首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Aley Nb deposit in northern British Columbia, Canada, is hosted by metamorphosed calcite and dolomite carbonatites of anorogenic affinity emplaced in Lower Paleozoic sedimentary carbonate rocks in the Devonian. Primary Nb mineralization consists of pyrochlore (commonly comprising a U–Ta-rich and F-poor core) and ferrocolumbite developed as discrete crystals and replacement products after the pyrochlore. These phases and associated heavy minerals (apatite ± magnetite ± zircon ± baddeleyite) precipitated early in the magmatic history and probably formed laterally extensive cumulate layers up to at least 1.5 m in thickness. Fractionation of copious amounts of pyrochlore is reflected in the chemical composition of the carbonatites and their constituent minerals, which show large variations in Nb/Ta value, but a near-chondritic Zr/Hf ratio. Alkali-rich metasomatic rocks (in particular, fenites and glimmerites) associated with the carbonatites are barren; the bulk of Nb in these rocks is contained in rutile, phlogopite and, to a much lesser extent, amphibole. When the passive margin of North America became the zone of plate convergence in the Cretaceous, the host carbonatites were strongly deformed, which is manifested in structures and textures indicative of grain comminution, ductile flow, folding and, locally, brecciation. The structure and continuity of the cumulate units enriched in Nb minerals were profoundly affected by these processes. Interaction of the carbonatites with crustal fluids of complex chemistry resulted in extensive dolomitization, replacement of the pyrochlore and ferrocolumbite by fersmite, and development of hydrothermal parageneses consistent with the lower greenschist-facies conditions. At these late evolutionary stages, Nb was mobilized only to a very limited extent and sequestered in a variety of minerals (fersmite, euxenite, Mg-rich ferrocolumbite and Nb-bearing rutile) typically occurring as scarce minute crystals associated with hydrothermal dolomite, quartz and chlorite. Progressive enrichment of the deformed dolomite carbonatites in heavy C and O isotopes relative to primary calcite, coupled with changes in the trace-element composition of Nb phases, indicate that the fluids were equilibrated with the wall-rock sedimentary rocks hosting the Aley deposit and were capable of transporting F, (PO4)3 , U, Th and rare-earth elements, but not Nb.  相似文献   

2.
The Montviel 250 Mt carbonatite-hosted REE–Nb deposit is hosted in a Paleoproterozoic alkaline suite located in the Sub-Province of Abitibi, in the Archean Province of the Superior. The alkaline intrusion consists of biotite clinopyroxenites, melano- to leucosyenites, a melteigite–ijolite–urtite series, riebeckite granite, a series of carbonatites and a carbonatite polygenic breccia. The carbonatite series includes silicocarbonatites, calciocarbonatites, rare magnesiocarbonatites, ferrocarbonatites and mixed carbonatites and are cut by a late, high-energy carbonatite polygenic breccia. Diamond drill hole assays and microscope observations indicate that Nb is hosted in pyrochlore from silicocarbonatite whereas the REE mineralization is mainly hosted in ferrocarbonatite, late mixed carbonatites and polygenic breccia, in REE-bearing carbonates and fluorocarbonate minerals. Diamond drill hole underground mapping and systematic assays have shed light on zones enriched in Nd and LREE with preferential Ba and Sr hydrothermal precipitation and zones enriched in Dy, Y and HREE displaying preferential F and P bearing hydrothermal precipitation. Petrographic observations, electron microprobe analyses, LA-ICPMS and X-ray diffraction were used to study the mineralization processes and to identify and quantify the REE-bearing burbankite–(Ce), carbocernaite–(Ce), ewaldite–(Y), huanghoite–(Nd), cordylite–(Ce), cordylite–(Nd), kukharenkoite–(Ce) and synchysite–(Ce). Most minerals are enriched in total LREE with values around 19.3 wt.%, have total MREE values around 2.2 wt.% and extremely variable total HREE values, with very high contents of Dy and Y averaging around 0.3 wt.% and 1.0 wt.%, respectively, and with total HREE reaching up to 10.0 wt.%. A paragenetic sequence is proposed that consists of: (1) a silicocarbonatite Nb stage, and (2) a calciocarbonatite stage, dominated by magmatism but accompanied by hydrothermal fluids, (3) a main ferrocarbonatite stage, dominated by episodes of Ba- and Sr-hydrothermalism and LREE mineralization, F- and P-hydrothermalism and HREE mineralization and evolved ferrocarbonatitic magmatism, (4) a renewed, mixed carbonatite magmatic stage with minor but increasing hydrothermalism, and (5) a terminal stage of fluid pressure buildup and explosion, leading to the creation of a HREE-enriched polygenic breccia. Globular melt inclusions of Ba–Cl–F (± Si–O) may indicate the presence and contribution of barium-bearing chlorofluoride melts during hydrothermal activity and mineralization of the carbonatite.  相似文献   

