm, with 5997 ppm as an average, Ti = 302.5–734.8, with 530.8 ppm as an average), indicating a down–temperature precipitation trend from the Jianshan ore body to the Xiangbishan ore body. In addition, in the Ca + Al + Mn versus Ti + V diagram, magnetite is plotted in the skarn field, consideration with the ternary diagram of TiO2–Al2O3–MgO, proposing that the magnetite ores are formed by replacement, instead of directly crystallized from iron oxide melts, which provide a better understanding regarding the composition of ore fluids and processes responsible for Fe mineralization in the Tieshan Fe–Cu deposit.  相似文献   

18.
The Eastern Tianshan Orogenic Belt of the Central Asian Orogenic Belt and the Beishan terrane of the Tarim Block, NW China, host numerous Fe deposits. The Cihai Fe deposit (>90 Mt at 45.6 % Fe) in the Beishan terrane is diabase-hosted and consists of the Cihai, Cinan, and Cixi ore clusters. Ore minerals are dominantly magnetite, pyrite, and pyrrhotite, with minor chalcopyrite, galena, and sphalerite. Gangue minerals include pyroxene, garnet, hornblende and minor plagioclase, biotite, chlorite, epidotite, quartz, and calcite. Pyrite from the Cihai and Cixi ore clusters has similar Re–Os isotope compositions, with ~14 to 62 ppb Re and ≤10?ppt common Os. Pyrrhotite has ~5 to 39 ppb Re and ~0.6 ppb common Os. Pyrite has a mean Re–Os model age of 262.3?±?5.6 Ma (n?=?13), in agreement with the isochron regression of 187Os vs. 187Re. The Re–Os age (~262 Ma) for the Cihai Fe deposit is within uncertainty in agreement with a previously reported Rb–Sr age (268?±?25 Ma) of the hosting diabase, indicating a genetic relationship between magmatism and mineralization. Magnetite from the Cihai deposit has Mg, Al, Ti, V, Cr, Co, Ni, Mn, Zn, Ga, and Sn more elevated than that of typical skarn deposits, but both V and Ti contents lower than that of magmatic Fe–Ti–V deposits. Magnetite from these two ore clusters at Cihai has slightly different trace element concentrations. Magnetite from the Cihai ore cluster has relatively constant trace element compositions. Some magnetite grains from the Cixi ore cluster have higher V, Ti, and Cr than those from the Cihai ore cluster. The compositional variations of magnetite between the ore clusters are possibly due to different formation temperatures. Combined with regional tectonic evolution of the Beishan terrane, the Re–Os age of pyrite and the composition of magnetite indicate that the Cihai Fe deposit may have derived from magmatic–hydrothermal fluids related to mafic magmatism, probably in an extensional rift environment.  相似文献   

19.
The Kalatag Cu–Zn–Au district contains a number of economically important Cu deposits in eastern Tianshan in Xinjiang, NW China. Due to the lack of precise mineralization ages, the metallogenesis of this area has long been a matter of debate. In this study, chalcopyrite Re–Os isotope methods are used to date the South Meiling Cu–Zn and Hongshi Cu deposits in the eastern part of Kalatag area.The South Meiling Cu–Zn deposit is hosted in volcanic-sedimentary rocks of the Late Ordovician to Early Silurian Daliugou Formation. The deposit consists of two parts: a concordant massive sulfide ores and discordant vein-type ores located in the footwall strata. The principal ore minerals are pyrite, chalcopyrite, sphalerite, minor tetrahedrite, galena and pyrrhotite. Gangue minerals include quartz, sericite and barite, and minor chlorite, plagioclase and carbonate minerals. The Hongshi Cu deposit represents a hydrothermal vein system hosted in the mafic volcanic rocks of Daliugou Formation. The orebodies are associated with quartz veins and controlled by subsidiary faults of the Kalatag fault. The ore-forming process can be divided into the early, middle and late stages and is characterized by quartz–pyrite, quartz–chalcopyrite–pyrite and quartz–carbonate–gypsum veins, respectively.Re–Os analyses of chalcopyrite from the South Meiling Cu–Zn deposit yield an isochron age of 434.2 ± 3.9 Ma and initial 187Os/188Os ratio of 0.647 ± 0.098 (MSWD = 0.59). Re–Os analyses of chalcopyrite from the Hongshi Cu deposit yield an isochron age of 431.8 ± 2.7 Ma and initial 187Os/188Os ratio of − 0.165 ± 0.075 (MSWD = 0.77). Since chalcopyrite is the primary copper mineral, we interpret these isochron ages as the timing of Cu mineralization, based on field geology and petrographic evidence. These results suggest that the Re–Os ages presented here provide, for the first time, a direct constraint on an early Paleozoic Cu mineralization event of the eastern Tianshan Orogen. The high initial 187Os/188Os ratios (0.647 ± 0.098) ratio of ~ 434 Ma chalcopyrite from the South Meiling deposit suggest that the metal was sourced from a two end-member mixing of crust and mantle materials. Moreover, we propose that the VMS mineral system and hydrothermal vein system of the Kalatag district were related to the south-dipping subduction of the Kalamaili oceanic plate during the Late Ordovician–Silurian.  相似文献   

20.
The western Tianshan metallogenic belt is one of the most significant polymetallic iron metallogenic belts in China. Important advances have been achieved recently in iron exploration in the Awulale Mountain in western Tianshan, China. These newly-discovered iron deposits are mainly hosted in the basic-medium andesitic lavas and volcaniclastics, often comprising a number of high-grade ores. Magnetite is predominated in ore mineral assemblages, and pyrite, chalcopyrite, pyrrhotite or sphalerite increase in certain deposits. Wallrock alterations are intensively developed, exemplified as sodic–calcic and potassic alterations which display in different patterns as country rocks and ore-controlled structures vary. Skarn assemblages are commonly developed in ore districts like Beizhan, Dunde and Chagangnuoer, and pyroxene + albite + K-feldspar  epidote + actinolite alterations are dominated around ore bodies in Zhibo deposit, whereas the Shikebutai deposit develops alteration assemblages comprising of jasper, barite, sericite, and chlorite. Thus, iron deposits can be divided into three types including volcanic-sedimentary type, volcanic magmatic-hydrothermal type and iron skarn type. Our preliminary interpretation about the tectonic background of this iron mineralization in this area is in the late stage of a collisional–accretional orogenic belt around Carboniferous, with some extrusional–extensional tectonic transition locally. Iron mineralization is likely to have a close genetic relationship with volcanic–subvolcanic activity, syn- or slightly post- the volcanism which took place besides continental arc. Volcanic eruption contributes to majority of mineralizing iron, with minor extracted from hydrothermal replacement from wall rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号