首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reviews the character and origin of primary and supergene economic deposits of niobium associated with carbonatites. The Brazilian supergene deposits account for about 92% of the total worldwide production of Nb, with the primary St. Honoré carbonatite and other sources accounting for only for 7 and 1%, respectively. The emphasis of the review is upon the styles of Nb mineralization and the geological factors which lead to economic concentrations of Nb-bearing minerals. Primary economic deposits of Nb are associated principally with carbonatites found in diverse types of plutonic alkaline rock complexes. Primary magmas are principally those of the melilitite, nephelinite and aillikite clans. Although many primary niobium deposits are associated with carbonatites, ijolites and syenites in the same alkaline complexes can also contain significant Nb mineralization in the form of niobian titanite and diverse Nb–Zr-silicates (marianoite-wöhlerite); these potential sources of Nb have not as yet been explored or exploited. Primary Nb deposits can be regarded as large tonnage, low grade (typically < 1 wt.% Nb2O5) disseminated ore deposits. Niobium is hosted principally by diverse Na–Ca–U-pyrochlores, ferrocolumbite and fersmite. Every actual, and potential, primary Nb deposit is unique with respect to the varieties of pyrochlore present; extent of replacement by other minerals; and degree of alteration by deuteric/hydrothermal fluids. Within a given occurrence individual petrographically-defined units of carbonatite contain distinct suites of pyrochlore. Bulk rock analysis for Nb gives no indication of the style of mineralization and provides no information of use regarding beneficiation of the ore. Evaluation of any Nb deposit requires extensive definition drilling and detailed mineralogical studies. Primary Nb deposits result from the early crystallization of Nb-bearing minerals in magma chambers followed by crystal fractionation, magma mixing, and redistribution of Nb-minerals by density currents. Supergene Nb deposits occur in laterites formed by extensive weathering of primary carbonatites. The process results in the decomposition of apatite and magnetite, removal of soluble carbonates and physical concentration of resistant primary pyrochlore. Intense lateritization results initially in the replacement of primary pyrochlores by supergene, commonly Ba, Sr, K or Pb-bearing pyrochlores, and ultimately complete decomposition of pyrochlore and formation of Nb-bearing rutile, brookite, and anatase. The Nb contents of the laterites can be enriched up to 10 times or more above those of the primary carbonatite. Commonly, pyrochlores in laterites are fine grained and intimately intergrown with hematite, goethite and minerals of the crandallite group. The different styles of mineralization of primary and secondary Nb deposits require different methods of ore beneficiation.  相似文献   

2.
The Devonian (ca. 385–360 Ma) Kola Alkaline Province includes 22 plutonic ultrabasic–alkaline complexes, some of which also contain carbonatites and rarely phoscorites. The latter are composite silicate–oxide–phosphate–carbonate rocks, occurring in close space-time genetic relations with various carbonatites. Several carbonatites types are recognized at Kola, including abundant calcite carbonatites (early- and late-stage), with subordinate amounts of late-stage dolomite carbonatites, and rarely magnesite, siderite and rhodochrosite carbonatites. In phoscorites and early-stage carbonatites the rare earth elements (REE) are distributed among the major minerals including calcite (up to 490 ppm), apatite (up to 4400 ppm in Kovdor and 3.5 wt.% REE2O3 in Khibina), and dolomite (up to 77 ppm), as well as accessory pyrochlore (up to 9.1 wt.% REE2O3) and zirconolite (up to 17.8 wt.% REE2O3). Late-stage carbonatites, at some localities, are strongly enriched in REE (up to 5.2 wt.% REE2O3 in Khibina) and the REE are major components in diverse major and minor minerals such as burbankite, carbocernaite, Ca- and Ba-fluocarbonates, ancylite and others. The rare earth minerals form two distinct mineral assemblages: primary (crystallized from a melt or carbohydrothermal fluid) and secondary (formed during metasomatic replacement). Stable (C–O) and radiogenic (Sr–Nd) isotopes data indicate that the REE minerals and their host calcite and/or dolomite have crystallized from a melt derived from the same mantle source and are co-genetic.  相似文献   

