首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
The Bayan Obo Fe-REE-Nb deposit in northern China is the world's largest light REE deposit, and also contains considerable amounts of iron and niobium metals. Although there are numerous studies on the REE mineralization, the origin of the Fe mineralization is not well known. Laser ablation (LA) ICP-MS is used to obtain trace elements of Fe oxides in order to better understand the process involved in the formation of magnetite and hematite associated with the formation of the giant REE deposit. There are banded, disseminated and massive Fe ores with variable amounts of magnetite and hematite at Bayan Obo. Magnetite and hematite from the same ores show similar REE patterns and have similar Mg, Ti, V, Mn, Co, Ni, Zn, Ga, Sn, and Ba contents, indicating a similar origin. Magnetite grains from the banded ores have Al + Mn and Ti + V contents similar to those of banded iron formations (BIF), whereas those from the disseminated and massive ores have Al + Mn and Ti + V contents similar to those of skarn deposits and other types of magmatic-hydrothermal deposits. Magnetite grains from the banded ores with a major gangue mineral of barite have the highest REE contents and show slight moderate REE enrichment, whereas those from other types of ores show light REE enrichment, indicating two stages of REE mineralization associated with Fe mineralization. The Bayan Obo deposit had multiple sources for Fe and REEs. It is likely that sedimentary carbonates provided original REEs and were metasomatized by REE-rich hydrothermal fluids to form the giant REE deposit.  相似文献   

2.
Magnetite is a common mineral in many ore deposits and their host rocks, and contains a wide range of trace elements (e.g., Ti, V, Mg, Cr, Mn, Ca, Al, Ni, Ga, Sn) that can be used for deposit type fingerprinting. In this study, we present new magnetite geochemical data for the Longqiao Fe deposit (Luzong ore district) and Tieshan Fe–(Cu) deposit (Edong ore district), which are important magmatic-hydrothermal deposits in eastern China.Textural features, mineral assemblages and paragenesis of the Longqiao and Tieshan ore samples have suggested the presence of two main mineralization periods (sedimentary and hydrothermal) at Longqiao, among which the hydrothermal period comprises four stages (skarn, magnetite, sulfide and carbonate); whilst the Tieshan Fe–(Cu) deposit comprises four mineralization stages (skarn, magnetite, quartz-sulfide and carbonate).Magnetite from the Longqiao and Tieshan deposits has different geochemistry, and can be clearly discriminated by the Sn vs. Ga, Ni vs. Cr, Ga vs. Al, Ni vs. Al, V vs. Ti, and Al vs. Mg diagrams. Such difference may be applied to distinguish other typical skarn (Tieshan) and multi-origin hydrothermal (Longqiao) deposits in the MLYRB. The fluid–rock interactions, influence of the co-crystallizing minerals and other physicochemical parameters, such as temperature and fO2, may have altogether controlled the magnetite trace element contents of both deposits. The Tieshan deposit may have had higher degree of fO2, but lower fluid–rock interactions and ore-forming temperature than the Longqiao deposit. The TiO2–Al2O3–(MgO + MnO) and (Ca + Al + Mn) vs. (Ti + V) magnetite discrimination diagrams show that the Longqiao Fe deposit has both sedimentary and hydrothermal features, whereas the Tieshan Fe–(Cu) deposit is skarn-type and was likely formed via hydrothermal metasomatism, consistent with the ore characteristics observed.  相似文献   

3.
The Tianhu Fe deposit (> 104 Mt at 42% TFe) in the Eastern Tianshan (NW China) is hosted in the schist, quartzite, marble, and amphibolite of the Neoproterozoic Tianhu Group. The deposit consists of disseminated, banded and massive ores. Metallic minerals are dominantly magnetite and pyrite, with minor titanite, pyrrhotite, chalcopyrite, and sphalerite. Gangue minerals include dolomite with minor forsterite, diopside, apatite, biotite, chlorite, tourmaline, tremolite, talc, calcite, and magnesite. Pyrite separates from ores have 10.7 to 54.7 ppb Re and 0.033 to 0.175 ppb common Os. Those from the massive ores have a model 1 isochron age of 535 ± 36 Ma (2σ), in agreement with the isochron age (528 ± 18 Ma) of pyrite from the banded ores by regression of seven Re–Os analyses. The Re–Os age of ~ 530 Ma reflects the timing of a hydrothermal event that remobilized the Tianhu deposit. Magnetite has Mg, Al, Ti, V, Mn, Zn, and Ga contents ranging from ~ 5 to 3500 ppm and Cr, Co, Ni, and Sn contents ranging from ~ 1 to 200 ppm. Most magnetite grains have Ca + Al + Mn and Ti + V contents similar to those of the banded iron formation (BIF). Some grains have elevated Ti and V contents, indicating that that magnetite was formed by sedimentary process and overprinted by hydrothermal activity. Pyrite has δ34SCDT values from − 9.23 to 10.96‰, indicating that the sulfur was reduced from the marine sulfates either by bacterial or thermochemical processes. Pyrite has relatively high Co (~ 346 to 3274 ppm) but low Ni (~ 5.6 to 35.4 ppm) with Co/Ni ratios ranging from ~ 10 to 270, indicating remobilization from a volcanic–hydrothermal fluid. Therefore, the Tianhu Fe deposit was originally a sedimentary type deposit but was overprinted by a hydrothermal event related to volcanic activity.  相似文献   

