首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以产在姚安富碱侵入岩体内外接触带上的姚安金矿床为对象,对成矿流体形成演化过程中的微量元素和S、C同位素地球化学进行了综合研究。研究结果表明,富碱侵入岩成岩过程中分异出的岩浆流体提供了姚安金矿床早期成矿作用所必需的成矿流体;从早期成矿阶段至晚期成矿,民矿流体经历了从以岩浆流体为主的流体体系至以大气降水为主的流体体系的转变。因此,钙碱性侵入岩成岩过程中可分异出成矿流体的过程,也存在于富碱浸入岩的成岩过程中。  相似文献   

2.
The Rubian magnesite deposit (West Asturian—Leonese Zone, Iberian Variscan belt) is hosted by a 100-m-thick folded and metamorphosed Lower Cambrian carbonate/siliciclastic metasedimentary sequence—the Cándana Limestone Formation. It comprises upper (20-m thickness) and lower (17-m thickness) lens-shaped ore bodies separated by 55 m of slates and micaceous schists. The main (lower) magnesite ore body comprises a package of magnesite beds with dolomite-rich intercalations, sandwiched between slates and micaceous schists. In the upper ore body, the magnesite beds are thinner (centimetre scale mainly) and occur between slate beds. Mafic dolerite dykes intrude the mineralisation. The mineralisation passes eastwards into sequence of bedded dolostone (Buxan) and laminated to banded calcitic marble (Mao). These show significant Variscan extensional shearing or fold-related deformation, whereas neither Rubian dolomite nor magnesite show evidence of tectonic disturbance. This suggests that the dolomitisation and magnesite formation postdate the main Variscan deformation. In addition, the morphology of magnesite crystals and primary fluid inclusions indicate that magnesite is a neoformed hydrothermal mineral. Magnesite contains irregularly distributed dolomite inclusions (<50 μm) and these are interpreted as relics of a metasomatically replaced dolostone precursor. The total rare earth element (REE) contents of magnesite are very similar to those of Buxan dolostone but are depleted in light rare earth elements (LREE); heavy rare earth element concentrations are comparable. However, magnesite REE chondrite normalised profiles lack any characteristic anomaly indicative of marine environment. Compared with Mao calcite, magnesite is distinct in terms of both REE concentrations and patterns. Fluid inclusion studies show that the mineralising fluids were MgCl2–NaCl–CaCl2–H2O aqueous brines exhibiting highly variable salinities (3.3 to 29.5 wt.% salts). This may be the result of a combination of fluid mixing, migration of pulses of variable-salinity brines and/or local dissolution and replacement processes of the host dolostone. Fluid inclusion data and comparison with other N Iberian dolostone-hosted metasomatic deposits suggest that Rubian magnesite probably formed at temperatures between 160 and 200°C. This corresponds, at hydrostatic pressure (500 bar), to a depth of formation of ~~5 km. Mineralisation-related Rubian dolomite yields δ 18O values (δ 18O: 12.0–15.4‰, mean: 14.4±1.1‰) depleted by around 5‰ compared with barren Buxan dolomite (δ 18O: 17.1–20.2‰, mean: 19.4±1.0‰). This was interpreted to reflect an influx of 18O-depleted waters accompanied by a temperature increase in a fluid-dominated system. Overlapping calculated δ 18Ofluid values (~+5‰ at 200°C) for fluids in equilibrium with Rubian dolomite and magnesite show that they were formed by the same hydrothermal system at different temperatures. In terms of δ 13C values, Rubian dolomite (δ 13C: −1.4 to 1.9‰, mean: 0.4±1.3‰) and magnesite (δ 13C: −2.3 to 2.4‰, mean: 0.60±1.0‰) generally exhibit more negative δ 13C values compared with Buxan dolomite (δ 13C: −0.2 to 1.9‰, mean: 0.8±0.6‰) and Mao calcite (δ 13C: −0.3 to 1.5‰, mean: 0.6±0.6‰), indicating progressive modification to lower δ 13C values through interaction with hydrothermal fluids. 87Sr/86Sr ratios, calculated at 290 Ma, vary from 0.70849 to 0.70976 for the Mao calcite and from 0.70538 to 0.70880 for the Buxan dolostone. The 87Sr/86Sr ratios in Rubian magnesite are more radiogenic and range from 0.71123 to 0.71494. The combined δ 18O–δ 13C and 87Sr/86Sr data indicate that the magnesite-related fluids were modified basinal brines that have reacted and equilibrated with intercalated siliciclastic rocks. Magnesite formation is genetically linked to regional hydrothermal dolomitisation associated with lithospheric delamination, late-Variscan high heat flow and extensional tectonics in the NW Iberian Belt. A comparison with genetic models for the Puebla de Lillo talc deposits suggests that the formation of hydrothermal replacive magnesite at Rubian resulted from a metasomatic column with magnesite forming at higher fluid/rock ratios than dolomite. In this study, magnesite generation took place via the local reaction of hydrothermal dolostone with the same hydrothermal fluids in very high permeability zones at high fluid/rock ratios (e.g. faults). It was also possibly aided by additional heat from intrusive dykes or sub-cropping igneous bodies. This would locally raise isotherms enabling a transition from the dolomite stability field to that of magnesite.Editorial handling: F. Tornos  相似文献   