3.
The Tomtor massif of Paleozoic ultramafic alkaline rocks and carbonatites is located in the northern part of the Sakha Republic (Yakutia). The massif (its total area is ~ 250 km2) is ~ 20 km in diameter, with a rounded shape and a concentrically zoned structure. The core of the massif consists of carbonatites surrounded by a discontinuous ring of ultramafic rocks and foidolites. The outer part is composed of alkali and nepheline syenites. All rocks are weathered and covered with eluvium, which is the thickest after carbonatites enriched in phosphates and REE. The weathering profile consists of four layers, from the top: kaolinite-crandallite, siderite, goethite, and francolite. The highest-grade ores are observed in the bedded deposit which fills depressions in “sagging” eluvium. The ores are laminated and cryptogranular, with high Nb, Y, Sc, and REE contents (on average, 4.5% Nb2O5, 7-10% REE2O3, 0.75% Y2O3, and 0.06% Sc2O3). The highest-grade ores are natural Nb and REE concentrates. The total REE content in some layers is > 10%. The morphologic features of the highest-grade phosphate ores from the northern part of the Burannyi site were studied. The ore-forming minerals belong to the pyrochlore group, crandallite group (goyazite), and monazite-Ce. The pyrochlore group minerals occur mainly as crystals that were completely replaced by barium-strontium pyrochlore and/or plumbopyrochlore but retained the original faces; also, they occur as numerous conchoidal fragments. The grains of the pyrochlore group minerals sometimes have a zonal structure, with an unaltered pyrochlore core and a reaction rim. Goyazite occurs predominantly as colloform grains. According to SEM and TEM data, monazite occurs in the ores as ~ 50 nm particles, which cover the outer part of halloysite tubes (800–3000 nm long and 300 nm in diameter) as a dense layer and make up peculiar biomorphic aggregates. The mineralogical data, the occurrence of biomorphic aggregates, and the close association of organic remains with ore minerals suggest that the high-grade ores of the Tomtor deposit, including the Burannyi site, resulted from a hydrothermal-sedimentary process with a presumably important role of bioaccumulation of REE phosphates.  相似文献   

4.
Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575–300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300–200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044?0.7045 and εNd ranging from 0.65 to ?3.3 testify to their derivation from a deep mantle source of EM1 type.  相似文献   

5.
In northwest Turkey, high-pressure metamorphic rocks occur as exotic blocks within the Çetmi mélange located on the south of the Biga Peninsula. Rutile chemistry and rutile thermometry obtained from the eclogite and associated garnet-mica schist in the Çetmi mélange indicate significant trace element behaviour of subducted oceanic crust and source-rock lithology of detrital rutiles. Cr and Nb contents in detrital rutile from garnet-mica schist vary from 355 to 1026 μg/g and 323 and 3319 μg/g, respectively. According to the Cr-Nb discrimination diagram, the results show that 85% of the detrital rutiles derived from metapelitic and 15% from metamafic rocks. Temperatures calculated for detrital rutiles and rutiles in eclogite range from 540 °C to 624 °C with an average of 586 °C and 611 °C to 659 °C with an average of 630 °C at P = 2.3 GPa, respectively. The calculated formation temperatures suggest that detrital rutiles are derived from amphibolite- and eclogite-facies metamorphic rocks. Amphibolite-facies rocks of the Kazdağ Massif could be the primary source rocks for the rutiles in the garnet-mica schist from the Çetmi mélange. Nb/Ta ratios of metapelitic and metamafic rutiles fall between 7–24 and 11–25, respectively. Nb/Ta characteristics in detrital rutiles may reflect a change in source-rock lithology. However, Nb/Ta ratios of rutiles in eclogite vary from 9 to 22. The rutile grains from eclogites are dominated by subchondritic Nb/Ta ratios. It can be noted that subchondritic Nb/Ta may record rutile growth from local sinks of aqueous fluids from metamorphic dehydration.  相似文献   

6.
The present work is a first comprehensive study of the trace-element composition and zoning in clinopyroxene- and amphibole-group minerals from carbonatites, incorporating samples from 14 localities worldwide (Afrikanda, Aley, Alnö, Blue River, Eden Lake, Huayangchuan, Murun, Oka, Ozernaya Varaka, Ozernyi, Paint Lake, Pinghe, Prairie Lake, Turiy Mys). The new electron-microprobe data presented here significantly extend the known compositional range of clinopyroxenes and amphiboles from carbonatites. These data confirm that calcic and sodic clinopyroxenes from carbonatites are not separated by a compositional gap, instead forming an arcuate trend from nearly pure diopside through intermediate aegirine–augite compositions confined to a limited range of CaFeSi2O6 contents (15–45 mol%) to aegirine with < 25 mol% of CaMgSi2O6 and a negligible proportion of CaFeSi2O6. A large set of LA-ICPMS data shows that the clinopyroxenes of different composition are characterized by relatively low levels of Cr, Co and Ni (≤ 40 ppm) and manifold variations in the concentration of trivalent lithophile and some incompatible elements (1–150 ppm Sc, 26–6870 ppm V, 5–550 ppm Sr, 90–2360 ppm Zr, and nil to 150 ppm REE), recorded in some cases within a single crystal. The relative contribution of clinopyroxenes to the whole-rock Rb, Nb, Ta, Th and U budget is negligible. The major-element compositional range of amphiboles spans from alkali- and Al-poor members (tremolite) to Na–Al-rich Mg- or, less commonly, Fe-dominant members (magnesiohastingsite, hastingsite and pargasite), to calcic–sodic, sodic and potassic–sodic compositions intermediate between magnesio-ferrikatophorite, richterite, magnesioriebeckite, ferri-nyböite and (potassic-)magnesio-arfvedsonite. In comparison with the clinopyroxenes, the amphiboles contain similar levels of tetravalent high-field-strength elements (Ti, Zr and Hf) and compatible transition elements (Cr, Co and Ni), but are capable of incorporating much higher concentrations of Sc and incompatible elements (up to 500 ppm Sc, 43 ppm Rb, 1470 ppm Sr, 1230 ppm Ba, 80 ppm Pb, 1070 ppm REE, 140 ppm Y, and 180 ppm Nb). In some carbonatites, amphiboles contribute as much as 25% of the Zr + Hf, 15% of the Sr and 35% of the Rb + Ba whole-rock budget. Both clinopyroxenes and amphiboles may also host a significant share (~ 10%) of the bulk heavy-REE content. Our trace-element data show that the partitioning of REE between clinopyroxene (and, in some samples, amphibole) and the melt is clearly bimodal and requires a revision of the existing models assuming single-site REE partitioning. Clinopyroxenes and amphiboles from carbonatites exhibit a diversity of zoning patterns that cannot be explained exclusively on the basis of crystal chemistry and relative compatibility of different trace-element in these minerals. Paragenetic analysis indicates that in most cases, the observed zoning patterns develop in response to removal of selected trace elements by phases co-precipitating with clinopyroxene and amphibole (especially magnetite, fluorapatite, phlogopite and pyrochlore). With the exception of magnesiohastingsite–richterite sample from Afrikanda, the invariability of trace-element ratios in the majority of zoned clinopyroxene and amphibole crystals implies that fluids are not involved in the development of zoning in these minerals. The implications of the new trace-element data for mineral exploration targeting REE, Nb and other types of carbonatite-hosted rare-metal mineralization are discussed.  相似文献   