4.
The Sokoman Iron Formation in the Labrador Trough, Canada, a typical granular iron formation (GIF), is coeval with the ~ 1.88 Ga Nimish volcanic suites in the same region. It is composed of the Lower, Middle and Upper Iron Formations. In addition to primary and altered magnetite in iron formations of the Hayot Lake, Rainy Lake and Wishart Lake areas, magnetite in volcanic breccia associated with the iron formation is identified for the first time in the stratigraphy. Trace elemental compositions of the most primary, altered and volcanic brecciated magnetite of the Sokoman Iron Formation were obtained by LA–ICP-MS. Commonly detected trace elements of magnetite include Ti, Al, Mg, Mn, V, Cr, Co and Zn. These three types of magnetite have different trace elemental compositions. Primary magnetite in the iron formation has a relatively narrow range of compositions with the depletion of Ti, Pb, Mg and Al. Magnetite from volcanic breccia is rich in Ti, Al, V, Mn, Mg, Zn, Cu and Pb, indicative of crystallization from mantle-derived magmas. Altered magnetite in the iron formation shows a relatively wide range of trace elemental compositions. Mineralizing fluids associated with magmas that generated the ~ 1.88 Ga Nimish volcanic suites circulated through the sedimentary piles to further enrich the iron formations and to form magnetite with variable compositions. The comparisons of different types of primary and altered magnetite in the iron formation in the region show distinct provenance discrimination. Our findings also support the origin of iron formations in association with multiple stages of exhalative volcanic and hydrothermal processes.  相似文献   

5.
The Taihe, Baima, Hongge, Panzhihua and Anyi intrusions of the Emeishan Large Igneous Province (ELIP), SW China, contain large magmatic Fe–Ti–(V) oxide ore deposits. Magnetites from these intrusions have extensive trellis or sandwich exsolution lamellae of ilmenite and spinel. Regular electron microprobe analyses are insufficient to obtain the primary compositions of such magnetites. Instead, laser ablation ICP-MS uses large spot sizes (~ 40 μm) and can produce reliable data for magnetites with exsolution lamellae. Although magnetites from these deposits have variable trace element contents, they have similar multi-element variation patterns. Primary controls of trace element variations of magnetite in these deposits include crystallography in terms of the affinity of the ionic radius and the overall charge balance, oxygen fugacity, magma composition and coexisting minerals. Early deposition of chromite or Cr-magnetite can greatly deplete magmas in Cr and thus Cr-poor magnetite crystallized from such magmas. Co-crystallizing minerals, olivine, pyroxenes, plagioclase and apatite, have little influence on trace element contents of magnetite because elements compatible in magnetite are incompatible in these silicate and phosphate minerals. Low contents and bi-modal distribution of the highly compatible trace elements such as V and Cr in magnetite from Fe–Ti oxide ores of the ELIP suggest that magnetite may not form from fractional crystallization, but from relatively homogeneous Fe-rich melts. QUILF equilibrium modeling further indicates that the parental magmas of the Panzhihua and Baima intrusions had high oxygen fugacities and thus crystallized massive and/or net-textured Fe–Ti oxide ores at the bottom of the intrusive bodies. Magnetite of the Taihe, Hongge and Anyi intrusions, on the other hand, crystallized under relatively low oxygen fugacities and, therefore, formed net-textured and/or disseminated Fe–Ti oxides after a lengthy period of silicate fractionation. Plots of Ge vs. Ga + Co can be used as a discrimination diagram to differentiate magnetite of Fe–Ti–(V) oxide-bearing layered intrusions in the ELIP from that of massif anorthosites and magmatic Cu–Ni sulfide deposits. Variable amounts of trace elements of magmatic magnetites from Fe–Ti–(P) oxide ores of the Damiao anorthosite massif (North China) and from Cu–Ni sulfide deposits of Sudbury (Canada) and Huangshandong (northwest China) demonstrate the primary control of magma compositions on major and trace element contents of magnetite.  相似文献   