3.
The Dongpo tungsten ore deposit, the largest scheelite skarn deposit in China, is located at the contact of a 172-m. y. biotite granite with a Devonian marble. The mineralization associated with the granite includes W, Bi-Mo, Cu-Sn and Pb-Zn ores. Several W mineralization stages are shown by the occurrence of ore in massive skarn deposits and in later cross-cutting veins. The high garnet/pyroxene ratio, the hedenbergite and diopside-rich pyroxene and the andradite-rich garnet show the deposit belongs to the oxidized skarn type. Detailed fluid inclusion studies of granite, greisen, skarn and vein samples reveal three types of fluid inclusion: (1) liquid-rich, (2) gas-rich and (3) inclusions with several daughter minerals. Type (3) is by far the most common in both skarn and vein samples. The dominant daughter mineral in fluid inclusions is rhembic, highly birefringent, and does not dissolve on heating even at 530°C. We assume that this mineral is calcite. The liquid phase in most of the fluid inclusions has low to moderate salinities: 0–15 wt. %; in a few has higher salinities (30–40 wt. % NaCl equivalent). The homogenization temperatures of inclusions in the skarn stage range from 350°C to 530°C, later tungsten mineralization-stage inclusions homogenize between 200°C and 300°C, as do inclusions in veins. Fluid inclusions in granite and greisen resemble those of the late tungsten mineralization stage, with low salinity and homogenization temperatures of 200°–360°C. The tungsten-forming fluids are probably a mixture that came from biotite granite and the surrounding country rocks.  相似文献   

4.
安徽铜陵冬瓜山铜金矿床是狮子山矿田中埋藏深度和地质储量最大的矿床,同时发育层控矽卡岩型和斑岩型矿体.该矿床流体成矿从早期到晚期经历了多个矿化阶段.本文选取了钾长石化阶段、矽卡岩化阶段、早石英硫化物阶段和晚石英硫化物阶段矿石中石英的原生流体包裹体进行了ICP-MS分析,结果表明,各成矿阶段石英流体包裹体微量元素的陆壳标准化分布曲线具有较好的一致性,显示成矿流体具有统一的来源和演化;流体包裹体的REE配分曲线与岩浆岩的稀土元素配分曲线相似,均为平缓右倾型,轻稀土明显富集,LREE/HREE比值与岩浆岩接近,显示成矿热液具有深部岩浆来源的特征.流体包裹体微量元素的直接分析显示成矿流体为矿质富集的热液流体,且各成矿阶段热液流体中的成矿元素含量高低的变化与相应阶段的矿化强度及矿石品位高低变化相一致,早石英硫化物阶段是矿质集中富集的最佳阶段,至晚石英硫化物阶段可能有浅部热液流体的混入.  相似文献   

