共查询到20条相似文献,搜索用时 15 毫秒
1.
The Dayana W-Mo deposit in eastern Ujumchin of Inner Mongolia is a quartz-vein type deposit in the mid-western part of the Central Asian Orogenic Belt (CAOB). Biotite monzogranite, quartz porphyry and hornfels host W-Mo in quartz veins. Based on spatial relationships, molybdenite was deposited first followed by wolframite. This contribution presents precise laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) U–Pb zircon dating and geochemical analysis of the biotite monzogranite. The U–Pb dating shows that the monzogranite is 134 ± 1 Ma. Major and trace element geochemistry shows that the monzogranite is characterized by high SiO2 and K2O contents, a “Right-inclined” shape of the chondrite normalized REE patterns, enrichment of large ion lithophile elements (LILEs), and depletion of high field strength elements (HFSEs) such as Nb, P, Ba. The monzogranite is high-K calc-alkaline, has a strong negative Eu anomaly (Eu/Eu* = 0.04–0.45), low P2O5 content, high A/CNK of > 1.2, enriched in large-ion lithophile elements (LILEs; such as Rb, Th, U, Nd, and Hf), and notably depleted in Ba, Sr, P, Ti, and Nb. These characteristics define the Dayana monzogranite as a highly fractionated peraluminous granite. Re–Os isotopic analysis of seven molybdenite samples from the deposit yield an isochron age of 133 ± 3 Ma (MSWD = 2.2), which indicates that the monzogranite and ore have the same age within error, are probably genetically related, and related to a major Early Cretaceous mineralizing event in China known as the Yanshanian. 相似文献
2.
EPMA chemical U-Th-Pb uraninite analysis has been used to constrain the age of the granite-related, Rössing South uranium prospect in Namibia and the Kintyre unconformity-related uranium deposit in Western Australia. Uraninite from the Rössing South prospect has an age of 496.1 ± 4.1 Ma, which is similar to the age of other uranium deposits in the region at Rössing and Goanikontes. Uraninite grains analysed from the Kintyre deposit have an age of 837 +35/-31 Ma suggesting that the uranium mineralisation occurred during or after the latest period of sedimentation in the Yeneena Basin during the ca 850 to ca 800 Ma Miles Orogeny. 相似文献
3.
The Yunkai Area is located at the southern South China Block and is part of the Qinzhou Bay-Hangzhou Bay Metallogenic Belt, which is a famous polymetallic mineralization belt. The Xinhua Pb–Zn–(Ag) deposit is located in the western part of Yunkai Area, with an abundance of Pubei batholiths. Zircon U–Pb geochronology of Pubei batholiths shows that crystallization age ranges from 251.9 ± 2.2 to 244.3 ± 1.8 Ma, thus belonging to Indosinian orogeny. Geochemistry and Sr isotopic compositions of the Pubei batholiths show that it is derived from the partial melting of large scale crustal melting during the stage of exhumation and uplifting of the lower-middle crust. In addition, strontium isotope of sphalerite from the Xinhua Pb–Zn–(Ag) deposit, has limited ranges in 87Rb/86Sr and 87Sr/86Sr, ranging from 0.4077 to 1.0449, and 0.718720 to 0.725245, respectively. The initial 87Sr/86Sr ratios of sphalerite ranges between 0.718720 and 0.725245, which is higher than that of upper continental crust and lower than that of the Pubei batholiths, illustrating the fluid might be derived from the mixing of Pubei pluton and upper continental crust. 相似文献
4.