6.
Most skarn deposits are closely related to granitoids that intruded into carbonate rocks. The Cihai (>100 Mt at 45% Fe) is a deposit with mineral assemblages and hydrothermal features similar to many other typical skarn deposits of the world. However, the iron orebodies of Cihai are mainly hosted within the diabase and not in contact with carbonate rocks. In addition, some magnetite grains exhibit unusual relatively high TiO2 content. These features are not consistent with the typical skarn iron deposit. Different hydrothermal and/or magmatic processes are being actively investigated for its origin. Because of a lack of systematic studies of geology, mineral compositions, fluid inclusions, and isotopes, the genetic type, ore genesis, and hydrothermal evolution of this deposit are still poorly understood and remain controversial.The skarn mineral assemblages are the alteration products of diabase. Three main paragenetic stages of skarn formation and ore deposition have been recognized based on petrographic observations, which show a prograde skarn stage (garnet-clinopyroxene-disseminated magnetite), a retrograde skarn stage (main iron ore stage, massive magnetite-amphibole-epidote ± ilvaite), and a quartz-sulfide stage (quartz-calcite-pyrite-pyrrhotite-cobaltite).Overall, the compositions of garnet, clinpyroxene, and amphibole are consistent with those of typical skarn Fe deposits worldwide. In the disseminated ores, some magnetite grains exhibit relatively high TiO2 content (>1 wt.%), which may be inherited from the diabase protoliths. Some distinct chemical zoning in magnetite grains were observed in this study, wherein cores are enriched in Ti, and magnetite rims show a pronounced depletion in Ti. The textural and compositional data of magnetite confirm that the Cihai Fe deposit is of hydrothermal origin, rather than associated with iron rich melts as previously suggested.Fluid inclusions study reveal that, the prograde skarn (garnet and pyroxene) formed from high temperature (520–600 °C), moderate- to high-salinity (8.1–23.1 wt.% NaCl equiv, and >46 wt.% NaCl equiv) fluids. Massive iron ore and retrograde skarn assemblages (amphibole-epidote ± ilvaite) formed under hydrostatic condition after the fracturing of early skarn. Fluids in this stage had lower temperature (220°–456 °C) and salinity (8.4–16.3 wt.% NaCl equiv). Fluid inclusions in quartz-sulfide stage quartz and calcite also record similar conditions, with temperature range from 128° to 367 °C and salinity range from 0.2 to 22.9 wt.% NaCl equiv. Oxygen and hydrogen isotopic data of garnet and quartz suggest that mixing and dilution of early magmatic fluids with external fluids (e.g., meteoric waters) caused a decrease in fluid temperature and salinity in the later stages of the skarn formation and massive iron precipitation. The δ18O values of magnetite from iron ores vary between 4.1 and 8.5‰, which are similar to values reported in other skarn Fe deposits. Such values are distinct from those of other iron ore deposits such as Kiruna-type and magmatic Fe-Ti-V deposits worldwide. Taken together, these geologic, geochemical, and isotopic data confirm that Cihai is a diabase-hosted skarn deposit related to the granitoids at depth.  相似文献   

7.
The Bhukia gold (+copper) deposit hosted by albitite and carbonates that occur within the Paleoproterozoic Aravalli-Delhi Fold Belt (ADFB) in western India consists of magnetite, graphite, apatite and tourmaline along with sulfide mineralization. Ubiquitous presence of magnetite and apatite in gold-sulfide association, alteration patterns and shear controlled mineralization suggest it to be IOCG (Iron-oxide copper gold) type deposits. The detailed mineral chemistry of magnetite and apatite are generated and interpreted in terms of their genetic significance, hydrothermal and magmatic origin vis-à-vis their affiliation with IOCG deposition. The data suggest that the magnetite has hydrothermal affiliation. The Ni/Cr ratio is greater than 1, which is explained by differences in solubility and mobility of Ni and Cr in hydrothermal fluids and is corroborated with other key evidences including that of wide ranging Mg concentration further supports a strong hydrothermal input that is envisaged for the deposition of magnetite. Concentration of vanadium in magnetite is generally <1000 ppm in case of barren hydrothermal occurrences while in the study area, it is relatively higher as it is attributed to the gold-sulfide-Cu mineralization. Ti vs Ni/Cr, Ni/(Cr+Mn) vs Ti+V, Ca+Al+Mn vs Ti+V and Al+Mn vs Ti+V variations are interpreted in terms of magnetite genesis. EPMA data suggests that apatite present in Bhukia is of fluorapatite variety with F content >1 wt% and F/Cl >1. Higher concentration of F and moderate Mn along with lower concentration of Cl attests their magmatic hydrothermal character and its derivation from meta-volcano sedimentary source. REE patterns obtained from LA-ICP-MS analysis suggest enrichment of LREE relative to MREE and HREE with negative Eu anomaly. Y/∑REE, La/Sm, Ce/Th and Eu/Eu1 vs Ce/Ce1 values of apatite is indicative of their origin in a highly oxidized environment. Presence of magnetite along with apatite is a common feature in IOCG-IOA (Iron-Oxide Apatite) association. Bhukia Gold Deposit has many similarities with Kiruna type Iron-Oxide Apatite (IOA) deposits particularly with respect to their similar tectonic setting, alteration patterns, mineral assemblages such as abundance of magnetite, apatite and presence of late stage sulfides based on EPMA and Laser ablation ICP-MS (LA-ICP-MS) studies. Lithological, petro-mineralogical and geochemical signatures of magnetite and apatite infer that the Bhukia is a possible IOCG-IOA type gold deposit typically associated with sulfides and graphite which may be used as petrogenetic indicators and pathfinders for exploration.  相似文献   