5.
金青顶金矿床是目前国内最大的石英单脉型金矿,其金储量超过50 t,规模为大型。对该矿床成矿流体性质和来源的研究十分必要。笔者通过Ⅱ号矿体主要载金矿物黄铁矿微量元素的研究发现,其Co/Ni为2.317~11.734(平均7.17),显示主要为热液成因;高场强元素(HFSE)特征显示,成矿早期以富F流体为主,主成矿期以富Cl流体为主;稀土配分模式显示成矿物质并不是直接来源于围岩昆嵛山二长花岗岩。对黄铁矿流体包裹体He、Ar同位素特征的研究表明,3He/4He、40Ar/36Ar分别为0.1~2.2 Ra(平均值0.60 Ra),462.7~1 507.5(平均值831),显示成矿流体主要源自地壳,并与深部幔源流体发生了不同程度的混合,且上升过程中有少量大气降水加入。  相似文献   

6.
山西北落峡铁矿床流体包裹体研究与矿床成因讨论   总被引:1,自引:0,他引:1  
李宁  冯钟燕  于方 《矿床地质》1989,8(3):43-54
北落峡铁矿床是太行山南段矽卡岩型铁矿成矿区域内一个比较重要的矿床。本文通过对北落峡铁矿床流体包裹体研究,讨论了该矿床成矿流体特征、性质、流体演化及铁矿床形成机制。认为成矿流体源自岩浆,流体组分以Na-Fe-Cl-SO_4-H_2O为主。成矿流体温度、盐度分别高达540—660℃和55—66wt.%Nacl。岩浆期后流体不混溶作用是造成成矿流体高盐度的原因。由于流体温度、盐度降低以及沸腾作用导致溶液中铁溶解度急剧下降并发生磁铁矿沉淀。  相似文献   

7.
新疆511铀矿床微量元素富集特征研究   总被引:4,自引:0,他引:4  
通过对砂岩铀矿体及其围岩中的Se、Re、Ga、Ge、V、Mo和U等元素的测试与分析,文章系统研究了511砂岩型铀矿床中主要微量元素的富集特征。结果表明:511铀矿床中,Se、Re、Ga、Ge、V、Mo等微量元素存在不同程度的富集,其中Se、Re、Ga的富集达到综合利用工业品位;微量元素空间分布受层间氧化带控制且具有规律性,沿层间氧化作用方向,依次出现Se-Re(+Gc)-Mo-V等分带;Re与U具有较好的相关性,Se、Re元素对砂岩铀矿找矿具有重要指示意义。511铀矿床是一个与层间氧化带有关的多元素聚集的复合矿床。  相似文献   