7.
Both Nb–Ta-mineralized and Nb–Ta-poor syenitic dikes in the Panxi region (SW China) are spatially and temporally associated with syenitic plutons, which are part of the ~ 260 Ma Emeishan large igneous province. These syenitic dikes are NW-striking, and have width varying from 1 to 5 m and length from 50 to 300 m. The dikes are mainly composed of K-feldspar, albite, aegirine and arfvedsonite, however, mineral modes are different in the Nb–Ta-mineralized and Nb–Ta-poor syenitic dikes. The major Nb–Ta-bearing mineral in the dikes is pyrochlore, which is closely associated with albite and occurs in places with intensive albitization. Rocks of the Nb–Ta-mineralized syenitic dikes contain more albite and less K-feldspar than the Nb–Ta-poor dikes, and have compositions more evolved than the Nb–Ta-poor dikes, indicating that the Nb–Ta-mineralized syenitic dikes formed from a highly evolved magma. We analyzed the B concentrations and B isotopic compositions of the samples of both Nb–Ta-mineralized and Nb–Ta-poor syenitic dikes and associated syenitic pluton using a single column purification method and ICP-AES and MC-ICP-MS techniques. The samples of the Nb–Ta-mineralized syenitic dikes have whole-rock B concentrations ranging from 11.4 to 23.9 ppm and δ11B values from − 17.95 to − 14.54‰, whereas the samples of the Nb–Ta-poor dikes and syenitic plutons have B concentrations varying from 3.32 to 16.5 ppm and δ11B values from − 13.45 to − 10.02‰. The high B concentration of the Nb–Ta-mineralized dikes relative to the Nb–Ta-poor dikes is consistent with that B is incompatible and tends to be rich in more evolved magma. The relatively low δ11B values of the Nb–Ta-mineralized dikes indicate that the B isotopes may have fractionated between fluids and rocks in a transitional, magmatic–hydrothermal stage. We propose that the highly evolved magmas in a transitional, magmatic–hydrothermal stage may have Nb– and Ta–fluorine complexes dissolved in the hydrothermal fluids in the presence of Na+. Albite crystallization due to intensive albitization in this stage resulted in the decrease of Na+ in the fluids, decomposing the Nb– and Ta–fluorine complexes. The released Nb and Ta from the complexes were then dissolved in the fluids and finally entered the lattice of pyrochlore crystals in the stage of albitization.  相似文献   

8.
The Huanglongpu carbonatite-related Mo ore field is located in the Lesser Qinling Orogenic belt in the southern margin of the North China block. The ore field is composed of six deposits, Yuantou, Wengongling, Dashigou, Shijiawan, Taoyuan and Erdaohe, all of which are genetically related to carbonatite dykes except for the Shijiawan deposit which is associated with a granitic porphyry. The Yuantou carbonatite dykes intruded into Archean gneiss and other carbonatites emplaced into Mesoproterozoic volcanic and sediment rocks. The carbonatites are mainly composed of calcite and variable amounts of quartz and K-feldspar and minor molybdenite. Re–Os dating of molybdenite from the Yuantou carbonatite yields a weighted average age of 225.0 ± 7.6 Ma, consistent with the molybdenite age (221 Ma) from the Dashigou deposit. The rocks are characterized by high heavy REE (HREE) contents and consistent flat REE distribution patterns with La/Ybcn ~ 1. Quartz in the carbonatites from Yuantou and Dashigou deposits shows consistent O isotopes (8.1–10.2‰) similar to the associated calcite (7.2–9.5‰). The quartz and associated K-feldspar contain lower Zr, Hf and higher HREE abundances and negligible Eu anomaly relative to those from the granite porphyry in Shijiawan. Both minerals are primary products in the carbonatitic liquid, and not captured from the wall-rocks or crustal-derived silicate magmas, or a hydrothermal origin. Thus, the Huanglongpu carbonatitic liquids were enriched in Si and Mo, which may be produced by intensely fractional crystallization of non-silicate minerals.  相似文献   