8.
Magnetite formed in different environments commonly has distinct assemblages and concentrations of trace elements that can potentially be used as a genetic indicator of this mineral and associated ore deposits. In this paper, we present textural and compositional data of magnetite from the Chengchao iron deposit, Daye district, China to provide a better understanding in the formation mechanism and genesis of the deposit and shed light on analytical protocols for in-situ chemical analysis of hydrothermal magnetite. Magnetite grains from the ore-related granitoid pluton, mineralized endoskarn, magnetite-dominated exoskarn, and vein-type iron ores hosted in marine carbonate intruded by the pluton were examined using scanning electron microscopy and analyzed for major and trace elements using electron microprobe. Back-scattered electron images reveal that primary magnetite from the mineralized skarns and vein-type ores were all partly reequilibrated with late-stage hydrothermal fluids, forming secondary magnetite domains that are featured by abundant porosity and have sharp contact with the primary magnetite. These textures are interpreted as resulting from a dissolution–reprecipitation process of magnetite, which, however, are mostly obscure under optically.Primary magnetite grains from the mineralized endoskarn and vein-type ores contain high SiO2 (0.92–3.21 wt.%), Al2O3 (0.51–2.83 wt.%), and low MgO (0.15–0.67 wt.%), whereas varieties from the exoskarn ores have high MgO (2.76–3.07 wt.%) and low SiO2 (0.03–0.23 wt.%) and Al2O3 (0.54–1.05 wt.%). This compositional contrast indicates that trace-element geochemical composition of magnetite is largely controlled by the compositions of magmatic fluids and host rocks of the ores that have reacted with the fluids. Compared to its precursor mineral, secondary magnetite is significantly depleted in most trace elements, with SiO2 deceasing from 1.87 to 0.47 wt.% (on average) and Al2O3 from 0.89 to 0.08 wt.% in mineralized endoskarn and vein type ores, and MgO from 2.87 to 0.60 wt.% in exoskarn ores. On the contrary, average content of iron is notably increased from 69.2 wt.% to 71.9 wt.% in the secondary magnetite grains. The results suggest that the dissolution–reprecipitation process has been important in significantly removing trace elements from early-stage magnetite to form high-grade, high-quality iron ores in hydrothermal environments. The textural and compositional data confirm that the Chengchao iron deposit is of hydrothermal origin, rather than being crystallized from immiscible iron oxide melts as previously suggested. This study also highlights the importance of textural characterization using various imaging techniques before in-situ chemical analysis of magnetite, as is the case for texturally complicated UTh-bearing accessory minerals that have been widely used for UPb geochronology study.  相似文献   

9.
The Goushti iron deposit from Dehbid area located in the Sanandaj-Sirjan metamorphic Belt (SSB), SW Iran is hosted by the Early Mesozoic silicified dolomite. Mineralized zones are lithostructurally controlled and oriented NW-SE parallel to the Zagros Orogenic Belt (ZOB). Magnetite, the major ore mineral, occurs as open space fillings and is accompanied by the secondary mineral phases hematite, goethite and martite. Gangue minerals mainly include quartz, dolomite and K-feldspar are associated with minor hydrosilicates. Calc-silicates such as wollastonite and diopside, minerals typical of skarns, are virtually absent from the ore zones. Fe2O3 content in the mineralized zones varies in the range of 38–75 wt%. The concentrations of Au, Cu, P, Ti, Cr and V as well as Co/Ni, Cr/V, (LREE)/(HREE), Eu/Sm and La/Lu values and Eu-Ce anomalies of the studied ores indicate that the Goushti deposit is a hydrothermal magnetite type. The subvolcanic rhyolite and basalt in this area are regarded as the source of iron and heat in the mineralizing system. The fluid inclusion data showed that magnetite deposited from the ore-bearing fluid with salinities 1–7 wt% NaCl equivalent at temperatures of 130–200 °C. A decrease in temperature and pressure, supplemented by fluid mixing, is the major controlling factor in iron oxide precipitation. The field relationships and mineralogical–geochemical characteristics of iron ores indicate that the Goushti hydrothermal deposit could not be classified as a member of the IOCG (Iron Oxide-Copper-Gold) deposits.  相似文献   

10.
The Tieshan Fe–Cu deposit is located in the Edong district, which represents the westernmost and largest region within the Middle–Lower Yangtze River Metallogenic Belt (YRMB), Eastern China. Skarn Fe–Cu mineralization is spatially associated with the Tieshan pluton, which intruded carbonates of the Lower Triassic Daye Formation. Ore bodies are predominantly located along the contact between the diorite or quartz diorite and marbles/dolomitic marbles. This study investigates the mineral chemistry of magnetite in different skarn ore bodies. The contrasting composition of magnetite obtained are used to suggest different mechanisms of formation for magnetite in the western and eastern part of the Tieshan Fe–Cu deposit. A total of 178 grains of magnetite from four magnetite ore samples are analyzed by LA–ICP–MS, indicating a wide range of trace element contents, such as V (13.61–542.36 ppm), Cr (0.003–383.96 ppm), Co (11.12–187.55 ppm) and Ni (0.19–147.41 ppm), etc. The Ti/V ratio of magnetite from the Xiangbishan (western part of the Tieshan deposit) and Jianshan ore body (eastern part of the Tieshan deposit) ranges from 1.32 to 5.24, and 1.31 to 10.34, respectively, indicating a relatively reduced depositional environment in the Xiangbishan ore body. Incorporation of Ti and Al in magnetite are temperature dependent, which hence propose that the temperature of hydrothermal fluid from the Jianshan ore body (Al = 3747–9648 ppm, with 6381 ppm as an average; Ti = 381.7–952.0 ppm, with 628.2 ppm as an average) was higher than the Xiangbishan ore body (Al = 2011–11122 ppm, with 5997 ppm as an average, Ti = 302.5–734.8, with 530.8 ppm as an average), indicating a down–temperature precipitation trend from the Jianshan ore body to the Xiangbishan ore body. In addition, in the Ca + Al + Mn versus Ti + V diagram, magnetite is plotted in the skarn field, consideration with the ternary diagram of TiO2–Al2O3–MgO, proposing that the magnetite ores are formed by replacement, instead of directly crystallized from iron oxide melts, which provide a better understanding regarding the composition of ore fluids and processes responsible for Fe mineralization in the Tieshan Fe–Cu deposit.  相似文献   