The Shanshulin Pb–Zn deposit occurs in Upper Carboniferous Huanglong Formation dolomitic limestone and dolostone, and is located in the western Yangtze Block, about 270 km west of Guiyang city in southwest China. Ore bodies occur along high angle thrust faults affiliated to the Weishui regional fault zone and within the northwestern part of the Guanyinshan anticline. Sulfide ores are composed of sphalerite, pyrite, and galena that are accompanied by calcite and subordinate dolomite. Twenty-two ore bodies have been found in the Shanshulin deposit area, with a combined 2.7 million tonnes of sulfide ores grading 0.54 to 8.94 wt.% Pb and 1.09 to 26.64 wt.% Zn. Calcite samples have δ13CPDB and δ18OSMOW values ranging from − 3.1 to + 2.5‰ and + 18.8 to + 26.5‰, respectively. These values are higher than mantle and sedimentary organic matter, but are similar to marine carbonate rocks in a δ13CPDB vs. δ18OSMOW diagram, suggesting that carbon in the hydrothermal fluid was most likely derived from the carbonate country rocks. The δ34SCDT values of sphalerite and galena samples range from + 18.9 to + 20.3‰ and + 15.6 to + 17.1‰, respectively. These values suggest that evaporites are the most probable source of sulfur. The δ34SCDT values of symbiotic sphalerite–galena mineral pairs indicate that deposition of sulfides took place under chemical equilibrium conditions. Calculated temperatures of S isotope thermodynamic equilibrium fractionation based on sphalerite–galena mineral pairs range from 135 to 292 °C, consistent with previous fluid inclusion studies. Temperatures above 100 °C preclude derivation of sulfur through bacterial sulfate reduction (BSR) and suggest that reduced sulfur in the hydrothermal fluid was most likely supplied through thermo-chemical sulfate reduction (TSR). Twelve sphalerite samples have δ66Zn values ranging from 0.00 to + 0.55‰ (mean + 0.25‰) relative to the JMC 3-0749L zinc isotope standard. Stages I to III sphalerite samples have δ66Zn values ranging from 0.00 to + 0.07‰, + 0.12 to + 0.23‰, and + 0.29 to + 0.55‰, respectively, showing the relatively heavier Zn isotopic compositions in later versus earlier sphalerite. The variations of Zn isotope values are likely due to kinetic Raleigh fractional crystallization. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the sulfide samples fall in the range of 18.362 to 18.573, 15.505 to 15.769 and 38.302 to 39.223, respectively. The Pb isotopic ratios of the studied deposit plot in the field that covers the upper crust, orogenic belt and mantle Pb evolution curves and overlaps with the age-corrected Proterozoic folded basement rocks, Devonian to Lower Permian sedimentary rocks and Middle Permian Emeishan flood basalts in a 207Pb/204Pb vs. 206Pb/204Pb diagram. This observation points to the derivation of Pb metal from mixed sources. Sphalerite samples have 87Sr/86Sr200 Ma ratios ranging from 0.7107 to 0.7115 similar to the age-corrected Devonian to Lower Permian sedimentary rocks (0.7073 to 0.7111), higher than the age-corrected Middle Permian basalts (0.7039 to 0.7078), and lower than the age-corrected Proterozoic folded basement (0.7243 to 0.7288). Therefore, the Sr isotope data support a mixed source. Studies on the geology and isotope geochemistry suggest that the Shanshulin deposit is a carbonate-hosted, thrust fault-controlled, strata-bound, epigenetic, high grade deposit formed by fluids and metals of mixed origin. 相似文献
5.
The large low-grade Piaotang W–Sn deposit in the southern Jiangxi tungsten district of the eastern Nanling Range, South China, is related to a hidden granite pluton of Jurassic age. The magmatic-hydrothermal system displays a zonation from an inner greisen zone to quartz veins and to peripheral veinlets/stringers (Five-floor zonation model). Most mineralization is in quartz veins with wolframite > cassiterite. The hidden granite pluton in underground exposures comprises three intrusive units, i.e. biotite granite, two-mica granite and muscovite granite. The latter unit is spatially associated with the W–Sn deposit.Combined LA-MC-ICP-MS U–Pb dating of igneous zircon and LA-ICP-MS U–Pb dating of hydrothermal cassiterite are used to constrain the timing of granitic magmatism and hydrothermal mineralization. Zircon from the three granite units has a weighted average 206Pb/238U age of 159.8 ± 0.3 Ma (2 σ, MSWD = 0.3). The cathodoluminescence (CL) textures indicate that some of the cassiterite crystals from the wolframite-cassiterite quartz vein system have growth zonations, i.e. zone I in the core and zone II in the rim. Dating on cassiterite (zone II) yields a weighted average 206Pb/238U age of 159.5 ± 1.5 Ma (2 σ, MSWD = 0.4), i.e. the magmatic and hydrothermal systems are synchronous. This confirms the classical model of granite-related tin–tungsten mineralization, and is against the view of a broader time gap of >6 Myr between granite magmatism and W–Sn mineralization which has been previously proposed for the southern Jiangxi tungsten district. The elevated trace element concentrations of Zr, U, Nb, Ta, W and Ti suggest that cassiterite (zone II) formed in a high-temperature quartz vein system related to the Piaotang granite pluton. 相似文献
6.
7.