9.
《Chemical Geology》2006,225(1-2):137-155
Carbon stable isotopes from carbonate minerals (mainly dolomite) from six wells from the Lower Triassic Sherwood Sandstones of the Corrib Gas Field, Slyne Basin, west of Ireland, allow stratigraphic correlation. The results also provide information on palaeoenvironmental change during the deposition of these continental redbed sedimentary rocks. The Triassic reservoir rocks have been buried to > 4000 m and heated to > 165 °C and now contain methane-rich gas. Although the oxygen isotopic signal has been at least partially reset during burial and heating, a primary carbon isotopic signal appears to have survived diagenesis. The carbon isotope ratio varies from − 3.2‰ to + 2.1‰. All six wells show similar stratigraphic changes when all the carbon isotope data are plotted relative to a major playa horizon. δ13C increases from about − 3‰ at the base of the Sherwood to about + 2‰ 170 m above the base. δ13C then decreases to about − 2‰ for the next 70 m and remains steady for the following 50 m. The top 20 m of the Sherwood contains carbonate with a δ13C values decreasing to about − 3‰. The occurrence of a stratigraphically-correlatable carbon isotope pattern implies that the primary evolution signal has been preserved. The change in δ13C correlates with indicators of aridity and biological stress such that the highest δ13C values are in sedimentary rocks deposited in a playa lake (arid times); these rocks contain the greatest quantity of dolomite cement. Conversely, the lowest δ13C values correspond to sedimentary rocks deposited from well-developed rivers (relatively humid times) from the lowest quantity of dolomite cement. The same carbon isotope evolution has been found in another well in the Slyne basin and in Belgium, suggesting that the palaeoenvironmental isotope signal in the Triassic sedimentary rocks of the Corrib Field may have a regional significance.  相似文献   

10.
The Tianqiao Pb–Zn deposit in the western Yangtze Block, southwest China, is part of the Sichuan–Yunnan–Guizhou (SYG) Pb–Zn metallogenic province. Ore bodies are hosted in Devonian and Carboniferous carbonate rocks, structurally controlled by a thrust fault and anticline, and carried about 0.38 million tons Pb and Zn metals grading > 15% Pb + Zn. Both massive and disseminated Pb–Zn ores occur either as veinlets or disseminations in dolomitic rocks. They are composed of ore minerals, pyrite, sphalerite and galena, and gangue minerals, calcite and dolomite. δ34S values of sulfide minerals range from + 8.4 to + 14.4‰ and display a decreasing trend from pyrite, sphalerite to galena (δ34Spyrite > δ34Ssphalerite > δ34Sgalena). We interpret that reduced sulfur derived from sedimentary sulfate (gypsum and barite) of the host Devonian to Carboniferous carbonate rocks by thermal–chemical sulfate reduction (TSR). δ13CPDB and δ18OSMOW values of hydrothermal calcite range from –5.3 to –3.4‰ and + 14.9 to + 19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid was a mixture origin of mantle, marine carbonate rocks and sedimentary organic matter. Sulfide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.378 to 18.601, 207Pb/204Pb = 15.519 to 15.811 and 208Pb/204Pb = 38.666 to 39.571) that are plotted in the upper crust Pb evolution curve and overlap with that of Devonian to Carboniferous carbonate rocks and Proterozoic basement rocks in the SYG province. Pb isotope compositions suggest derivation of Pb metal from mixed sources. Sulfide minerals have 87Sr/86Sr ratios ranging from 0.7125 to 0.7167, higher than Sinian to Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than basement rocks. Again, Sr isotope compositions are supportive of a mixture origin of Sr. They have an Rb–Sr isotopic age of 191.9 ± 6.9Ma, possibly reflecting the timing of Pb–Zn mineralization. C–O–S–Pb–Sr isotope compositions of the Tianqiao Pb–Zn deposit indicate a mixed origin of ore-forming fluids, which have Pb–Sr isotope homogenized before the mineralization. The Permian flood basalts acted as an impermeable layer for the Pb–Zn mineralization hosted in the Devonian–Carboniferous carbonate rocks.  相似文献   