11.
The Beiya gold–polymetallic deposit is one of the largest gold deposits in China and is considered to be a typical porphyry-skarn system located in the middle of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt. Massive magnetite is widespread in the Beiya ore district but its genesis is still the subject of debate. Five representative magnetite types are present in the Beiya deposit, namely magmatic magnetite (M1) from the ore-related porphyry, disseminated magnetite (M2) from the early retrograde alteration, massive magnetite (M3) from the early quartz-magnetite stage, massive magnetite (M4) from the middle quartz-magnetite stage and magnetite (M5) from the late quartz-magnetite stage. Compared with the M1 magnetite, the magnetites from stages M2 to M5 are depleted in Ti, Al and high field strength elements, implying a hydrothermal origin, distinct from the magmatic accessory magnetite in the ore-related porphyry (M1). The concentrations of cobalt in the hydrothermal magnetites decrease gradually from M2 to M5, and can be used to discriminate the magnetite types. The Al + Mn and Ti + V contents of the successively precipitated magnetite grains (M2–M5) suggests that the ore forming temperature decreased from M2 to M4, but increased from M4 to M5, possibly as the result of a new pulse of magma entering the chamber, which may have triggered the gold mineralization. The V content in the hydrothermal magnetite suggests that the oxygen fugacity increased from M2 to M4 but decreased as soon as the sulfides entered the system (M5).  相似文献   

12.
The Nanling Range in South China hosts numerous world-class W–Sn deposits and some Fe deposits. The Mesozoic Tengtie Fe skarn deposit in the southern Nanling Range is contemporaneous with the regional Sn mineralization. The deposit is composed of numerous ore bodies along the contacts between the late Paleozoic or Mesozoic carbonate rocks and the Yanshanian Lianyang granitic complex. Interaction of the magma with hosting dolomitic limestone and limestone formed calcic (Ca-rich) and magnesian (Mg-rich) skarns, respectively. The Tengtie deposit has a paragenetic sequence of the prograde stage of anhydrous skarn minerals, followed by the retrograde stage of hydrous skarn minerals, and the final sulfide stage. Magnetite in the prograde and retrograde skarn stages is associated with diopside, garnet, chlorite, epidote, and phlogopite, whereas magnetite of the final stage is associated with chalcopyrite and pyrite. Massive magnetite ores crosscut by quartz and calcite veins are present mainly in the retrograde skarn stage. Laser ablation ICP-MS was used to determine trace elements of magnetite from different stages. Some magnetite grains have unusually high Ca, Na, K, and Si, possibly due to the presence of silicate mineral inclusions. Magnetite of the prograde stage has the highest Co contents, but that of the sulfide stage is extremely poor in Co which partitions in sulfides. Magnetite of magnesian skarns contains more Mg, Mn, and Al than that of calcic skarns, attributed to the interaction of the magma with compositionally different host rocks. Magnetite from calcic and magnesian skarns contains 6–185 ppm Sn and 61–1246 ppm Sn, respectively. The high Sn contents are not due to the presence of cassiterite inclusions which are not identified in magnetite. Instead, we believe that Sn resides in the magnetite structure. Regionally, intensive Mesozoic Sn mineralization in South China indicates that concurrent magmatic–hydrothermal fluids may be rich in Sn and contribute to the formation of high-Sn magnetite. Our study demonstrates that trace elements of magnetite can be a sensitive indicator for the skarn stages and wall-rock compositions, and as such, trace elemental chemistry of magnetite can be a potentially powerful fingerprint for sediment provenance and regional mineralization.  相似文献   

13.
The Cihai iron skarn deposit is located in the southern part of the eastern Tianshan, Xinjiang, northwestern China. The major iron orebodies are banded and nearly parallel to each other. The iron ores are hosted in an early diabase dike and in skarn. Post-ore diabase dikes cut the iron ores and their hosting diabase. Hydrothermal activity can be divided into four stages based on geological and petrographic observations: initial K–Na alteration (stage I), skarn-minor magnetite event (II), retrograde skarn-magnetite main ore event (III), and quartz–calcite–sulfide veining (IV). Zircon U–Pb dating yields ages of 286.5 ± 1.8 Ma for early diabase and 275.8 ± 2.2 Ma for post-ore diabase dikes. Amphibole separated from massive magnetite ore gives a 40Ar–39Ar plateau age of 281.9 ± 2.2 Ma and is the time of ore formation. Formation of the Cihai iron deposit is closely related to post-collisional magmatism and associated Cu–Ni–Au polymetallic mineralization in the eastern Tianshan.  相似文献   