《地学前缘(英文版)》2023,14(1):101459
Determining the precise timing of mineralization and mineralizing events is crucial to understanding regional mineralizing and other geological events and processes. However, there are a number of mineralogical and analytical limitations to the approaches developed for the absolute dating of mineralizing systems, such as molybdenite Re–Os and zircon and garnet U–Pb, among others. This means that the precise and accurate dating of mineralizing systems that may not contain minerals suitable for dating using existing approaches requires the development of new (and ideally in situ) approaches to absolute dating. This study outlines a new in situ analytical approach that has the potential to rapidly and accurately evaluate the timing of ore formation. Our study employs a novel application of in situ scheelite U–Pb dating analysis using laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) and samples from the Qiaomaishan deposit, a representative example of skarn mineralization within the Xuancheng ore district of eastern China. Our approach to scheelite dating of the deposit is verified by cross-comparison to dating of cogenetic garnet and apatite, proving the effectiveness of this approach. Our new approach to dating of scheelite-bearing geological systems is rapid, cheap, requires little sample preparation, and is undertaken in situ, allowing crucial geological and mineralogical context to be retained during analysis. The approaches outlined here not only allow the determination of the absolute timing of formation of the Qiaomaishan deposit through the U–Pb dating of scheelite [138.6 ± 3.2 Ma, N = 39, mean square weighted deviation (MSWD) = 1.17], garnet (138.4 ± 1.0 Ma, N = 40, MSWD = 1.3), and apatite (139.6 ± 3.3 Ma, N = 35, MSWD = 0.72), but also further supports the theoretical genetic links between this mineralization and the emplacement of a proximal porphyritic granodiorite intrusion (zircon U–Pb age: 139.5 ± 1.2 Ma, N = 23, MSWD = 0.3). Moreover, our research indicates that the higher the concentrations of U within scheelite, the more suitable that scheelite is for U–Pb dating, with the main factor controlling the U content of scheelite seemingly being variations in oxygen fugacity conditions. This novel approach provides a potentially powerful tool, not just for the dating of skarn systems but also with potential applications in orogenic and intrusion-related gold, porphyry W–Mo, and greisen mineralizing systems as well as other scheelite-bearing geological bodies or geological systems. 相似文献
8.
Dinosaur eggs or fragments are abundant and extensively distributed in China. They can be very informative in biostratigraphic division and correlation of continental strata where other fossils are relatively lacking. Despite remarkable discoveries of vertebrate fossils, particularly dinosaur eggs and skeletons from the middle and Late Cretaceous of both northern and southern China, there is hardly any direct evidence for the ages of the vertebrate-bearing terrestrial deposits. To constrain their depositional ages, here we have obtained SIMS U–Pb zircon ages from the tuffs interbedded with dinosaur egg-bearing sediments from the Laijia and Chichengshan formations of the terrestrial red deposits of the Late Cretaceous in the Tiantai Basin, Zhejiang Province, southeastern China. The SIMS zircon U–Pb ages from the Laijia and Chichengshan formations are about 96–99 Ma (Cenomanian) and 91–94 Ma (Turonian), respectively, providing direct time constraints on the vertebrate and dinosaur egg evolution in the Late Cretaceous as well as a basis for correlation with terrestrial Cretaceous deposits in other regions of southern and northern China. 相似文献
9.
10.