3.
The Huanglongpu carbonatite-related Mo ore field is located in the Lesser Qinling Orogenic belt in the southern margin of the North China block. The ore field is composed of six deposits, Yuantou, Wengongling, Dashigou, Shijiawan, Taoyuan and Erdaohe, all of which are genetically related to carbonatite dykes except for the Shijiawan deposit which is associated with a granitic porphyry. The Yuantou carbonatite dykes intruded into Archean gneiss and other carbonatites emplaced into Mesoproterozoic volcanic and sediment rocks. The carbonatites are mainly composed of calcite and variable amounts of quartz and K-feldspar and minor molybdenite. Re–Os dating of molybdenite from the Yuantou carbonatite yields a weighted average age of 225.0 ± 7.6 Ma, consistent with the molybdenite age (221 Ma) from the Dashigou deposit. The rocks are characterized by high heavy REE (HREE) contents and consistent flat REE distribution patterns with La/Ybcn ~ 1. Quartz in the carbonatites from Yuantou and Dashigou deposits shows consistent O isotopes (8.1–10.2‰) similar to the associated calcite (7.2–9.5‰). The quartz and associated K-feldspar contain lower Zr, Hf and higher HREE abundances and negligible Eu anomaly relative to those from the granite porphyry in Shijiawan. Both minerals are primary products in the carbonatitic liquid, and not captured from the wall-rocks or crustal-derived silicate magmas, or a hydrothermal origin. Thus, the Huanglongpu carbonatitic liquids were enriched in Si and Mo, which may be produced by intensely fractional crystallization of non-silicate minerals.  相似文献   

4.
The Bayan Obo Fe–REE–Nb deposit is the world's largest rare earth element (REE) resource and with the increasing focus on critical metal resources has become a focus of global interest. The deposit is hosted in the Palaeoproterozoic Bayan Obo Group, mainly concentrated in the H8 dolomite marble. The ores consist of light REE enriched monazite and bastnäsite, with a wide array of other REE minerals. Niobium mineralisation is hosted primarily in aeschynite and pyrochlore, although there are a wide range of other Nb-minerals. The origin of the host dolomite and ore bodies has been a subject of intense debate. The host dolomite has been proposed to be both of sedimentary origin and an igneous carbonatite. Carbonatite dykes do occur widely in the area, and consideration of the textural, geochemical and isotopic composition of the dolomite suggests an origin via intrusion of magmatic carbonatite into meta-sedimentary marble, accompanied by metasomatism. The origin of the ore bodies is complex, indicated most strongly by an ~ 1 Ga range in radiometric age determinations. Compilation of available data suggests that the ores were originally formed around 1.3 Ga (Sm–Nd isochron ages; Th–Pb ages of zircon), close in time to the intrusion of the carbonatite dykes. The ores were subsequently subjected to several stages of deformation and hydrothermal overprint, culminating in deformation, metamorphism and fluid flow related to the Caledonian subduction of the Mongolian Plate under the North China Craton from ~ 450 to 420 Ma (Th–Pb ages of monazite). This stage resulted in the formation of the strong foliation (‘banding’) of the ore. The presence of undeformed veins with alkali mineral fills, and the overprinting of the foliation by Nb minerals suggest that secondary fluid flow events may also have contributed to the metal endowment of the deposits, as well as remobilising the original Fe and REE mineralisation. The alteration mineralogy and geochemistry of the ores are comparable to those of many REE mineralised carbonatites. Initial Nd isotope ratios at 450 Ma, however, suggest crustal sources for the metals. These conflicting lines of evidence can be reconciled if a (at least) two stage isotopic evolution is accepted for the deposits, with an original mantle-sourced, carbonatite-related metal accumulation forming around 1.3 Ga with εNd close to 0. The ore was remobilised, with associated re-equilibration of Th–Pb isotope systematics during deformation at ~ 450 Ma. A further stage of alkaline hydrothermal fluid was responsible for Nb mineralisation at this stage. The complex geological history, with multiple stages of alkaline, high field strength element-rich, metasomatic fluid flow, is probably the main reason for the exceptional metal endowment of the Bayan Obo area.  相似文献   