14.
Numerous Fe–Cu deposits are hosted in the late Paleoproterozoic Dongchuan and Dahongshan Groups in the Kangdian region, SW China. The Dongchuan Group is composed of siltstone, slate, and dolostone with minor volcanic rocks, whereas the Dahongshan Group has undergone lower amphibolite facies metamorphism and consists of quartz mica-schist, albitite, quartzite, marble and amphibolite with local migmatite. Deposits in the Dongchuan Group are commonly localized in the cores of anticlines, in fault bends and intersections, and at lithological contacts. Orebodies are closely associated with breccias, which are locally derived from the host rocks. Fe-oxides (magnetite and/or hematite) and Cu-sulfides (chalcopyrite, bornite) form disseminated, vein-like and massive ores, and typically fill open spaces in the host rocks. The deposits have extensive albite alteration and local K-feldspar alteration overprinted by quartz, carbonate, sericite and chlorite. Deposits in the Dahongshan Group have orebodies sub-parellel to stratification and show crude stratal partitioning of metals. Fe-oxide ores occur as massive and/or banded replacements within the breccia pipes, whereas Cu-sulfide ores occur predominantly as disseminations and veinlets within mica schists and massive magnetite ores. Ore textures suggest that Cu-sulfides formed somewhat later than Fe-oxides, but are possibly within the same mineralization event. Both ore minerals predated regional Neoproterozoic metamorphism. Both orebodies and host rocks have undergone extensive alteration of albite, scapolite, amphibole, biotite, sericite and chlorite. Silica and carbonate alterations are also widespread. Ore-hosting strata have a LA-ICP-MS zircon U–Pb age of 1681 ± 13 Ma, and a dolerite dyke cutting the Fe-oxide orebodies has an age of 1659 ± 16 Ma. Thus, the mineralization age of the Dahongshan deposit is constrained at between the two. All ores from the two groups have high Fe and low Ti, with variable Cu contents. Locally they are rich in Mo, Co, V, and REE, but all are poor in Pb and Zn. Sulfides from the Fe–Cu deposits have δ34S values mostly in the range of +2 to +6 per mil, suggesting a mix of several sources due to large-scale leaching of the strata with the involvement of evaporites. Isotopic dating and field relationships suggest that these deposits formed in the late Paleoproterozoic. Ore textures, mineralogy and alteration characteristics are typical of IOCG-type deposits and thus define a major IOCG metallogenic province with significant implications for future exploration.  相似文献   

15.
Precambrian Banded Iron Formations (BIFs) are widely distributed in the North China Craton (NCC). Among them, the Wuyang BIFs located in the southern margin of NCC occur in the Late Archaean Tieshanmiao Formation and can be subdivided in two different sub-types: (i) quartz–magnetite BIFs (QMB), consisting of magnetite, fine-microcrystalline quartz and minor calcite and (ii) pyroxene–magnetite BIFs (PMB), composed of pyroxene, fine-microcrystalline quartz and subordinate feldspars. Both sub-types display apparent discrepancies in terms of petrography and mineral composition.As shown in Electron BackScattered Diffraction (EBSD) images and micrographs, magnetite grains from the QMB range in size from tens up to hundreds of μm, whereas magnetite crystals from the PMB can be up to a few tens of μm across. The X-ray diffraction (XRD) structural data indicate that magnetite from both BIF sub-types is equiaxed (cubic) and was generated by sedimentary metamorphic processes. The cell parameters of magnetite in the QMB are a = b = c = 8.396 Å and Z = 8, which deviate slightly from these of magnetite in the PMB: a = b = c = 8.394 Å and Z = 8. The analytical results of Raman spectroscopy analysis revealed micro-structural signatures of both magnetite (Raman shifts near 552 cm−1 and 673 cm−1) and hematite (Raman shifts near 227 cm−1, 295 cm−1 and 413 cm−1). In magnetite from both QMB and PMB, the crystallinity degree is similar for magnetite micro-structures but varies significantly for hematite micro-structures. Oxygen fugacity (fO2) conditions fluctuated during the recrystallization of magnetite in the QMB, whereas no evident variation of fO2 occurred during the formation of magnetite in the PMB. Analytical results of laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) show that the Si, Al and Mg abundances are higher in magnetite from the QMB, whereas the Ti and Mn contents are more elevated in magnetite from the PMB. Magnetite composition also denotes that both BIF sub-types are sedimentary-metamorphic origin, whereas the deposition of PMB was also affected by volcanic activities. Overall data indicate that the differences in the depositional environment of each BIF sub-type are due to the involvement of volcanic eruption processes in the genesis of the PMB. Thus, this paper indicated that the QMB was deposited by chemical deposition at the long-term interval of volcanic eruptions, and the PMB were the product of chemical deposition affected by the volcanic eruption.  相似文献   