The Hongtoushan volcanogenic massive sulfide (VMS) deposit is the largest Archean Cu–Zn deposit in China, located in the Qingyuan greenstone belt on the northern margin of the North China Craton. The Cu–Zn mineralization was stratigraphically controlled by the interbeds (~ 100 m in thickness) of mafic–felsic volcanic sets and overlain by banded iron layers. However, the relationship between VMS deposits and associated volcanics has not been examined. This study ultimately clarifies the times and sources of the volcanics and mineralization. Based on in situ zircon U–Pb and O isotope on VMS-hosting mafic, felsic volcanic rocks, banded and massive sulfide ores and postmineralization pegmatite vein, we considered that there were two main formation stages for the Qingyuan Cu–Zn deposits; one was exhalative-hydrothermal sedimentation and another was further Cu–Zn enriched by later hydrothermal processes. The timing of the first stage occurred at 2571 ± 6 Ma based on the magmatic zircons in the VMS-hosting mafic volcanic rocks, from which the inherited zircons also indicate the existence of 2.65–3.12 Ga ancient supercrustal rocks in the Qingyuan district. A modern mantle-like δ18Ozircon value of 5.5 ± 0.1‰ (2SD) for this volcanism was well preserved in the inherited core domains of ore samples. It suggests that the mafic volcanics was most likely sourced from partial melting of juvenile crust, e.g., TTG granites. A large-scale metamorphic or hydrothermal event is documented by the recrystallized zircons in sulfide ores. The timing is tightly constrained by the hydrothermal zircon U–Pb ages. They are 2508 ± 4 Ma for the banded ore, 2507 ± 4 Ma for the massive ore and 2508 ± 2 Ma for the postmineralization pegmatite vein. These indistinguishable ages indicate that the 2507 Ma hydrothermal systems played a significant role in the upgrading of the VMS Cu–Zn orebodies. The weighted δ18O values of hydrothermal zircons show a successively increasing trend from 6.0 ± 0.1‰ (2σ) for the banded ore, 6.6 ± 0.2‰ (2σ) for the massive ore to 7.3 ± 0.2‰ (2σ) for the later pegmatite vein. This variation might be induced by gradual inputting of the δ18O-rich oceanic crust and/or oceanic sediment during the hydrothermal cycling system. Considering its modern mantle-like oxygen isotope composition of 2571 Ma volcanism, a submarine volcanic hydrothermal system involving mantle plumes is a preferred setting for the Neoarchean VMS Cu–Zn deposits in the Qingyuan greenstone belt. 相似文献
11.
The Xitian tungsten–tin (W–Sn) polymetallic deposit, located in eastern Hunan Province, South China, is a recently explored region containing one of the largest W–Sn deposits in the Nanling W–Sn metallogenic province. The mineral zones in this deposit comprise skarn, greisen, structurally altered rock and quartz-vein types. The deposit is mainly hosted by Devonian dolomitic limestone at the contact with the Xitian granite complex. The Xitian granite complex consists of Indosinian (Late Triassic, 230–215 Ma) and Yanshanian (Late Jurassic–Early Cretaceous, 165–141 Ma) granites. Zircons from two samples of the Xitian granite dated using laser ablation-inductively coupled mass spectrometer (LA-ICPMS) U–Pb analysis yielded two ages of 225.6 ± 1.3 Ma and 151.8 ± 1.4 Ma, representing the emplacement ages of two episodic intrusions of the Xitian granite complex. Molybdenites separated from ore-bearing quartz-veins yielded a Re–Os isochron age of 149.7 ± 0.9 Ma, in excellent agreement with a weighted mean age of 150.3 ± 0.5 Ma. Two samples of muscovites from ore-bearing greisens yielded 40Ar/39Ar plateau ages of 149.5 ± 1.5 Ma and 149.4 ± 1.5 Ma, respectively. These isotopic ages obtained from hydrothermal minerals are slightly younger than the zircon U–Pb age of 151.8 ± 1.4 Ma of the Yanshanian granite in the Xitian area, indicating that the W–Sn mineralization is genetically related to the Late Jurassic magmatism. The Xitian deposit is a good example of the Early Yanshanian regional W–Sn ore-forming event (160–150 Ma) in the Nanling region. The relatively high Re contents (8.7 to 44.0 ppm, average of 30.5 ppm) in molybdenites suggest a mixture of mantle and crustal sources in the genesis of the ore-forming fluids and melts. Based upon previous geochemical studies of Early Yanshanian granite and regional geology, we argue that the Xitian W–Sn polymetallic deposit can be attributed to back-arc lithosphere extension in the region, which was probably triggered by the break-off of the flat-slab of the Palae-Pacific plate beneath the lithosphere. 相似文献
12.