5.
The results of isotope-geochronological and mineralogical studies of the rocks making up the Kizilcaören fluorite-barite-REE deposit, northwestern Anatolia, Turkey are discussed in the paper. The ore is a constituent of the subvolcanic complex localized in a large fault zone. The complex combines (from earlier to later rocks): (1) phonolite and trachyte stocks, (2) carbonatite and carbonate-silicate dikelike bodies; and (3) fluorite-barite-bastnaesite ore in the form of thick homogeneous veins and cement in breccia. The K-Ar dating of silicate igneous rocks and carbonatites shows that they were formed in the Chattian Age of the Oligocene 25–24 Ma ago. Mineralogical observations show that the ore is the youngest constituent in the rock complex. Supergene alteration deeply transformed ore-bearing rocks, in particular, resulting in leaching of primary minerals, presumably Ca-Mn-Fe carbonates, and in cementation of the residual bastnaesitefluorite framework by Fe and Mn hydroxides. Most of the studied rocks contain pyrochlore, LREE fluorocarbonates, Nb-bearing rutile, Fe-Mg micas, and K-feldspar. The genetic features of the deposit have been considered. In general, the ore-bearing rock complex is compared in the set of rocks and their mineralogy and geochemistry with deposits of the Gallinas Mountains in the United States, the Arshan and Khalyuta deposits in the western Transbaikalia region, and Mushugai-Khuduk deposit in Mongolia. The Kizilcaören deposit represents a variant of postmagmatic mineralization closely related to carbonatite magmatism associated with alkaline and subalkaline intermediate rocks.  相似文献   

6.
The Tomtor massif of Paleozoic ultramafic alkaline rocks and carbonatites is located in the northern part of the Sakha Republic (Yakutia). The massif (its total area is ~ 250 km2) is ~ 20 km in diameter, with a rounded shape and a concentrically zoned structure. The core of the massif consists of carbonatites surrounded by a discontinuous ring of ultramafic rocks and foidolites. The outer part is composed of alkali and nepheline syenites. All rocks are weathered and covered with eluvium, which is the thickest after carbonatites enriched in phosphates and REE. The weathering profile consists of four layers, from the top: kaolinite-crandallite, siderite, goethite, and francolite. The highest-grade ores are observed in the bedded deposit which fills depressions in “sagging” eluvium. The ores are laminated and cryptogranular, with high Nb, Y, Sc, and REE contents (on average, 4.5% Nb2O5, 7-10% REE2O3, 0.75% Y2O3, and 0.06% Sc2O3). The highest-grade ores are natural Nb and REE concentrates. The total REE content in some layers is > 10%. The morphologic features of the highest-grade phosphate ores from the northern part of the Burannyi site were studied. The ore-forming minerals belong to the pyrochlore group, crandallite group (goyazite), and monazite-Ce. The pyrochlore group minerals occur mainly as crystals that were completely replaced by barium-strontium pyrochlore and/or plumbopyrochlore but retained the original faces; also, they occur as numerous conchoidal fragments. The grains of the pyrochlore group minerals sometimes have a zonal structure, with an unaltered pyrochlore core and a reaction rim. Goyazite occurs predominantly as colloform grains. According to SEM and TEM data, monazite occurs in the ores as ~ 50 nm particles, which cover the outer part of halloysite tubes (800–3000 nm long and 300 nm in diameter) as a dense layer and make up peculiar biomorphic aggregates. The mineralogical data, the occurrence of biomorphic aggregates, and the close association of organic remains with ore minerals suggest that the high-grade ores of the Tomtor deposit, including the Burannyi site, resulted from a hydrothermal-sedimentary process with a presumably important role of bioaccumulation of REE phosphates.  相似文献   

7.
8.
Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575–300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300–200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044?0.7045 and εNd ranging from 0.65 to ?3.3 testify to their derivation from a deep mantle source of EM1 type.  相似文献   