11.
The Morro dos Seis Lagos niobium deposit (2897.9 Mt at 2.81 wt% Nb2O5) is associated with laterites formed by the weathering of siderite carbonatite. This iron-rich lateritic profile (>100 m in thickness) is divided into six textural and compositional types, which from the top to the base of the sequence is: (1) pisolitic laterite, (2) fragmented laterite, (3) mottled laterite, (4) purple laterite, (5) manganiferous laterite, and (6) brown laterite. All the laterites are composed mainly of goethite (predominant in the lower and upper varieties) and hematite (predominant in the intermediate types, formed from goethite dehydroxylation). The upper laterites were reworked, resulting in goethite formation. In the manganiferous laterite (10 m thick), the manganese oxides (mainly hollandite, with associated cerianite) occur as veins or irregular masses, formed in a late event during the development of the lateritic profile, precipitated from a solution with higher oxidation potential than that for Fe oxides, closer to the water table. Siderite is the source for the Mn. The main Nb ore mineral is Nb-rich rutile (with 11.26–22.23 wt% Nb2O5), which occurs in all of the laterites and formed at expense of a former secondary pyrochlore, together with Ce-pyrochlore (last pyrochore before final breakdown), Nb-rich goethite and minor cerianite. The paragenesis results of lateritization have been extremely intense. Minor Nb-rich brookite formed from Nb-rich rutile occurs as broken spherules with an “oolitic” (or Liesegang ring structure). Nb-rich rutile and Nb-rich brookite incorporate Nb following the [Fe3+ + (Nb, Ta) for 2Ti] substitution and both contain up to 2 wt% WO3. The laterites have an average Nb2O5 content of 2.91 wt% and average TiO2 5.00 wt% in the upper parts of the sequence. Average CeO2 concentration increases with increasing depth, from 0.12 wt% in the pisolitic type to 3.50 wt% in the brown laterite. HREE concentration is very low.  相似文献   

12.
We studied clastics of high-alumina garnet-kyanite-mica schists and garnet-kyanite-quartz granofelses, including diamond-bearing ones, found in the eluvial sediments near Lake Barchi. In contents of major elements the studied rocks correspond to argillaceous shales. The garnet-kyanite-quartz granofelses are poorer in K (0.49-1.35 wt.% K2O) than the garnet-kyanite-mica schists (4.9-2.2 wt.% K2O) but have the same contents of other major components. The REE patterns of most of the garnet-kyanite-phengite schists are similar to those of the Post-Archean Australian Shale (PAAS) (xLa/Yb = 13). All garnet-kyanite-quartz rocks are much stronger depleted in LREE (xLa/Yb = 1.4) and other incompatible elements. Our studies show that allanite and monazite are the main concentrators of LREE and Th in the garnet-kyanite-phengite rocks of the Barchi site. Monazite, occurring as inclusions in garnet, contains not only LREE but also Th, U, and Pb. Rutile of the nondepleted rocks is enriched in Fe and Nb impurities only. The garnet-kyanite-quartz granofelses bear rutile, apatite, and xenotime as accessory phases. Rutile of the depleted rocks shows wide variations in contents of Nb, Ta, and V impurities. In places, the contents of Nb and Ta reach 10.5 and 2.3 wt.%, respectively. The rutile decomposes into rutile with Nb (1.4 wt.%) and Fe (0.87 wt.%) impurities and titanium oxide rich in Fe (6.61 wt.%), Nb (up to 20.8 wt.%), and Ta (up to 2.81%) impurities. Based on the measured contents of incompatible elements in differently depleted high-alumina rocks, the following series of element mobility during UHP metamorphism has been established: Th > Ce > La > Pr > Nd > K > Ba > Rb > Cs > Sm > Eu. The contents of U, P, and Zr in the depleted rocks are similar to those in the nondepleted rocks. The studies have shown that metapelites subducted to the depths with diamond stability conditions can be depleted to different degrees. This might be either due to their exhumation from different depths of the subduction zone or to the presence of an external source of water controlling the temperature of dissolution of phengite and the formation of supercritical fluid/melt.  相似文献   

13.
The Matomb region constitutes an important deposit of detrital rutile. The rutile grains are essentially coarse (> 3 mm), tabular and elongated, due to the short sorting of highly weathered detritus. This study reports the major, trace, and rare-earth element distribution in the bulk and rutile concentrated fractions. The bulk sediments contain minor TiO2 concentrations (1–2 wt%), high SiO2 contents (∼77–95 wt%) and variable contents in Al2O3, Fe2O3, Zr, Y, Ba, Nb, Cr, V, and Zn. The total REE content is low to moderate (86–372 ppm) marked by high LREE-enrichment (LREE/HREE ∼5–25.72) and negative Eu anomalies (Eu/Eu* ∼0.51–0.69). The chemical index of alteration (CIA) shows that the source rocks are highly weathered, characteristic of humid tropical zone with the development of ferrallitic soils. In the concentrated fractions, TiO2 abundances exceed 94 wt%. Trace elements with high contents include V, Nb, Cr, Sn, and W. These data associated with several binary diagrams show that rutile is the main carrier of Ti, V, Nb, Cr, Sn, and W in the alluvia. The REE content is very low (1–9 ppm) in spite of the LREE-abundance (LREE/HREE ∼4–40). The rutile concentrated fractions exhibit anomalies in Ce (Ce/Ce* ∼0.58 to 0.83; ∼1.41–2.50) and Eu (Eu/Eu* ∼0.42; 1.20–1.64). The high (La/Sm)N, (La/Yb)N and (Gd/Yb)N ratios indicate high REE fractionation.  相似文献   