In this paper, we present U–Pb ages and trace element compositions of titanite from the Ruanjiawan W–Cu–Mo skarn deposit in the Daye district, eastern China to constrain the magmatic and hydrothermal history in this deposit and provide a better understanding of the U–Pb geochronology and trace element geochemistry of titanite that have been subjected to post-crystallization hydrothermal alteration. Titanite from the mineralized skarn, the ore-related quartz diorite stock, and a diabase dike intruding this stock were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Titanite grains from the quartz diorite and diabase dike typically coexist with hydrothermal minerals such as epidote, sericite, chlorite, pyrite, and calcite, and display irregular or patchy zoning. These grains have low LREE/HREE and high Th/U and Lu/Hf ratios, coupled with negative Eu and positive Ce anomalies. The textural and compositional data indicate that titanite from the quartz diorite has been overprinted by hydrothermal fluids after being crystallized from magmas. Titanite grains from the mineralized skarn are texturally equilibrated with retrograde skarn minerals including actinolite, quartz, calcite, and epidote, demonstrating that these grains were formed directly from hydrothermal fluids responsible for the mineralization. Compared to the varieties from the quartz diorite stock and diabase dike, titanite grains from the mineralized skarn have much lower REE contents and LREE/HREE, Th/U, and Lu/Hf ratios. They have a weighted mean 206Pb/238U age of 142 ± 2 Ma (MSWD = 0.7, 2σ), in agreement with a zircon U–Pb age of 144 ± 1 Ma (MSWD = 0.3, 2σ) of the quartz diorite and thus interpreted as formation age of the Ruanjiawan W–Cu–Mo deposit. Titanite grains from the ore-related quartz diorite have a concordant U–Pb age of 132 ± 2 Ma (MSWD = 0.5, 2σ), which is 10–12 Ma younger than the zircon U–Pb age of the same sample and thus interpreted as the time of a hydrothermal overprint after their crystallization. This hydrothermal overprint was most likely related to the emplacement of the diabase dike that has a zircon U–Pb age of 133 ± 1 Ma and a titanite U–Pb age of 131 ± 2 Ma. The geochronological results thus reveal two hydrothermal events in the Ruanjiawan deposit: an early one forming the Wu–Cu–Mo ores related to the emplacement of the quartz diorite stock and a later one causing alteration of the quartz diorite and its titanite due to emplacement of diabase dike. It is suggested that titanite is much more susceptible to hydrothermal alteration than zircon. Results from this study also highlight the utilization of trace element compositions in discriminating titanite of magmatic and hydrothermal origins, facilitating a more reasonable interpretation of the titanite U–Pb ages. 相似文献
13.
The Yinshan Cu–Au–Pb–Zn–Ag deposit is located in Dexing, South China. Ore bodies are primarily hosted in low-grade phyllite of the Neoproterozoic Shuangqiaoshan Group along EW- and NNW-striking fault zones. Pb–Zn–Ag mineralization is dictated by Jurassic rhyolitic quartz porphyries (ca. 172 Ma), whereas Cu–Au mineralization is associated with Jurassic dacite porphyries (ca. 170 Ma). The main ore minerals are pyrite, chalcopyrite, galena, sphalerite, tetrahedrite–tennatite, gold, silver, and silver sulphosalt, and the principal gangue minerals are quartz, sericite, calcite, and chlorite. Two-phase liquid-rich (type I), two-phase vapor-rich (type II), and halite-bearing (type III) fluid inclusions can be observed in the hydrothermal quartz-sulfides veins. Type I inclusions are widespread and have homogenization temperatures of 187–303 °C and salinities of 4.2–9.5 wt.% NaCl equivalent in the Pb–Zn–Ag mineralization, and homogenization temperatures of 196–362 °C and salinities of 3.5–9.9 wt.% NaCl equivalent in the Cu–Au mineralization. The pervasive occurrence of type I fluid inclusions with low-moderate temperatures and salinities implies that the mineralizing fluids formed in epithermal environments. The type II and coexisting type III inclusions, from deeper levels below the Cu–Au ore bodies, share similar homogenization temperatures of 317–448 °C and contrasting salinities of 0.2–4.2 and 30.9–36.8 wt.% NaCl equivalent, respectively, which indicates that boiling processes occurred. The sulfur isotopic compositions of sulfides (δ34S = −1.7‰ to +3.2‰) suggest a homogeneous magmatic sulfur source. The lead isotopes of sulfides (206Pb/204Pb = 18.01–18.07; 207Pb/204Pb = 15.55–15.57; and 208Pb/204Pb = 38.03–38.12) are consistent with those of volcanic–subvolcanic rocks (206Pb/204Pb = 18.03–18.10; 207Pb/204Pb = 15.56–15.57; and 208Pb/204Pb = 38.02–38.21), indicating a magmatic origin for lead in the ore. The oxygen and hydrogen isotope compositions (δ18O = +7.8‰ to +10.5‰, δD = −66‰ to −42‰) of inclusion water in quartz imply that ore-forming fluids were mainly derived from magmatic sources. The local boiling process beneath the epithermal Cu–Au ore-forming system indicates the possibility that porphyry-style ore bodies may exist at even deeper zones. 相似文献
14.