9.
The Morro dos Seis Lagos niobium deposit (2897.9 Mt at 2.81 wt% Nb2O5) is associated with laterites formed by the weathering of siderite carbonatite. This iron-rich lateritic profile (>100 m in thickness) is divided into six textural and compositional types, which from the top to the base of the sequence is: (1) pisolitic laterite, (2) fragmented laterite, (3) mottled laterite, (4) purple laterite, (5) manganiferous laterite, and (6) brown laterite. All the laterites are composed mainly of goethite (predominant in the lower and upper varieties) and hematite (predominant in the intermediate types, formed from goethite dehydroxylation). The upper laterites were reworked, resulting in goethite formation. In the manganiferous laterite (10 m thick), the manganese oxides (mainly hollandite, with associated cerianite) occur as veins or irregular masses, formed in a late event during the development of the lateritic profile, precipitated from a solution with higher oxidation potential than that for Fe oxides, closer to the water table. Siderite is the source for the Mn. The main Nb ore mineral is Nb-rich rutile (with 11.26–22.23 wt% Nb2O5), which occurs in all of the laterites and formed at expense of a former secondary pyrochlore, together with Ce-pyrochlore (last pyrochore before final breakdown), Nb-rich goethite and minor cerianite. The paragenesis results of lateritization have been extremely intense. Minor Nb-rich brookite formed from Nb-rich rutile occurs as broken spherules with an “oolitic” (or Liesegang ring structure). Nb-rich rutile and Nb-rich brookite incorporate Nb following the [Fe3+ + (Nb, Ta) for 2Ti] substitution and both contain up to 2 wt% WO3. The laterites have an average Nb2O5 content of 2.91 wt% and average TiO2 5.00 wt% in the upper parts of the sequence. Average CeO2 concentration increases with increasing depth, from 0.12 wt% in the pisolitic type to 3.50 wt% in the brown laterite. HREE concentration is very low.  相似文献   

10.
The Hakkari nonsulfide zinc deposit is situated close to the southeastern border of Turkey. Here both sulfide and nonsulfide Zn  Pb ores are hosted in carbonate rocks of the Jurassic Cudi Group with features typical of carbonate-hosted supergene nonsulfide zinc mineralization. The regional strike extent of the mineralized district is at least 60 km. The age of the supergene deposit has not been determined, but it is probable that the main weathering happened during Upper Tertiary, possibly between Upper Miocene and Lower Pliocene. The Hakkari mineralization can be compared to other carbonate-hosted Zn–Pb deposits in Turkey, and an interpretation made of its geological setting. The zinc mineral association at Hakkari typically comprises smithsonite and hemimorphite, which apparently replace both sulfide minerals and carbonate host rock. Two generations of smithsonite are present: the first is relatively massive, the second occurs as concretions in cavities as a final filling of remnant porosity. Some zinc is also hosted within Fe–Mn-(hydr)oxides. Lead is present in cerussite, but also as partially oxidized galena. Lead can also occur in Mn-(hydr)oxides (max 30% PbO). The features of the supergene mineralization suggest that the Hakkari deposit belongs both to the “direct replacement” and the “wall-rock replacement” types of nonsulfide ores. Mineralization varies in style from tabular bodies of variable thickness (< 0.5 to 13 m) to cross-cutting breccia zones and disseminated ore minerals in pore spaces and fracture planes. At Hakkari a As–Sb–Tl(≫ Hg) geochemical association has been detected, which may point to primary sulfide mineralization, quite different from typical MVT.  相似文献   

11.
The results of study of the Nd and Sr isotope compositions of the Nb ore minerals (pyrochlore and aeschynite groups) and rocks from the Ilmenogorsk–Vishnevogorsk and Buldym carbonatite complexes of the Ural Fold Belt are presented. It has been established that pyrochlores of the early stages of ore formation and the IVC miaskite-carbonatite rocks have a single substance source corresponding to a mantle moderately depleted source according to isotope parameters. The crustal components, along with mantle, participate in the processes of ore formation within the Buldym complex.  相似文献   