8.
The large tonnage Maoling gold deposit (25 t @ 3.2 g/t) is located in the southwest Liaodong Peninsula, North China Craton. The deposit is hosted in the Paleoproterozoic metamorphic rocks. Four stages of mineralization were identified in the deposit: (stage I) quartz-arsenopyrite ± pyrite, (stage II) quartz-gold- arsenopyrite-pyrrhotite, (stage III) quartz-gold- polymetallic sulfide, and (stage IV) quartz-calcite-pyrrhotite. In this paper, we present fluid inclusion, C-H-O-S-Pb-He-Ar isotope data, zircon U-Pb, and gold-bearing sulfide (i.e. arsenopyrite and pyrrhotite) Rb-Sr age of the Maoling gold deposit to constrain its genesis and ore-forming mechanism. Three types of fluid inclusions were distinguished in quartz-bearing veins, including liquid-rich two-phase (WL type), gas-rich two-phase (GL type), and daughter mineral-bearing fluid inclusions (S type). Fluid inclusions data show that the homogenization at temperatures 197 to 372 °C for stage I, 126 to 319 °C for stage II, 119 to 189 °C for stage III, and 115 to 183 °C for stage IV, with corresponding salinities of 3.7 to 22.6 wt.%, 4.7 to 23.2 wt.%, 5.3 to 23.2 wt.%, and 1.7 to 14.9 wt.% NaCl equiv., respectively. Fluid boiling was the critical factor controlling the gold and associated sulfide precipitation at Maoling. Hydrogen and oxygen stable isotopic analyses for quartz yielded δ18O = ?5.0‰ to 9.8‰ and δ D = ?133.5‰ to ?77.0‰. Carbon stable isotopic analyses for calcite and ankerite yielded δ13C = ?2.3‰ to ?1.2‰ and O = 7.9‰ to 14.1‰. The C-H-O isotope data show that the ore-forming fluids were originated from magmatic water with meteoric water input during mineralization. Hydrothermal inclusions in arsenopyrite have 3He/4He ratios of 0.002 Ra to 0.054 Ra, and 40Ar/36Ar rations of 1225 to 3930, indicating that the ore-forming fluids were dominantly derived from crustal sources almost no mantle input. Sulfur isotopic values of Maoling fine-grained granite range from 6.‰1 to 9.8‰, with a mean of 7.7‰, δ34S values of arsenopyrite from the mineralized phyllite (host rock) range from 8.9‰ to 10.6‰, with a mean of 10.0‰, by contrast, δ34S values of sulfides from ore vary between 4.3‰ and 10.6‰, with a mean of 6.8‰, suggesting that sulfur was mainly originated from both the host rock and magma. Lead radioactive isotopic analyses for sulfides yielded 206Pb/204Pb = 15.830–17.103, 207Pb/204Pb = 13.397–15.548, 208Pb/204Pb = 35.478–36.683, and for Maoling fine-grained granite yielded 206Pb/204Pb = 18.757–19.053, 207Pb/204Pb = 15.596–15.612, and 208Pb/204Pb = 38.184–39.309, also suggesting that the ore-forming materials were mainly originated from the host rocks and magma. Zircon U-Pb dating demonstrates that the Maoling fine-grained granite was emplaced at 192.7 ± 1.8 Ma, and the host rock (mineralized phyllite) was emplaced at some time after 2065.0 ± 27.0 Ma. Arsenopyrite and pyrrhotite give Rb–Sr isochron age of 188.7 ± 4.5 Ma, indicating that both magmatism and mineralization occurred during the Early Jurassic. Geochronological and geochemical data, together with the regional geological history, indicate that Early Jurassic magmatism and mineralization of the Maoling gold deposit occurred during the subducting Paleo-Pacific Plate beneath Eurasia, and the Maoling gold deposit is of the intrusion-related gold deposit type.  相似文献   

9.
马头山铜金矿床位于康定一锦屏山矿集区,处于锦屏山断裂与康定一水城断裂的交汇部位,是川西南地区新发现的中型铜金矿床。矿体呈现为硫化物石英脉状,赋存于泥盆系泥质粉砂质板岩、碳酸盐化泥晶灰岩和二叠系变质玄武岩中,受断裂构造控制,矿石中硫化物矿物多见黄铁矿、斑铜矿、黄铜矿、方铅矿等。矿石中石英原生流体包裹体观测和激光拉曼光谱分析显示,马头山铜金成矿流体为H_2O-CO_2-NaCl体系,均一温度108.1~439.1℃,盐度3.55%~22.78%NaCleq,密度0.51~1.12 g/cm~3,主成矿阶段流体包裹体具有中低温、中低盐度、低密度、富含CO_2的特征。矿石中硫化物矿物δ~(34)SV-CDT=-4.6‰~8.4‰,具有岩浆来源硫的特征,石英脉中原生流体包裹体的δD=-78.8‰~-48.7‰,δ~(18)O_(H_2O)=-2.1‰~9.3‰,白云石的δ~(13)C_(V-PDB)=-5.3‰~1.7‰,δ~(18)O_(V-SMOW)=19.4‰~25.9‰,表明成矿流体主要为岩浆水,并有地层流体和大气水加入。综合矿床地质特征、流体包裹体特征和S、C、O、H同位素证据,认为马头山铜金矿床为中低温-岩浆热液型铜金矿床。  相似文献   