《International Geology Review》2012,54(4):404-423
ABSTRACTThe subduction of oceanic lithosphere during the Carboniferous Period contributed to the formation of widely distributed subduction-related volcanic rocks within the Junggar basin. These volcanic rock associations contain significant clues for understanding the subduction of the Keramaili oceanic lithosphere and the filling of the remnant oceanic basin. Here, we report regional gravity and magnetic data, petrology, geochemistry, and U–Pb dating for Carboniferous volcanic rocks from the North Junggar basin (NJB). Using samples from well Y-1, we distinguish upper and lower volcanic sequences on the basis of selected geochemical data. An isochronous stratigraphic framework of Carboniferous volcano-sedimentary sequences is then constructed and the petrogenesis of these volcanic rocks is discussed. Finally, we propose an explanation for the genesis of these diachronous Carboniferous volcano-sedimentary sequences. The results show that various volcanic rocks are distributed in different areas of the NJB, and mainly consist of calc-alkaline basalt–andesite–dacite assemblages and alkaline basalt–basaltic andesite–andesite assemblages. The geochemical data also demonstrate a binary nature of the Carboniferous volcanic rocks. In the eastern NJB, the lower and upper volcanic sequences are formed during the early and late Carboniferous, respectively. However, all of these volcano-related sequences in the western of the NJB are formed during the late Carboniferous. These volcano-sedimentary sequences exhibit a ‘ladder-style’ of temporospatial evolution from east to west. The geochemical results also indicate that the upper volcanic rocks include island arc components formed in an extensional setting, whereas the lower volcanic rocks were derived from deep crustal cycling metasomatism by various mantle components in a continental arc environment. Earlier closure of the Keramaili oceanic basin and slab roll-back of the Junggar oceanic lithosphere in eastern versus western Junggar basin led to the formation of these diachronous volcano-sedimentary sequences. 相似文献
15.
16.
SHRIMP U–Pb zircon ages are reported from a paragneiss, a pegmatite, a metasomatised metasediment and an amphibolite taken from the upper amphibolite facies host sequence of the Cannington Ag–Pb–Zn deposit at the southeastern margin of the Proterozoic Mt Isa Block. Also reported are ages from a middle amphibolite‐facies metasediment from the Soldiers Cap Group approximately 90 km north of Cannington. The predominantly metasedimentary host rocks of the Cannington deposit were eroded from a terrane containing latest Archaean to earliest Palaeoproterozoic (ca 2600–2300 Ma) and Palaeoproterozoic (ca 1750–1700 Ma) zircon. The ca 1750–1700 Ma group of zircons are consistent with sedimentary provenance from rocks of Cover Sequence 2 age that are now exposed to the north and west of the Cannington deposit. The metasedimentary samples also include a group of zircon grains at ca 1675 Ma, which we interpret as the maximum depositional age of the sedimentary protolith. This is comparable to the maximum depositional age of the metasediment from the Maronan area (ca 1665 Ma) and to previously published data from the Soldiers Cap Group. Metamorphic zircon rims and new zircon grains grew at 1600–1580 Ma during upper amphibolite‐facies metamorphism in metasedimentary and mafic magmatic rocks. Zircon inheritance patterns suggest that sheet‐like pegmatitic intrusions were most likely derived from partial melting of the surrounding metasediments during this period of metamorphism. Some zircon grains from the amphibolite have a morphology consistent with partially recrystallised igneous grains and have apparent ages close to the metamorphic age, although it is not clear whether these represent metamorphic resetting or crystallisation of the magmatic protolith. Pb‐loss during syn‐ to post‐metamorphic metasomatism resulted in partial resetting of zircons from the metasomatised metasediment. 相似文献
17.