12.
The Eocene (ca. 55–38 Ma) Bear Lodge alkaline complex in the northern Black Hills region of northeastern Wyoming (USA) is host to stockwork-style carbonatite dikes and veins with high concentrations of rare earth elements (e.g., La: 4140–21000 ppm, Ce: 9220–35800 ppm, Nd: 4800–13900 ppm). The central carbonatite dike swarm is characterized by zones of variable REE content, with peripheral zones enriched in HREE including yttrium. The principle REE-bearing phases in unoxidized carbonatite are ancylite and carbocernaite, with subordinate monazite, fluorapatite, burbankite, and Ca-REE fluorocarbonates. In oxidized carbonatite, REE are hosted primarily by Ca-REE fluorocarbonates (bastnäsite, parisite, synchysite, and mixed varieties), with lesser REE phosphates (rhabdophane and monazite), fluorapatite, and cerianite. REE abundances were substantially upgraded (e.g., La: 54500–66800 ppm, Ce: 11500–92100 ppm, Nd: 4740–31200 ppm) in carbonatite that was altered by oxidizing hydrothermal and supergene processes. Vertical, near surface increases in REE concentrations correlate with replacement of REE(±Sr,Ca,Na,Ba) carbonate minerals by Ca-REE fluorocarbonate minerals, dissolution of matrix calcite, development of Fe- and Mn-rich gossan, crystallization of cerianite and accompanying negative Ce anomalies in secondary fluorocarbonates and phosphates, and increasing δ18O values. These vertical changes demonstrate the importance of oxidizing meteoric water during the most recent modifications to the carbonatite stockwork. Scanning electron microscopy, energy dispersive spectroscopy, and electron probe microanalysis were used to investigate variations in mineral chemistry controlling the lateral complex-wide geochemical heterogeneity. HREE-enrichment in some peripheral zones can be attributed to an increase in the abundance of secondary REE phosphates (rhabdophane group, monazite, and fluorapatite), while HREE-enrichment in other zones is a result of HREE substitution in the otherwise LREE-selective fluorocarbonate minerals. Microprobe analyses show that HREE substitution is most pronounced in Ca-rich fluorocarbonates (parisite, synchysite, and mixed syntaxial varieties). Peripheral, late-stage HREE-enrichment is attributed to: 1) fractionation during early crystallization of LREE selective minerals, such as ancylite, carbocernaite, and Ca-REE fluorocarbonates in the central Bull Hill dike swarm, 2) REE liberated during breakdown of primary calcite and apatite with higher HREE/LREE ratios, and 3) differential transport of REE in fluids with higher PO43−/CO32− and F/CO32− ratios, leading to phosphate and pseudomorphic fluorocarbonate mineralization. Supergene weathering processes were important at the stratigraphically highest peripheral REE occurrence, which consists of fine, acicular monazite, jarosite, rutile/pseudorutile, barite, and plumbopyrochlore, an assemblage mineralogically similar to carbonatite laterites in tropical regions.  相似文献   

13.
The Dalucao deposit, located in western Sichuan Province, southwestern China, in the western part of the Yangtze Craton, is one of the largest and most extensive rare earth element (REE) deposits in the Himalayan Mianning–Dechang REE belt. Moreover, the Dalucao deposit is the only deposit identified in the southern part of the belt. The Dalucao deposit contains the No. 1, 2, and 3 orebodies; the No. 1 and 3 orebodies are both hosted in two breccia pipes, located in syenite–carbonatite host rocks. Both pipes have elliptical cross-sections at the surface, with long-axis diameters of 200–400 m and short-axis diameters of 180–200 m; the pipes extend downwards for > 450 m. No. 1 and No. 3 have total thickness varying between 55 and 175 m and 14 to 58 m respectively. The REE mineralization is associated with four brecciation events, which are recorded in each of the pipes. The ore grades in the No. 1 and 3 orebodies are similar, and consist of 1.0%–4.5% rare earth oxides (REOs). The No. 1 orebody is characterized by a Type I mineral assemblage (fluorite + barite + celestite + bastnäsite), whereas the No. 3 orebody is characterized by a Type II assemblage (fluorite + celestite + pyrite + muscovite + bastnäsite + strontianite). Argon (40Ar/39Ar) dating of hydrothermal muscovite intergrown with REE minerals in typical ores from the No. 1 and 3 orebodies yielded similar ages of 12.69 ± 0.13 and 12.23 ± 0.21 Ma, respectively, which suggest that both mineral assemblages formed coevally, rather than in paragenetic stages. Both ages are also similar to the timing of intrusion of the syenite–carbonatite complex (12.13 ± 0.19 Ma). The ore-mineral assemblages occur in breccias, veinlets, and in narrow veins. The ore veinlets, which usually show a transition to mineralized breccia or brecciated ores, are commonly enveloped by narrow veins and stringer zones with comparable mineral assemblages. The brecciated ores form 95% of the volume of the deposit, whereas brecciated ores are only a minor constituent of other deposits in the Mianning–Dechang REE belt. The carbonatite in the syenite–carbonatite complexes contains high concentrations of S (0.07–2.32 wt.%), Sr (16,500–20,700 ppm), Ba (3600–8400 ppm), and light REEs (LREE) (2848–10,768 ppm), but is depleted in high-field-strength elements (HFSE) (Nb, Ta, P, Zr, Hf, and Ti). The syenite is moderately enriched in large-ion lithophile elements (LILE), Sr (155–277 ppm), and Ba (440–755 ppm). The mineralized, altered, and fresh syenites and carbonatites exhibit similar trace element compositions and REE patterns. Brecciation events, and the Dalucao Fault and its secondary faults around the deposit, contributed to the REE mineralization by facilitating the circulation of ore-forming fluids and providing space for REE precipitation. Some hydrothermal veins composed of coarse-grained fluorite and quartz are distributed in the syenite–carbonatite complex. The oxygen isotope compositions of ore-forming fluids in equilibrium with quartz at 215 °C are − 4.95‰ to − 7.45‰, and the hydrogen isotope compositions of fluid inclusions in coarse-grained quartz are − 88.4‰ to − 105.1‰. The syenite–carbonatite complex and carbonatite are main contributors to the mineralization in the geological occurrence. Thus, the main components of the ore-forming fluids were magmatic water, meteoric water, and CO2 derived from the decarbonation of carbonatite. According to the petrographic studies, bastnäsite mineralization developed during later stages of hydrothermal evolution and overprinted the formation of the brecciated fluorite–quartz hydrothermal veins. As low-temperature isotope exchange between carbonates of the carbonatite and water-rich magmatic fluids will lead to positive shifts in δ18O values of the carbonates, C–O isotopic compositions from the bulk primary carbonatite to hydrothermal calcite and bastnäsite changed (δ18OV-SMOW from 8.0‰ to 11.6‰, and δ13C V-PDB from − 6.1 to − 8.7‰). According to the chemical composition of syenite and carbonatite, REE chloride species are the primary complexes for the transport of the REEs in the hydrothermal fluids, and the presence of bastnäsite and parisite means the REE were precipitated as fluorocarbonates. High contents of Sr, Ba and S in the syenite–carbonatite complex led to the deposition of large amount of barite and celestite.  相似文献   