10.
The Darreh-Zar porphyry copper deposit is associated with a quartz monzonitic–granodioritic–porphyritic stock hosted by an Eocene volcanic sedimentary complex in which magmatic hydrothermal fluids were introduced and formed veins and alteration. Within the deepest quartz-rich and chalcopyrite-poor group A veins, LVHS2 inclusions trapped high salinity, high temperature aqueous fluids exsolved directly from a relatively shallow magma (0.5 kbar). These late fluids were enriched in NaCl and reached halite saturation as a result of the low pressure of magma crystallization and fluid exsolution. These fluids extracted Cu from the crystallizing melt and transported it to the hydrothermal system. As a result of ascent, the temperature and pressure of these fluids decreased from 600 to 415 °C, and approximately 500–315 bars. At these conditions, K-feldspar and biotite were stabilized. Type A veins were formed at a depth of ∼1.2 km under conditions of lithostatic pressure and abrupt cooling. Upon cooling and decompressing, the fluid intersected with the liquid–vapor field resulting in separation of immiscible liquid and vapor. This stage was recorded by formation of LVHS1, LVHS3 and VL inclusions. These immiscible fluids formed chalcopyrite–pyrite–quartz veins with sericitic alteration envelopes (B veins) under the lithostatic–hydrostatic pressure regime at temperatures between 415 and 355 °C at 1.3 km below the paleowater table. As the fluids ascended, copper contents decreased and these fluids were diluted by mixing with the low salinity-external fluid. Therefore, pyrite-dominated quartz veins were formed in purely hydrostatic conditions in which pressure decreased from 125 bars to 54 bars and temperature decreased from 355 to 298 °C. During the magmatic-hydrothermal evolution, the composition and PT regime changed drastically and caused various types of veins and alterations. The abundance of chalcopyrite precipitation in group B veins suggests that boiling and cooling were important factors in copper mineralization in Darreh-Zar.  相似文献   

11.
The Banda arc of eastern Indonesia manifests the collision of a continent and an intra-oceanic island arc. The presently active arc is located on what appears to be oceanic crust whereas the associated subduction trench is underlain by continental crust.Recent lavas from the Banda arc are predominantly andesitic and range from tholeiitic in the north through calc-alkaline to high-K calc-alkaline varieties in the southern islands. Defining this regular geochemical variation are significant increases in the abundances of K (2,600–21,000 ppm), Rb (10–90 ppm), Cs (0.5–7.0 ppm), and Ba (100–1,000 ppm) from tholeiitic to high-K calc-alkaline lavas. 87Sr/86Sr ratios in the tholeiites are relatively low, from 0.7045 to 0.7047. In the calc-alkaline lavas, 87Sr/86Sr ratios range from 0.7052 to 0.7095, and in the high-K calc-alkaline lavas from 0.7065 to 0.7080. There is no correlation between 87Sr/86Sr and major and trace element abundances, even among lavas from the same volcano. Late Cenozoic cordierite — bearing lavas from Ambon, north of the presently active arc, are highly enriched in K, Rb and Cs, which together with 87Sr/86Sr ratios of approximately 0.715 is consistent with their derivation from partial melting of pelitic material in the locally — thick crust.The high 87Sr/86Sr ratios in the Recent calc-alkaline lavas are interpreted to result from mixing of a sialic component with a mantle derived component. The most likely cause is subduction and subsequent melting of either sea-floor sediments or continental crust. However, it is probably unrealistic to model this type of deep contamination by simple two-component mixing. Such contamination implies that the volcanic rocks from the Banda arc are at least partly a manifestation of melting at or near the Benioff seismic zone. Temperatures of at least 750–800 ° C at the top of the subducted lithospheric slab at depths of approximately 150 km are also implied; temperatures very close to the solidus of hydrous basalt (eclogite) at such pressure. It is concluded that partial melting of the crustal component of the subducted lithospheric slab may play a significant role in island arc petrogenesis.This paper is the result of a cooperative project with the Geological Survey of Indonesia, Ministry of Mines and Energy  相似文献   

12.
康家湾铅锌矿床位于湖南省水口山矿田,矿体主要产于二叠系当冲组下段泥灰岩、硅质岩与栖霞组灰岩的层间硅化破碎带中。根据矿物组合和穿插关系,可将该矿床的成矿作用过程划分为3个阶段:黄铁矿-石英阶段、闪锌矿-方铅矿(黄铁矿)-石英阶段和方解石-闪锌矿-方铅矿阶段。流体包裹体研究表明,康家湾铅锌矿床黄铁矿-石英阶段的流体主要为中-高温(243~343℃)、中-高盐度(18.4%~33.8% NaCleqv)的流体;闪锌矿-方铅矿(黄铁矿)-石英阶段的流体为中-高温(278~352℃)、中-低盐度(1.1%~20.7% NaCleqv)流体;晚期方解石-闪锌矿-方铅矿阶段的流体为低温(125~191℃)、低盐度(0.2%~6.7%NaCleqv)的流体。其中,闪锌矿-方铅矿(黄铁矿)-石英阶段的流体发生了沸腾作用。激光拉曼分析结果显示,该矿床成矿期的石英和闪锌矿中的液体包裹体气相成分主要为H_2O。H-O、S同位素研究显示,康家湾铅锌矿床的成矿流体可能主要来源于岩浆水,并在运移过程中混合了大气水。结合矿床地质、流体包裹体和氢氧、硫同位素特征,流体混合导致温度、盐度降低和沸腾作用可能是导致康家湾铅锌矿床成矿物质发生大规模沉淀的重要因素。  相似文献   