16.
Stratabound massive sulfide deposits are widespread along the Middle-Lower Yangtze Metallogenic Belt (MLYMB) and serve as an important copper producer in China. Two contrasting genetic models have been proposed, interpreting the stratabound massive sulfide deposits as a Carboniferous SEDEX protore overprinted by Cretaceous magmatic-hydrothermal system or an Early Cretaceous carbonate replacement deposit. These two contrasting models have been applied to the Xinqiao stratabound Cu-Au sulfide deposit, which is dominated by massive sulfide ores hosted in marine carbonates of the Carboniferous Chuanshan and Huanglong Formations, with minor Cu-Au skarn ores localized in the contact zone between the Cretaceous diorite Jitou stock and the Carboniferous carbonate rocks. New SIMS zircon U-Pb dating suggests that the Jitou stock formed at 138.5 ± 1.1 Ma (2σ, MSWD = 0.6). Pyrite Re-Os dating yields an imprecise date of 142 ± 47 Ma (2σ, MSWD = 7.8). The geochronological data thus constrain the mineralization of the Xinqiao deposit at Early Cretaceous.Fluid inclusions in prograde skarn diopside have homogenization temperatures of 450–600 °C and calculated salinities of 13–58 wt.% NaCl equiv. Quartz from the stratabound ores and pyrite-quartz vein networks beneath the stratabound ores have homogenization temperatures of 290–360 and 200–300 °C, with calculated salinities of 5–12 and 2–10 wt.% NaCl equiv., respectively. Quartz from the skarn ores and veins beneath the stratabound ores have δ18O values of 12.32 ± 0.55 (2 SD, n = 22) and 15.57 ± 1.92‰ (2 SD, n = 60), respectively, corresponding to calculated δ18O values of 6.22 ± 1.59 (2σ) and 6.81 ± 2.76‰ (2σ) for the equilibrated ore-forming fluids. The fluid inclusion and oxygen isotope data thus support a magmatic-hydrothermal origin rather than a SEDEX system for the stratabound ores, with the hydrothermal fluids most likely being derived from the Jitou stock or associated concealed intrusion. Results from this study have broad implications for the genesis and exploration of other stratabound massive sulfide deposits along the MLYMB.  相似文献   

17.
Cihai and Cinan are Permian magnetite deposits related to mafic-ultramafic intrusions in the Beishan region, Xinjiang, NW China. The Cihai mafic intrusion is dominantly composed of dolerite, gabbro and fine-grained massive magnetite ore, while gabbro, pyrrhotite + pyrite-bearing clinopyroxenite and magnetite ore comprise the major units in Cinan. Clinopyroxene occurs in both deposits as 0.1–2 mm in diameter subhedral to anhedral grains in dolerite, gabbro and clinopyroxenite. High FeO contents (11.7–28.9 wt%), low SiO2 (43.6–54.3 wt%) and Al2O3 contents (0.15–6.08 wt%), and low total REE and trace element contents of clinopyroxene in the Cinan clinopyroxenite imply crystallization early, at high pressure. This clinopyroxene is FeO-rich and Si and Ti-poor, consistent with the clinopyroxene component of large-scale Cu-Ni sulfide deposits in the Eastern Tianshan and Panxi ares, as well as Tarim mafic intrusion and basalt, implying the Cinan mafic intrusion and sulfide is related to tectonic activity in the Tarim LIP. The similar mineral chemistry of clinopyroxene, apatite and magnetite in the Cihai and Cinan gabbros (e.g., depleted LREE, negative Zr, Hf, Nb and Ta anomalies in clinopyroxene, lack of Eu anomaly in apatite and similarity of oxygen fugacity as indicated by V in magnetite), indicate similar parental magmatic characteristics. Mineral compositions suggest a crystallization sequence of clinopyroxenite/with a small amount of sulfide – gabbro – magnetite ore in the Cinan deposit, and magnetite ore – gabbro – dolerite in Cihai. The basaltic magma was emplaced at depth, with magnetite segregation (and formation of the Cinan magnetite ores) occurring in relatively low fO2 conditions, after clinopyroxenite and gabbro fractional crystallization. The evolved Fe-rich basaltic magma rapidly rose to intermediate or shallow depths, forming an immiscible Fe-Ti oxide magma as fO2 increased and leaving a Fe-poor residual magma in the chamber. The residual magmas was emplaced at different levels in the crust, forming the Cihai gabbro and dolerite, respectively. Finally, the immiscible Fe-Ti oxide magma was emplaced into the earlier formed dolerite because of late magma pulse uplift, resulting in a distinct boundary between the magnetite ores and dolerite.  相似文献   