14.
陕西省华阳川铀铌铅矿床是小秦岭成矿带中成矿特征最为独特的矿床,碳酸岩脉的破碎带是重要的成矿空间。未矿化的碳酸岩中矿物以方解石为主,其他矿物很少;发育铀矿化的碳酸岩脉中矿物种类繁多,大部分为方解石,其次为角闪石、金云母、榍石、褐帘石、铌钛铀矿、重晶石、磷灰石、石英、磁铁矿、碱性长石等矿物。碳酸岩的LREE含量异常高,δ13CV-PDB和δ18OV-SMOW值显示典型的火成碳酸岩特征。基于碳酸岩脉的Sr、Nd、Pb同位素比值(87Sr/86Sr-206Pb/204Pb、207Pb/204Pb-206Pb/204Pb-143Nd/144Nd-87Sr/86Sr)的关系图,初步判断华阳川铀铌铅碳酸岩脉是源于EMI的碱性硅酸盐-碳酸盐熔体-溶液结晶分异的产物。  相似文献   

15.
The Devonian (ca. 385–360 Ma) Kola Alkaline Province includes 22 plutonic ultrabasic–alkaline complexes, some of which also contain carbonatites and rarely phoscorites. The latter are composite silicate–oxide–phosphate–carbonate rocks, occurring in close space-time genetic relations with various carbonatites. Several carbonatites types are recognized at Kola, including abundant calcite carbonatites (early- and late-stage), with subordinate amounts of late-stage dolomite carbonatites, and rarely magnesite, siderite and rhodochrosite carbonatites. In phoscorites and early-stage carbonatites the rare earth elements (REE) are distributed among the major minerals including calcite (up to 490 ppm), apatite (up to 4400 ppm in Kovdor and 3.5 wt.% REE2O3 in Khibina), and dolomite (up to 77 ppm), as well as accessory pyrochlore (up to 9.1 wt.% REE2O3) and zirconolite (up to 17.8 wt.% REE2O3). Late-stage carbonatites, at some localities, are strongly enriched in REE (up to 5.2 wt.% REE2O3 in Khibina) and the REE are major components in diverse major and minor minerals such as burbankite, carbocernaite, Ca- and Ba-fluocarbonates, ancylite and others. The rare earth minerals form two distinct mineral assemblages: primary (crystallized from a melt or carbohydrothermal fluid) and secondary (formed during metasomatic replacement). Stable (C–O) and radiogenic (Sr–Nd) isotopes data indicate that the REE minerals and their host calcite and/or dolomite have crystallized from a melt derived from the same mantle source and are co-genetic.  相似文献   