13.
胡村铜矿床位于安徽铜陵狮子山矿田的南部,以矽卡岩型铜多金属矿为主,矿床浅部主要为铜金矿体,深部主要为铜-辉钼矿体。本文对其浅部矽卡岩型铜矿体开展了系统的成矿流体研究。根据矿物学、岩石学、成岩、成矿作用划分为分3个演化阶段:矽卡岩阶段(Ⅰ阶段)(细分为Ⅰ-1、Ⅰ-2阶段)、石英硫化物阶段(Ⅱ阶段)(细分为Ⅱ-1、Ⅱ-2a和Ⅱ-2b和Ⅱ-2c阶段)和碳酸盐阶段(Ⅲ阶段)。流体包裹体主要有富液相(Ⅰ型)、含子晶(Ⅱ型)、富气相(Ⅲ型)3种类型。不同阶段成矿流体演化特征为:Ⅰ阶段矽卡岩流体包裹体以高温(543~631℃),中-高盐度(14.8%~20.1%和44%~50.1%NaCl_(eq),质量分数,下同)为特征;Ⅱ阶段主成矿硫化物阶段流体包裹体以中温(172~298℃),众值范围为210~230℃,低-中等盐度(5.9%~16.9%)为特征;Ⅲ阶段流体包裹体以中-低温(158~247℃),众值范围为170~190℃,低等盐度(1.7%~6.2%)为特征。H-O同位素研究表明成矿流体源自岩浆水,演化到硫化物成矿阶段为与大气降水混合热液特征。流体包裹体地球化学研究表明胡村矿床浅部矿体成矿作用主要受温度控制,铜在高温状态呈迁移状态,在水-岩反应的影响作用下大气降水与成矿流体不断混合导致流体体系温度快速下降,成矿物质开始沉淀富集成矿。  相似文献   

14.
钱台子金矿床是一个产于皖东蚌埠隆起区东端的石英脉型小型矿床,矿体主要赋存于变质结晶基底五河岩群中,受张扭性断裂控制。本文通过对不同阶段石英进行系统的包裹体岩相学观察、显微测温、激光拉曼探针及氢氧同位素分析,探讨了该矿床的流体来源及矿床成因。结果表明,钱台子金矿床流体包裹体有纯CO2型、CO2—H2O型和H2O—NaCl型3种,包裹体均一温度集中在286~385℃,w(NaCl, eqv)=4.80%~12.56%,平均8.29%;不同阶段石英的δ18OV-SMOW变化范围为9.0×10-3~15.2×10-3,对应的δ18O变化范围为2.12×10-3~9.70×10-3;各成矿期流体密度集中于0.63~0.84 g/cm3之间,均一压力为163~178 MPa,成矿深度<6 km;成矿早期流体属于中高温、低盐度、低密度的CO2—H2O—NaCl变质流体,后期有岩浆水参与。钱台子金矿床形成于扬子克拉通沿NW方向俯冲于华北克拉通之下的造山期后持续伸展背景下的拆沉作用和壳幔相互作用所导致的大规模岩浆活动。  相似文献   