14.
The Bayan Obo Fe–REE–Nb deposit is the world's largest rare earth element (REE) resource and with the increasing focus on critical metal resources has become a focus of global interest. The deposit is hosted in the Palaeoproterozoic Bayan Obo Group, mainly concentrated in the H8 dolomite marble. The ores consist of light REE enriched monazite and bastnäsite, with a wide array of other REE minerals. Niobium mineralisation is hosted primarily in aeschynite and pyrochlore, although there are a wide range of other Nb-minerals. The origin of the host dolomite and ore bodies has been a subject of intense debate. The host dolomite has been proposed to be both of sedimentary origin and an igneous carbonatite. Carbonatite dykes do occur widely in the area, and consideration of the textural, geochemical and isotopic composition of the dolomite suggests an origin via intrusion of magmatic carbonatite into meta-sedimentary marble, accompanied by metasomatism. The origin of the ore bodies is complex, indicated most strongly by an ~ 1 Ga range in radiometric age determinations. Compilation of available data suggests that the ores were originally formed around 1.3 Ga (Sm–Nd isochron ages; Th–Pb ages of zircon), close in time to the intrusion of the carbonatite dykes. The ores were subsequently subjected to several stages of deformation and hydrothermal overprint, culminating in deformation, metamorphism and fluid flow related to the Caledonian subduction of the Mongolian Plate under the North China Craton from ~ 450 to 420 Ma (Th–Pb ages of monazite). This stage resulted in the formation of the strong foliation (‘banding’) of the ore. The presence of undeformed veins with alkali mineral fills, and the overprinting of the foliation by Nb minerals suggest that secondary fluid flow events may also have contributed to the metal endowment of the deposits, as well as remobilising the original Fe and REE mineralisation. The alteration mineralogy and geochemistry of the ores are comparable to those of many REE mineralised carbonatites. Initial Nd isotope ratios at 450 Ma, however, suggest crustal sources for the metals. These conflicting lines of evidence can be reconciled if a (at least) two stage isotopic evolution is accepted for the deposits, with an original mantle-sourced, carbonatite-related metal accumulation forming around 1.3 Ga with εNd close to 0. The ore was remobilised, with associated re-equilibration of Th–Pb isotope systematics during deformation at ~ 450 Ma. A further stage of alkaline hydrothermal fluid was responsible for Nb mineralisation at this stage. The complex geological history, with multiple stages of alkaline, high field strength element-rich, metasomatic fluid flow, is probably the main reason for the exceptional metal endowment of the Bayan Obo area.  相似文献   

15.
The Montviel 250 Mt carbonatite-hosted REE–Nb deposit is hosted in a Paleoproterozoic alkaline suite located in the Sub-Province of Abitibi, in the Archean Province of the Superior. The alkaline intrusion consists of biotite clinopyroxenites, melano- to leucosyenites, a melteigite–ijolite–urtite series, riebeckite granite, a series of carbonatites and a carbonatite polygenic breccia. The carbonatite series includes silicocarbonatites, calciocarbonatites, rare magnesiocarbonatites, ferrocarbonatites and mixed carbonatites and are cut by a late, high-energy carbonatite polygenic breccia. Diamond drill hole assays and microscope observations indicate that Nb is hosted in pyrochlore from silicocarbonatite whereas the REE mineralization is mainly hosted in ferrocarbonatite, late mixed carbonatites and polygenic breccia, in REE-bearing carbonates and fluorocarbonate minerals. Diamond drill hole underground mapping and systematic assays have shed light on zones enriched in Nd and LREE with preferential Ba and Sr hydrothermal precipitation and zones enriched in Dy, Y and HREE displaying preferential F and P bearing hydrothermal precipitation. Petrographic observations, electron microprobe analyses, LA-ICPMS and X-ray diffraction were used to study the mineralization processes and to identify and quantify the REE-bearing burbankite–(Ce), carbocernaite–(Ce), ewaldite–(Y), huanghoite–(Nd), cordylite–(Ce), cordylite–(Nd), kukharenkoite–(Ce) and synchysite–(Ce). Most minerals are enriched in total LREE with values around 19.3 wt.%, have total MREE values around 2.2 wt.% and extremely variable total HREE values, with very high contents of Dy and Y averaging around 0.3 wt.% and 1.0 wt.%, respectively, and with total HREE reaching up to 10.0 wt.%. A paragenetic sequence is proposed that consists of: (1) a silicocarbonatite Nb stage, and (2) a calciocarbonatite stage, dominated by magmatism but accompanied by hydrothermal fluids, (3) a main ferrocarbonatite stage, dominated by episodes of Ba- and Sr-hydrothermalism and LREE mineralization, F- and P-hydrothermalism and HREE mineralization and evolved ferrocarbonatitic magmatism, (4) a renewed, mixed carbonatite magmatic stage with minor but increasing hydrothermalism, and (5) a terminal stage of fluid pressure buildup and explosion, leading to the creation of a HREE-enriched polygenic breccia. Globular melt inclusions of Ba–Cl–F (± Si–O) may indicate the presence and contribution of barium-bearing chlorofluoride melts during hydrothermal activity and mineralization of the carbonatite.  相似文献   