16.
The Hongcheon area in the central Gyeonggi massif is a unique carbonatite locality in South Korea. The age and petrogenesis of this uncommon rock type and associated rare earth element (REE) mineralization still remain uncertain. The NNE trending, 20–50 m wide and ~ 2 km long Fe-REE ore bodies are hosted within a swarm of carbonatite dykes intruding Precambrian basement gneisses. The intrusive nature of the dykes, fenite alteration halos, exsolution intergrowths of constituent minerals and stable isotope data in the literature collectively attest to the ore formation by crystallization of carbonatite magma. The carbonatites are composed primarily of dolomite, ankerite, siderite, magnetite, monazite, apatite, strontianite and pyrite with subordinate quartz, barite, columbite, fergusonite and calcite. The principal carrier phase of REEs is monazite. The REE contents of monazite vary narrowly (TREO = 66.1–69.4 wt.%) irrespective of the textural occurrence. Although the monazite shows a sample-to-sample variation in La/Nd ratio, the textural varieties from each rock sample are similar with respect to this ratio. Thorium contents in monazite are consistently low (average = ca. 2500 ppm) with unusually high (average = ca. 2200) Th/U ratios. Sensitive high-resolution ion microprobe (SHRIMP) dating of monazite yielded a weighted mean 208Pb/232Th age of 232.9 ± 1.6 Ma, which agrees with a weighted mean 206Pb/238U age of 227.2 ± 8.3 Ma within uncertainties. This age, coupled with comparable intrusion ages documented for kimberlites and monzonite-syenite-gabbro-mangerite suite from central Korea, demonstrates the occurrence of mantle-derived alkaline igneous activities and associated REE mineralization following the North and South China collision. The intrusion of the Hongcheon carbonatite and potassic or ultrapotassic suite in central Korea may have resulted from the post-collisional detachment of the subducted slab and consequent upwelling of hot asthenosphere and melting of the overriding lithospheric mantle. Initial Nd‐Sr isotopic ranges of the Hongcheon carbonatite (εNd = ca. − 26, 87Sr/86Sr = 0.703–0.706) and previous trace element data deny a petrogenetic linkage with the coeval silicate magmas. The metasomatism in the lithospheric mantle source of the Hongcheon carbonatite must have occurred in the distant past (> 1.7 Ga) to generate significantly negative εNd values.  相似文献   

17.
High-grade fault-hosted manganese deposits at the Woodie Woodie Mine, East Pilbara, are predominantly hydrothermal in origin with a late supergene overprint. The dominant manganese minerals are pyrolusite, braunite, and cryptomelane. The ore bodies are located on, or near the unconformities between the Neoarchean Carawine Dolomite and the Paleoproterozoic Pinjian Chert breccia (weathering product of Carawine Dolomite), and sedimentary units of the overlying ca 1300–1100 Ma Manganese Group. Stratabound manganese is typically located above or adjacent to steep fault-hosted manganese. The ore bodies range in size from 0.2 to 5.5 Mt with an average of 0.5 Mt. Historically, over 35 Mt of manganese has been mined at Woodie Woodie, and current ore resources are 29.94 Mt at 39.94% Mn, 6.96% Fe (resource and reserves statement, June 2011, Consolidated Minerals Pty Ltd).Manganese mineralization at Woodie Woodie is related to northwest–southeast directed extension and basin formation during the Mesoproterozoic. Basin architecture is generally well preserved and major manganese occurrences are localised along growth faults which down-throw the Pinjian Chert Breccia into local extensional basins. Manganese ore bodies are typically located on steep 2nd and 3rd order structures that extend off the major growth faults. Mineralized structures display a dominant northeast-trend reflecting the direction of maximum dilation during northwest–southeast extension.A paragenetic sequence is identified for the manganese ore at Woodie Woodie, with early hydrothermal braunite–pyrolusite–cryptomelane–todorokite–hausmannite, overprinted by late supergene oxides. Preliminary fluid inclusion studies in quartz crystals intergrown with pyrolusite and cryptomelane indicate that primary and pseudosecondary inclusions display a range of salinities from 1 to 18 eq. wt.% NaCl and trapping temperatures estimated to be from 220º to 290º at 1 kbar pressure.A lead–manganese oxide (coronadite) is common in manganese ores at Woodie Woodie, and Pb-isotope studies of 40 lead-rich ore samples from 16 pits indicate mineralization occurred within an age range of 955–1100 Ma. A mixed source is suggested for the lead, but was predominantly basalts and/or volcanogenic sedimentary units (e.g., Jeerinah Formation) of the ca 2700 Ma Fortescue Group. The typically high Mn:Fe ratios and enrichment in elements such as Pb, As, Cu, Mo, Zn are consistent with a dominantly hydrothermal origin for the manganese at Woodie Woodie. Supergene manganese is distinguished from hypogene manganese by a marked enrichment in REE in the supergene manganese.An early structural framework, established during Neoarchean rifting, provides a major structural control on manganese ore distribution. The Woodie Woodie mine corridor is located in a zone of oblique strike-slip extension on major northwest-trending transform faults and north-trending oblique normal faults. A major transform structure at the southern end of the Woodie Woodie mine corridor (Jewel-Southwest Fault Zone) likely acted as a major fluid conduit for manganese-bearing hydrothermal fluids and this would account for the concentration of significant manganese ore occurrences to the north and south of this structure.  相似文献   