18.
This paper contributes to the understanding of the genesis of epigenetic, hypogene BIF-hosted iron deposits situated in the eastern part of Ukrainian Shield. It presents new data from the Krivoy Rog iron mining district (Skelevatske–Magnetitove deposit, Frunze underground mine and Balka Severnaya Krasnaya outcrop) and focuses on the investigation of ore genesis through application of fluid inclusion petrography, microthermometry, Raman spectroscopy and baro-acoustic decrepitation of fluid inclusions. The study investigates inclusions preserved in quartz and magnetite associated with the low-grade iron ores (31–37% Fe) and iron-rich quartzites (38–45% Fe) of the Saksaganskaya Suite, as well as magnetite from the locally named high-grade iron ores (52–56% Fe). These high-grade ores resulted from alteration of iron quartzites in the Saksaganskiy thrust footwall (Saksaganskiy tectonic block) and were a precursor to supergene martite, high-grade ores (60–70% Fe). Based on the new data two stages of iron ore formation (metamorphic and metasomatic) are proposed.The metamorphic stage, resulting in formation of quartz veins within the low-grade iron ore and iron-rich quartzites, involved fluids of four different compositions: CO2-rich, H2O, H2O–CO2 N2–CH4)–NaCl(± NaHCO3) and H2O–CO2 N2–CH4)–NaCl. The salinities of these fluids were relatively low (up to 7 mass% NaCl equiv.) as these fluids were derived from dehydration and decarbonation of the BIF rocks, however the origin of the nahcolite (NaHCO3) remains unresolved. The minimum P–T conditions for the formation of these veins, inferred from microthermometry are Tmin = 219–246 °C and Pmin = 130–158 MPa. The baro-acoustic decrepitation analyses of magnetite bands indicated that the low-grade iron ore from the Skelevatske–Magnetitove deposit was metamorphosed at T = ~ 530 °C.The metasomatic stage post-dated and partially overlapped the metamorphic stage and led to the upgrade of iron quartzites to the high-grade iron ores. The genesis of these ores, which are located in the Saksaganskiy tectonic block (Saksaganskiy ore field), and the factors controlling iron ore-forming processes are highly controversial. According to the study of quartz-hosted fluid inclusions from the thrust zone the metasomatic stage involved at least three different episodes of the fluid flow, simultaneous with thrusting and deformation. During the 1st episode three types of fluids were introduced: CO2–CH4–N2 C), CO2 N2–CH4) and low salinity H2O–N2–CH4–NaCl (6.38–7.1 mass% NaCl equiv.). The 2nd episode included expulsion of the aqueous fluids H2O–N2–CH4–NaCl(± CO2, ± C) of moderate salinities (15.22–16.76 mass% NaCl equiv.), whereas the 3rd event involved high salinity fluids H2O–NaCl(± C) (20–35 mass% NaCl equiv.). The fluids most probably interacted with country rocks (e.g. schists) supplying them with CH4 and N2. The high salinity fluids were most likely either magmatic–hydrothermal fluids derived from the Saksaganskiy igneous body or heated basinal brines, and they may have caused pervasive leaching of Fe from metavolcanic and/or the BIF rocks. The baro-acoustic decrepitation analyses of magnetite comprising the high-grade iron ore showed formation T = ~ 430–500 °C. The fluid inclusion data suggest that the upgrade to high-grade Fe ores might be a result of the Krivoy Rog BIF alteration by multiple flows of structurally controlled, metamorphic and magmatic–hydrothermal fluids or heated basinal brines.  相似文献   

19.
The Wajilitag igneous complex is part of the early Permian Tarim large igneous province in NW China, and is composed of a layered mafic–ultramafic intrusion and associated syenitic plutons. In order to better constrain its origin, and the conditions of associated Fe–Ti oxide mineralization, we carried out an integrated study of mineralogical, geochemical and Sr–Nd–Hf isotopic analyses on selected samples. The Wajilitag igneous rocks have an OIB-like compositional affinity, similar to the coeval mafic dykes in the Bachu region. The layered intrusion consists of olivine clinopyroxenite, coarse-grained clinopyroxenite, fine-grained clinopyroxenite and gabbro from the base upwards. Fe–Ti oxide ores are mainly hosted in fine-grained clinopyroxenite. Forsterite contents in olivines from the olivine clinopyroxenite range from 71 to 76 mol%, indicating crystallization from an evolved magma. Reconstructed composition of the parental magma of the layered intrusion is Fe–Ti-rich, similar to that of the Bachu mafic dykes. Syenite and quartz syenite plutons have εNd(t) values ranging from +1.4 to +2.9, identical to that for the layered intrusion. They may have formed by differentiation of underplated magmas at depth and subsequent fractional crystallization. Magnetites enclosed in olivines and clinopyroxenes have Cr2O3 contents higher than those interstitial to silicates in the layered intrusion. This suggests that the Cr-rich magnetite is an early crystallized phase, whereas interstitial magnetite may have accumulated from evolved Fe–Ti-rich melts that percolated through a crystal mush. Low V content in Cr-poor magnetite (<6600 ppm) is consistent with an estimate of oxygen fugacity of FMQ + 1.1 to FMQ + 3.5. We propose that accumulation of Fe–Ti oxides during the late stage of magmatic differentiation may have followed crystallization of Fe–Ti-melt under high fO2 and a volatile-rich condition.  相似文献   

20.
The Gejiu tin-polymetallic deposits in the Western Cathaysia Block of South China comprise the world's largest primary tin district, with a total resource of approximately 300 million metric ton ores, at an average grade of 1 wt percent Sn. Tin polymetallic mineralization occurs in five deposits and has four ore types, i.e., greisen, skarn, stratabound cassiterite-sulfide (mostly oxidized) and vein type ore. In each deposit the orebodies typically occur in an extensive hydrothermal system centered on a shallow Late Cretaceous granitoid cupola. Metal zoning is well developed both vertically and horizontally over the entire district, from W + Be + Bi ± Mo ± Sn ores inside granite intrusions, to Sn + Cu-dominated ores at intrusion margins and farther out to Pb + Zn deposits in the surrounding host carbonate. This zoning pattern is similar to that of other hydrothermal deposits in other parts of the world, indicating a close genetic relationship between magmatism and mineralization. In this paper, we dated thirteen mica samples from all types of mineralization and from the five deposits in the Gejiu district. The ages range from 77.4 ± 0.6 Ma to 95.3 ± 0.7 Ma and are similar to the existing zircon U–Pb age of the granitic intrusions (77.4 ± 2.5–85.8 ± 0.6), indicating a genetic relationship between the mineralization and the intrusions. Geological characteristics, metal zoning patterns and new geochronological data all indicate that the tin-polymetallic ores in the Gejiu district are hydrothermal in origin and are genetically related to the nearby granitic intrusions. It is unlikely that the deposits are syngenetic, as has been proposed in recent years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号