The Huangshaping Pb–Zn–W–Mo polymetallic deposit, located in southern Hunan Province, China, is one of the largest deposits in the region and is unique for its metals combination of Pb–Zn–W–Mo and the occurrence of significant reserves of all these metals. The deposit contains disseminated scheelite and molybdenite within a skarn zone located between Jurassic granitoids and Carboniferous sedimentary carbonate, and sulfide ores located within distal carbonate-hosted stratiform orebodies. The metals and fluids that formed the W–Mo mineralization were derived from granitoids, as indicated by their close spatial and temporal relationships. However, the source of the Pb–Zn mineralization in this deposit remains controversial.Here, we present new sulfur, lead, and strontium isotope data of sulfide minerals (pyrrhotite, sphalerite, galena, and pyrite) from the Pb–Zn mineralization within the deposit, and these data are compared with those of granitoids and sedimentary carbonate in the Huangshaping deposit, thereby providing insights into the genesis of the Pb–Zn mineralization. These data indicate that the sulfide ores from deep levels in the Huangshaping deposit have lower and more consistent δ34S values (− 96 m level: + 4.4‰ to + 6.6‰, n = 13) than sulfides within the shallow part of the deposit (20 m level: + 8.3‰ to + 16.3‰, n = 19). The δ34S values of deep sulfides are compositionally similar to those of magmatic sulfur within southern Hunan Province, whereas the shallower sulfides most likely contain reduced sulfur derived from evaporite sediments. The sulfide ores in the Huangshaping deposit have initial 87Sr/86Sr ratios (0.707662–0.709846) that lie between the values of granitoids (0.709654–0.718271) and sedimentary carbonate (0.707484–0.708034) in the Huangshaping deposit, but the ratios decreased with time, indicating that the ore-forming fluids were a combination of magmatic and formation-derived fluids, with the influence of the latter increasing over time. The lead isotopic compositions of sulfide ores do not correlate with sulfide type and define a linear trend in a 207Pb/204Pb vs. 206Pb/204Pb diagram that is distinct from the composition of the disseminated pyrite within sedimentary carbonates and granitoids in the Huangshaping deposit, but is similar to the lead isotopic composition of sulfides within coeval skarn Pb–Zn deposits in southern Hunan Province. In addition, the sulfide ores have old signatures with relative high 207Pb/206Pb ratios, suggesting that the underlying Paleoproterozoic basement within southern Hunan Province may be the source of metals within the Huangshaping deposit.The isotope geochemistry of sulfide ores in the Huangshaping deposit shows a remarkable mixed source of sulfur and ore-forming fluids, and the metals were derived from the basement. These features are not found in representative skarn-type Pb–Zn mineralization located elsewhere. The ore-forming elements (S, Pb, and Zn) from the granitoids made an insignificant contribution to sulfide precipitation in this deposit. However, the emplacement of granitoids did provide large amounts of heat and fluids to the hydrothermal system in this area and extracted metals from the basement rocks, indicating that the Jurassic magmatism associated with the Huangshaping deposit was crucial to the Pb–Zn mineralization. 相似文献
18.
Chunli Guo Jingwen Mao Frank Bierlein Zhenghui Chen Yuchuan Chen Chuanbiao Li Zailin Zeng 《Ore Geology Reviews》2011,43(1):26-39
The Taoxikeng tungsten deposit is located in the Jiangxi Province in the southern part of China, and is one of the largest wolframite quartz-vein type tungsten deposits in the country. The deposit is situated in Sinian (Neoproterozoic) to Permian strata at the contact with the buried Taoxikeng Granite. Sensitive High Mass Resolution Ion Microprobe (SHRIMP) zircon U–Pb analysis of the granite has yielded dates of 158.7 ± 3.9 and 157.6 ± 3.5 Ma, which are interpreted as the emplacement age of the granite. Molybdenite separated from ore-bearing quartz-veins yields a Re–Os isochron age of 154.4 ± 3.8 Ma, and muscovite separated from greisen between the granite and country rocks yields 40Ar/39Ar plateau ages of 153.4 ± 1.3 and 152.7 ± 1.5 Ma. These dates obtained from three independent geochronological techniques constrain the ore-forming age of the Taoxikeng deposit and link the ore genesis to that of the underlying granite. The Taoxikeng deposit is an example of a Jurassic regional-scale tungsten–tin ore-forming event between 160 and 150 Ma in the Nanling region of the South China Block. The deposit's strikingly low rhenium contents (4.9 to 13.0 × 10? 3 μg/g) in molybdenite suggests that the ore was derived from a crustal source. This conclusion is consistent with previously published constraints from S, D and O stable isotopes, Sr–Nd systematics, and petrogenetic interpretations of spatially related granites. 相似文献
19.