15.
杜荒岭金矿床是产于石英闪长岩、受压性、压扭性断裂和爆破角砾岩筒联合控制的浅成中温岩浆热液矿床。流体包裹体研究表明: ①流体包裹体的类型以气液两相包裹体为主,其次为纯液相包裹体、气相包裹体及少量含NaCl 子矿物三相原生流体包裹体,成矿流体属NaCl--H2O 体系; ②主成矿阶段均一温度为200℃ ~ 375℃,集中在230℃ ~ 320℃; 流体具有低密度( 0. 68 ~ 0. 94 g /cm3 ) ,低盐度 ( 3. 39 ~ 13. 07 ( wt%,NaCl) ) 的特征,成矿压力为7. 5 ~ 14. 3 MPa,估算成矿深度1. 2 ~ 1. 6 km; ③ 结合新近同位素、微量元素及年代学研究成果,认为杜荒岭金矿主要与晚燕山期岩浆活动有关,成矿流体源于岩浆热液,流体上升过程中发生隐爆和沸腾作用,同时伴有部分大气降水加入,导致成矿物质快速沉淀富集。  相似文献   

16.
江西永平Cu-W矿床是钦杭成矿带东部一个大型Cu-W矿床。针对该矿床的成因,一直存在着海底喷流沉积型与矽卡岩型矿床的争论。文章针对该争论,通过对永平Cu-W矿床的白钨矿开展微量元素分析,研究了成矿流体性质、来源和矿床成因。永平Cu-W矿床发育3种类型白钨矿:退化蚀变阶段暗色均质白钨矿Ⅰ-1;亮色均质白钨矿Ⅰ-2;石英-硫化物阶段具有环带结构的白钨矿Ⅱ。白钨矿中Mo含量和Eu异常能够指示成矿流体氧化还原性。白钨矿Ⅰ-1富集Mo元素,并呈负Eu异常,指示氧化性;白钨矿Ⅰ-2和白钨矿Ⅱ中Mo含量减少,并且呈正Eu异常,指示成矿流体的氧逸度降低。永平Cu-W矿床所有白钨矿均呈明显的轻稀土元素富集模式,与典型矽卡岩型白钨矿稀土元素特征相一致,而明显不同于石英脉型矿床白钨矿中稀土元素或重稀土元素富集模式。白钨矿具有高Mo和低Sr元素,与岩浆-热液白钨矿特征一致,而明显不同于变质来源的白钨矿,指示成矿流体来源于岩浆。白钨矿的Y/Ho比值范围为19~43,与似斑状黑云母花岗岩(Y/Ho=25~30)相似,明显不同于石炭系叶家湾组(Y/Ho=34~75),指示成矿流体主要来源于岩浆。白钨矿地球化学特征指示永平Cu-W矿床为矽卡岩型矿床。  相似文献   

17.
朱明田  武广  解洪晶  万阈  钟伟  糜梅  刘军 《岩石学报》2010,26(12):3667-3682
莱历斯高尔斑岩型铜钼矿床位于依连哈比尔尕晚古生代残余洋盆和博罗霍洛早古生代岛弧的结合部位,矿体赋存于花岗闪长斑岩体内及岩体与围岩的接触带中。矿石中5件辉钼矿的Re-Os同位素模式年龄加权平均值为372.5±5.0Ma、等时线年龄为379.9±8.3Ma,表明莱历斯高尔铜钼矿床形成于晚泥盆世。石英中主要发育气液两相水溶液包裹体(W型)、含CO2三相包裹体(C型)及含子矿物多相包裹体(S型),并有少量纯CO2及纯CH4包裹体。成矿早阶段钾长石化花岗闪长斑岩石英斑晶中主要为W型包裹体,均一温度介于300~395℃之间,峰值为358~395℃,盐度介于7.59%~11.22%NaCleqv;主成矿阶段石英细脉中主要发育W型、C型和S型包裹体,并可见少量纯CO2包裹体,均一温度主要介于230~378℃,盐度变化较大,介于0.02%~52.00%NaCleqv;成矿晚阶段石英-方解石脉中仅见气液两相包裹体,均一温度介于118~241℃之间,盐度主要介于1.57%~9.54%NaCleqv。主成矿阶段流体包裹体类型多样、且具有相似的均一温度,指示流体沸腾现象的存在,其流体包裹体捕获温度为210~343℃,压力为17~59MPa,对应的成矿深度介于1.7~2.2km之间。成矿流体不混溶或沸腾作用是金属硫化物沉淀的主要机制。推测莱历斯高尔斑岩型铜钼矿床形成于晚泥盆世依连哈比尔尕残余洋盆向伊犁-中天山微板块之下俯冲的陆缘弧环境。  相似文献   