18.
Tabular–type uranium ore deposits (the Hangjinqi and Daying deposits) have recently been found in the Middle Jurassic Zhiluo Formation, north of the Ordos Basin, China. Petrographic observations, the chemical composition of U minerals determined by EMPA and fs–LA–ICP–MS, whole rock geochemistry and the microthermometric study of fluid inclusions have been integrated to characterize the genetic conditions of the U mineralization in the Hangjinqi sandstone–hosted deposit. Two different groups of U minerals have been identified. One group includes coffinite(I) associated with vanadium–rich micas. Coffinite(I) is enriched in vanadium (V) and devoid of iron (Fe) and yttrium (Y) and has a LREE–enriched chondrite–normalized REE pattern. The U minerals of this group are similar to meteoric fluid infiltration related deposits. The second group has coeval coffinite(II) and coarsely crystalline calcite cement. Coffinite(II) is enriched in Y and Fe and depleted in V and is marked by a flat chondrite–normalized REE pattern, which is compatible with typical hydrothermal genetic deposits with high–salinity mineralizing fluids. The temperature and salinity of the primary aqueous inclusions in the ore–stage calcite are 120–180 °C and 8.00–16.34% (eq. wt% NaCl), respectively. These mineral assemblages, temperatures and salinities indicate that the Hangjinqi deposit was affected by two distinct types of ore–bearing fluids: low–salinity meteoric waters and high–salinity hydrothermal fluids. The meteoric fluids event began at 97 ± 5 Ma with the titling of the northern Ordos Basin and the uplift of the Hetao region to the north. Hydrothermal U mineralization occurred since 39 ± 2 Ma with the rifting of the Hetao graben. Thus, the previous biogenic model for the U mineralization should be modified in the uraniferous region of the north Ordos Basin.  相似文献   

19.
Bolshetagninskoe deposit is one of the most important Russia niobium potential sources. It is confined to carbonatite complex of the same name that is situated in the Sayan Mountains, Eastern Siberia. In the result of VIMS exploration niobium ores reserves have been applied by Russian State Reserve Committee in 2012 year. Ores contain about 1% Nb2O5 and are unique in that the economic pyrochlore mineralization is concentrated in alkaline metasomatic rocks but not in carbonatites[1]. During exploration 47 borehole samples and 6 bulk samples were collected and studied by process mineralogy techniques (optic mineralogical analyze, optic image analyzer system, XRD, EPMA). 26 borehole samples and 2 bulk samples were tested by rougher floatation to define geometallurgical items and to understand the ore’s behavior. Four volumetric samples have been tested by commissioned flowsheet (radiometric separation → impact milling → selective floatation → pyrochlore leaching → ferroniobium). There are three ore types in the Bolshetagninskoe deposit: microcline-pyrochlore (MP), biotite-columbite-pyrochlore (BCP) and carbonate-pyrochlore (CP). MP type is the most important one. MP ore consists of microcline (59wt%–70wt%) with minor carbonates, apatite, sulfides, goethite. Pyrochlore, the essential Nb mineral (94% of ore Nb content), occurs as fine grains (weighted average grain size is 57 μn). Since pyrochlore grains are fine and friable, the ore preparation size and method is a main problem of its treatment. While primary ore processing is effective to remove about 30% waste material it is important to evaluate its influence on floatation feed grade.  相似文献   

20.
The behavior of tantalum in carbonatites and related rocks of alkaline complexes was analyzed. In particular, we considered factors favorable for its accumulation in carbonatites, both in absolute amount and relative to its companion element niobium.The contents of both elements show moderate variations in earlier alkaline silicate rocks and more significant variations in carbonatites; this difference is especially pronounced for tantalum.Their simultaneous accumulation in carbonatites is controlled mainly by the affiliation to certain temperature facies, when tantalate-niobate phases with high Ta2O5 contents (up to 26 wt %) are formed. The accumulation of these elements with the formation of almost purely niobian pyrochlores and Ta-U pyrochlores (hatchettolites) occurs efficiently only during the formation of metasomatic zoning with the separation of purely Nb and Nb-Ta mineralization between the zones of the metasomatic column. This process is characteristic mainly of relatively deep-seated massifs, where the metasomatic processes of carbonatite formation are dominant, at least for the given temperature facies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号