Apatite is a common U- and Th-bearing accessory mineral in igneous and metamorphic rocks, and a minor but widespread detrital component in clastic sedimentary rocks. U–Pb and Th–Pb dating of apatite has potential application in sedimentary provenance studies, as it likely represents first cycle detritus compared to the polycyclic behavior of zircon. However, low U, Th and radiogenic Pb concentrations, elevated common Pb and the lack of a U–Th–Pb apatite standard remain significant challenges in dating apatite by LA-ICPMS, and consequently in developing the chronometer as a provenance tool.This study has determined U–Pb and Th–Pb ages for seven well known apatite occurrences (Durango, Emerald Lake, Kovdor, Mineville, Mud Tank, Otter Lake and Slyudyanka) by LA-ICPMS. Analytical procedures involved rastering a 10 μm spot over a 40 × 40 μm square to a depth of 10 μm using a Geolas 193 nm ArF excimer laser coupled to a Thermo ElementXR single-collector ICPMS. These raster conditions minimized laser-induced inter-element fractionation, which was corrected for using the back-calculated intercept of the time-resolved signal. A Tl–U–Bi–Np tracer solution was aspirated with the sample into the plasma to correct for instrument mass bias. External standards (Ple?ovice and 91500 zircon, NIST SRM 610 and 612 silicate glasses and STDP5 phosphate glass) along with Kovdor apatite were analyzed to monitor U–Pb, Th–Pb, U–Th and Pb–Pb ratiosCommon Pb correction employed the 207Pb method, and also a 208Pb correction method for samples with low Th/U. The 207Pb and 208Pb corrections employed either the initial Pb isotopic composition or the Stacey and Kramers model and propagated conservative uncertainties in the initial Pb isotopic composition. Common Pb correction using the Stacey and Kramers (1975) model employed an initial Pb isotopic composition calculated from either the estimated U–Pb age of the sample or an iterative approach. The age difference between these two methods is typically less than 2%, suggesting that the iterative approach works well for samples where there are no constraints on the initial Pb composition, such as a detrital sample. No 204Pb correction was undertaken because of low 204Pb counts on single collector instruments and 204Pb interference by 204Hg in the argon gas supply.Age calculations employed between 11 and 33 analyses per sample and used a weighted average of the common Pb-corrected ages, a Tera–Wasserburg Concordia intercept age and a Tera–Wasserburg Concordia intercept age anchored through common Pb. The samples in general yield ages consistent (at the 2σ level) with independent estimates of the U–Pb apatite age, which demonstrates the suitability of the analytical protocol employed. Weighted mean age uncertainties are as low as 1–2% for U- and/or Th-rich Palaeozoic–Neoproterozoic samples; the uncertainty on the youngest sample, the Cenozoic (31.44 Ma) Durango apatite, ranges from 3.7–7.6% according to the common Pb correction method employed. The accurate and relatively precise common Pb-corrected ages demonstrate the U–Pb and Th–Pb apatite chronometers are suitable as sedimentary provenance tools. The Kovdor carbonatite apatite is recommended as a potential U–Pb and Th–Pb apatite standard as it yields precise and reproducible 207Pb-corrected, 232Th–208Pb, and common Pb-anchored Tera–Wasserburg Concordia intercept ages. 相似文献
20.
This paper deals with the petrology and U–Pb dating of coesite-bearing garnet–phengite schist from the Kebuerte Valley, Chinese western Tianshan. It mainly consists of porphyroblastic garnet, phengite, quartz and chlorite with minor amounts of paragonite, albite, zoisite and chloritoid. The well preserved coesite inclusions (∼100 μm) in garnet are encircled by a narrow rim of quartz. They were identified by optical microscopy and confirmed by Raman spectroscopy. Using the computer program THERMOCALC, the peak metamorphic conditions of 29 kbar and 565 °C were obtained via garnet isopleth geothermobarometry. The predicted UHP peak mineral assemblage comprises garnet + jadeite + lawsonite + carpholite + coesite + phengite. The metapelite records prograde quartz–eclogite-facies metamorphism, UHP coesite–eclogite-facies peak metamorphism, and a late greenschist-facies overprint. Phase equilibrium modeling predicts that garnet mainly grew in the mineral assemblages garnet + jadeite + lawsonite + chloritoid + glaucophane + quartz + phengite and garnet + jadeite + lawsonite + carpholite + glaucophane + quartz + phengite. SHRIMP U–Pb zircon dating of the coesite-bearing metapelite yielded the peak metamorphic age 320.4 ± 3.7 Ma. For the first time, age data of coesite-bearing UHP metapelite from the Chinese western Tianshan are presented in this paper. They are in accord with published ages obtained from eclogite from other localities in the Chinese western Tianshan and the Kyrgyz South Tianshan and therefore prove a widespread occurrence of UHP metamorphism. 相似文献