18.
卡拉塔格成矿带梅岭铜(金)矿床位于新疆吐哈盆地南缘的古生代隆起带中,在大地构造位置上处于大南湖—突苏泉晚古生代岛弧带北段的上叠火山盆地中。其成矿阶段形成的石英中的流体包裹体类型较为单一,多为气液两相包裹体,数量少,个体较小(3~10μm),气相百分数小(4%~10%),零星随机分布。均一温度变于化106.6~259.8℃,成矿流体盐度w(NaCleq)为0.18%~8.41%,成矿压力为3~16MPa,估算的成矿深度为0.4~0.8km。结合野外观察以及火山-次火山岩石组合、热液蚀变组合及矿石结构构造与矿化特点,提出梅岭铜(金)矿区为高硫化物浅成低温热液型与斑岩型铜金矿之间的过渡类型,相当于福建紫金山式或台湾金瓜石式。  相似文献   

19.
The Dongguashan skarn-porphyry Cu-Au deposit, located in the Tongling district of the Middle-Lower Yangtze River Valley metallogenic belt (MLYB), consists of skarn ore bodies in the upper part and porphyry ore bodies in the lower part, both of which are hosted in quartz diorite and quartz monzodiorite. Zircon U-Pb age and geochemical studies show that the quartz diorite of the Dongguashan intrusion formed at 140.3 ± 2.0 Ma (MSWD = 0.19) and belongs to the high potassium calc-alkaline series. It is enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE), depleted in high field-strength elements (HFSE) and heavy rare earth elements (HREE), and has a slightly negative Eu anomaly. 176Hf/177Hf values of the rims of zircons show a variable range (0.282087–0.282391), corresponding with calculated εHf(t) values of − 10.72 to − 21.46. Plagioclases in the quartz diorite have unbalanced structure characterized by bright andesine and labradorite (An = 37.0–65.5) cores with higher contents of Fe and Sr and are corroded by dark oligoclase (An = 13.8–27.6) rim. Major elements, trace elements, Hf isotope, and the composition of plagioclases indicate that the parental magma of the Dongguashan intrusion was produced by the mixing of underplating mafic magma and felsic magma formed by remelting of Paleoproterozoic and Neoarchean crustal rocks, Neoproterozoic crust may also provide some material to the felsic magma. Mafic magma played a key role and made the parental magma rich in water, sulfur, metals (Cu, Au) and gave it a high oxygen fugacity. During its magmatic evolution, the parental magma underwent fractional crystallization of hornblende, apatite, sphene and other mafic minerals. Some quartz diorite and quartz monzodiorite samples that show adakitic signatures, may result from injection of mafic magma. Some inherited zircons of the quartz diorite in the Dongguashan intrusion gave ages of 2.40–2.50 Ga, 1.95–2.05 Ga and 0.74–0.81 Ga, coming from ultramafic, mafic and andesitic igneous rocks, and this indicates that there may have been three periods (2.4, 2.0, and 0.8 Ga) of magmatic activity in the Tongling district.  相似文献   

20.
胶东三山岛金矿中深部成矿流体对比及矿床成因   总被引:13,自引:6,他引:7  
三山岛金矿位于胶东西北部,属于典型的破碎蚀变岩型金矿。流体包裹体研究表明该矿床为中温、中低盐度H2O-CO2-NaCl±CH4流体;中深部成矿流体对比研究表明,在纵深超过2000m范围内,成矿流体具有较一致的成矿流体介质条件,主成矿均一温度为170~330℃,成矿压力为50~255MPa。H、O、C同位素表明,深源流体参与了成矿作用,很可能是与金矿床伴生的基性幔源岩浆脱水形成的岩浆水,在地壳浅部遭受到大气降水的混合,而S同位素研究进一步揭示了成矿物质具有多源性,矿区浅表在成矿晚期可能受到了表生硫影响而导致δ34S偏高。水岩反应、成矿应力场转变及表面吸附电化学还原反应等导致金沉淀成矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号