16.
The Songshugang granite, hidden in the Sinian metasedimentary stratum, is a highly evolved rare-element granite in northeastern Jiangxi province, South China. The samples were systematically taken from the CK-102 drill hole at the depth of 171–423 m. Four types of rocks were divided from the bottom upwards: topaz albite granite as the main body, greisen nodules, topaz K-feldspar granite and pegmatite layer. Electron-microprobe study reveals that the rare-element minerals of the Songshugang granite are very different from those of other rare-element granites. Mn# [Mn/(Fe + Mn)] and Ta# [Ta/(Nb + Ta)] of columbite-group minerals and Hf# [Hf/(Zr + Hf)] of zircon are nearly constant within each type of rocks. However, back-scattered electron imaging revealed that Nb–Ta oxides and zircon of the Songshugang granite, especially those of topaz albite granite, topaz K-feldspar granite and greisen, are commonly characterized by a specific two-stage texture on the crystal scale. The early-stage Nb–Ta oxide is simply subhedral-shaped columbite-(Fe) (CGM-I) with low Mn# (0.16–0.37) and Ta# (0.05–0.29). Columbite-(Fe) is penetrated by the later-stage tantalite veinlets (CGM-II) or surrounded by complex Nb–Ta–Sn–W mineral assemblages, including tantalite-(Fe), wodginite (sl), cassiterite, and ferberite. Tantalite has wide range of Mn# values (0.15–0.88) from Fe-dominance to Mn-dominance. Wodginite with Ta>Nb has large variable concentrations of W, Sn and Ti. Cassiterite and ferberite are all enriched in Nb and Ta (Nb2O5 + Ta2O5 up to 20.12 wt.% and 31.42 wt.%, respectively), with high Ta# (>0.5). Similar to Nb–Ta oxides and Nb–Ta–Sn–W mineral assemblages, the early-stage zircon is commonly included by the later-stage zircon with sharply boundary. They have contrasting Hf contents, and HfO2 of the later-stage zircon is up to 28.13 wt.%. Petrographic features indicate that the early-stage of columbite and zircon were formed in magmatic environment. However, the later-stage of rare-element minerals were influenced by fluxes-enriched fluids. Tantalite, together with wodginite, cassiterite, and ferberite implies a Ta-dominant media. An interstitial fluid-rich melt enriched in Ta and flux at the magmatic–hydrothermal transitional stage is currently a favored model for explaining the later-stage of rare-element mineralization.  相似文献   

17.
Eclogites occur as a tectonic slice within a metabasite-phyllite-marble unit of the Karakaya Complex in northwest Turkey. The high-pressure mineral assemblage in eclogite is mainly composed of garnet + omphacite + glaucophane + epidote + quartz. Trace element characteristics of rutile and Zr-in-rutile temperatures were determined for eclogites from the Karakaya Complex. Core-rim analyses of rutile grains yield remarkable trace element zoning with lower contents of Zr, Nb and Ta in the core than in the rim. The variations in Zr, Nb and Ta can be ascribed to growth zoning rather than diffusion effects. The Nb/Ta and Zr/Hf ratios increase with a decrease in Ta and Hf contents, which could be ascribed to the effect of metamorphic dehydration in subduction zones on rutile Nb/Ta differentiation. The rutile grains from eclogites in the Karakaya Complex are dominated by subchondritic Nb/Ta and Zr/Hf ratios. It can be noted that subchondritic Nb/Ta may record rutile growth from local sinks of aqueous fluids from metamorphic dehydration.The Zr contents of all rutile grains range between 81 and 160 ppm with an average of 123 ppm. The Zr-in-rutile thermometry yields temperatures of 559–604 °C with an average temperature of 585 °C for eclogites from the Karakaya Complex. This average temperature suggests growth temperature of rutile before peak pressure during the subduction. However, some rutile grains have higher Zr contents in the outermost rims compared to the core. Zr-in-rutile temperatures of the rims are about 20 °C higher than those of the cores. This suggests that the outermost rims would have grown from a distinct fluid at higher temperatures than that of the cores. Moreover, Zr contents and calculated temperatures in both inclusion rutile and matrix rutile from eclogites are identical, which suggests that eclogites within the Karakaya Complex belong to the same tectonic slice and underwent similar metamorphic evolution.  相似文献   

18.
Eclogites are high-pressure/low-temperature metamorphic rocks and are regularly considered as an indicator of ancient subduction zones. Eclogites have recently been found in the North Shahrekord metamorphic complex (NSMC) of the Sanandaj–Sirjan zone and represent the only ones within the Zagros orogen. Their occurrence and timing are important for the reconstruction of convergence history and geodynamic evolution of the Neo-Tethys Ocean and Zagros orogen. White mica from the eclogites and an associated paragneiss give 40Ar/39Ar ages ranging from 184.3 ± 0.9 to 172.5 ± 0.8 Ma and represent the age of cooling through the closure temperature for phengitic white mica. The NSMC also comprises the ductile NW–SE trending North Shahrekord Shear Zone (NSSZ), which is located in the northeast of the Main Zagros Reverse Fault. The NSMC consists mainly of various metasedimentary rocks, orthogneiss and small-sized bodies of metabasic rocks containing also the eclogites. Furthermore, pre-metamorphic granitoids represent part of the NSMC. The North Shahrekord eclogites are composed of garnet, omphacite, zoisite, Ca–Na amphibole, phengite and rutile. The highly deformed and metamorphosed granitoids yield hornblende and biotite 40Ar/39Ar ages 170.1 ± 0.9 Ma and 110.7 ± 0.3 Ma, respectively. According to the new age dating results of eclogites, the rocks are the oldest high-pressure metamorphic rocks in the Zagros orogenic belt testifying the Neo-Tethys Ocean subduction. Our new data indicate that the eclogites formed during Early Jurassic subduction of a Panafrican microcontinental piece from the northern margin of the Neo-Tethyan Ocean under the Central Iranian microplate. We suggest that initiation of subduction in Neo-Tethyan Ocean occurred a few million years prior to 184 Ma (Pliensbachian stage).  相似文献   

19.
Muscovite granites (MGs) in the Nanling Range (South China) occur as satellite intrusions within or surrounding batholitic biotite monzogranites (BMs). The MGs are massive and fine-grained with a porphyritic texture, and contain quartz, K-feldspar and albite in nearly equal portions. The accessory minerals in the MGs include alumina-rich minerals (e.g., Mn- and Fe-rich garnet, andalusite, topaz, and tourmaline), anatase, rutile, wolframite, cassiterite, xenotime, chalcopyrite, molybdenite, and volatile-rich minerals (e.g., microlite, topaz, tourmaline, fluorite, and calcite). Compared with the BMs, the MGs are geochemically enriched in major elements of Si, K, and Na, and incompatible trace elements of Rb, Cs, Y, U, Nb, Ta, W, Sn, Pb, Bi, Li, and Be, and depleted in major elements of Fe, Mg, Ca, Ti, and P, and compatible trace elements of Ba, Sr, Co, Ni, Cr, Cd, V as well as Zr and Hf. The chondrite-normalized REE patterns of the MGs are flat with large negative Eu anomalies. The mineralogical and geochemical features of the MGs indicate that they crystallized from highly fractionated granitic magmas. Zircons separated from the MG samples, which were collected from six different tungsten deposits, show characters of hydrothermal origin according to their morphologies, chemical compositions and inclusions. In-situ U–Pb dating of the zircons yields a weighted mean 206Pb/238U age of 133.4 ± 1.0 Ma. This age is similar to the mean age of the zircons from wolframite-bearing quartz veins (WQVs) in the Nanling Range (133.7 ± 1.3 Ma) reported from our previous study. Zircon Hf isotopes also reveal that the MGs and the WQVs are homologous. These mineralogical, geochemical and zirconological features indicate that the MGs are the parental rocks of the tungsten deposits in the Nanling Range. This study provides a new guidance for the exploration of magmatic-hydrothermal tungsten deposits.  相似文献   

20.
Three distinct groups of eclogites (low-Mg–Ti eclogites, high-Ti eclogites and Mg-rich eclogites) and ultramafic rocks from the depth interval of 100–680 m of the Chinese Continental Scientific Drill Hole were studied. The low Mg#s (= 100?molar Mg/(Mg + Fe)) (81–84%) and low Ni (1150–1220 ppm) and high Fe2O3total (13–15 wt.%) contents of ultramafic rocks suggest a cumulate origin. Mg-rich eclogites show middle and heavy REE enrichments, which could not be produced by metamorphic growth of garnet. Instead, if the rocks formed from a light REE enriched magma, there may be an igneous precursor for some garnets in their protolith. Alternatively, perhaps they formed from a light REE depleted magma without garnet. The high-Ti eclogites are characterized by unusually high Fe2O3total contents (up to 24.5 wt.%) and decoupling of high TiO2 from low Nb and Ta contents. These features cannot be produced by concentration of rutile during UHP metamorphism (even for samples with TiO2 > 4 wt.%) of high-Ti basalts, but could be attributed to crystal fractionation of titanomagnetite (for those with TiO2 <  4 wt.%) or titanomagnetite + ilmenite (for those with TiO2 >  4 wt.%). Thus, we suggest that protoliths of the high-Ti eclogites were titanomagnetite/ilmenite-rich gabbroic cumulates. As a whole, the low-Mg–Ti eclogites are geochemically complementary to the high-Ti eclogites, Mg-rich eclogites and ultramafic rocks, and could be metamorphic products of gabbroic/dioritic cumulates formed by high degree crystal fractionation. All these observations suggest that parental materials of the ultramafic rock-eclogite assemblage could represent a complete sequence of fractional crystallization of tholeiitic or picritic magmas at intermediate to high pressure, which were later carried to ultrahigh-pressure conditions during a continental collision event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号