首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subeconomic Mount Novit Zn-Pb-Ag deposit is located approximately 20 km south of Mount Isa, Queensland. In contrast to the nearby Mount Isa, Hilton and George Fisher Zn-Pb-Ag deposits, mineralisation at Mount Novit is situated to the west of the regional-scale Mount Isa Fault and is hosted in the Moondarra Siltstone as opposed to the Urquhart Shale. Lower-grade (<4 wt.% Zn + Pb) Zn-Pb-Ag mineralisation primarily replaces pre-existing carbonate alteration and veining and consists of pyrrhotite, pyrite and sphalerite with lesser galena. Higher-grade (>10 wt.% Zn + Pb) mineralisation occurs as a matrix supported breccia dominated by sphalerite and pyrrhotite with galena, pyrite, and magnetite. In-situ U–Pb geochronology was completed on apatite and two textural varieties of monazite. Fine-grained (<50 µm) subhedral to anhedral monazite is located within highly foliated biotite alteration directly adjacent Zn-Pb-Ag mineralisation and yields a mean weighted 207Pb/206Pb age of 1527 ± 18 Ma (MSWD = 1.06). This age is consistent with the formation of highly foliated biotite alteration during D3 deformation of the Isan Orogeny. Apatite from the same fabric yields a lower intercept age of 1443 ± 29 Ma (MSWD = 1.30). Consistent with previous studies, this age is interpreted to represent the age of a major thrusting event along the Mount Isa Fault that resulted in the cooling of the Mount Novit area below ~375 °C. Coarse-grained monazite is coeval with Zn-Pb-Ag mineralisation and yields a mean weighted 207Pb/206Pb age of 1457 ± 11 Ma (MSWD = 0.28). Sphalerite from Mount Novit has low concentrations (<1 ppm) of Ge and Ga and a relatively high concentration of In (5 to >10 ppm), possibly reflecting the leaching of the metals from an underlying basement unit. The GGIMFis geothermometer (Frenzel et al., 2016) produced a mean formation temperature of 345 ± 52 °C. The timing and temperature of Zn-Pb-Ag mineralisation is consistent with the age and cooling temperature of apatite presented in this study. Based on these correlations, we suggest that Zn-Pb-Ag mineralisation at Mount Novit was emplaced during an episode of major thrusting along the Mount Isa Fault, with the precipitation of Zn-Pb-Ag mineralisation driven by the cooling of the Mount Novit area below ~375 °C. A key implication of this study is a new model for synorogenic Zn-Pb-Ag mineralisation to the south of Mount Isa, which contrasts with the widely accepted regional-scale syngenetic metallogenic model.  相似文献   

2.
Columbite-group minerals (CGM) account for the majority of the production of tantalum, an important metal for high-technology applications. Along with other Ta–Nb oxides such as tapiolite, wodginite, ixiolite and pyrochlore supergroup minerals, CGM are recovered from rare-metal granites and granitic rare-element pegmatites. In this paper mineralogical and geochemical data with a focus on CGM, tapiolite, wodginite and ixiolite are presented for rare-element granites and pegmatites from worldwide occurrences except Africa that has been covered in a previous contribution (Melcher et al., 2015). Major and trace element data of the Ta–Nb oxides are presented and compared for a total of 25 granite/pegmatite provinces, and one carbonatite for comparison. Based on CGM compositions, the data allow to distinguish between various subgroups of Li–Cs–Ta (LCT)-family pegmatites, Nb–Y–F (NYF)-family pegmatites, mixed LCT–NYF pegmatites, and rare-element granites.Each period of Ta-ore formation in Earth history is characterised by peculiar mineralogical and geochemical features. Some of the largest and economically most important rare-element pegmatite bodies are located within Archean terrains and intruded ultramafic and mafic host rocks (e.g., Tanco/Canada, Wodgina and Greenbushes/Western Australia, Kolmozero/Kola). They are highly fractionated, of LCT affinity throughout and yield complex mineralogical compositions. The variety of minor and trace elements incorporated attests to a rather insignificant role of the immediate host rocks to their geochemical signature and rather points to the significance of the composition of the underlying crustal protoliths, internal fractionation and the processes of melt generation. Many of the Archean pegmatites carry significant Li mineralization as spodumene, petalite, and amblygonite, and all of them are also characterised by elevated Li in CGM. In addition, Sb and Bi are important trace elements, also reflected by the occasional presence of stibiotantalite and bismutotantalite. REEN patterns of CGM are dominated by the MREE or HREE, and range from very low to high total REE concentrations. Negative Eu anomalies are omnipresent. Scandium contents are also highly variable, from very high (Tanco) to very low concentrations (Wodgina, Kolmozero).A second period of worldwide pegmatite formation was in the Paleoproterozoic. All CGM analysed derive from LCT-family pegmatites except samples from the Amazonas region where Ta is mined from rare-metal granites at Pitinga. Pegmatites intruded highly variable lithologies including metasediments, metabasites, gneiss, granite and quartzite within a variety of structural and paleogeographic settings; however, most of them are syn- to post-orogenic with respect to major Paleoproterozoic orogenic events. Minor and trace element signatures are similar to CGM from Archean pegmatites. Some are characterised by considerable REE enrichment (São João del Rei/Brazil; Amapá/Brazil; Finnish Lapland/Finland), whereas others have normal to low total REE concentrations (Black Hills/USA, Bastar/India). Examples with high REE commonly are enriched in Sc and Y as well, and are often transitional to NYF-family pegmatites.The Mesoproterozoic period is comparatively poor in rare-element pegmatites and rare-metal granites. Mineralogical and chemical attributes of ixiolite–wodginite, tapiolite, CGM and rutile from placer material in Colombia point to an unusual pegmatite source of NYF affinity, yielding high total REE, Sc and Th at low Li and Bi. REE patterns have typical negative Eu and Y anomalies.A third major period of pegmatite formation was the Early Neoproterozoic at around 1 Ga, documented in the Grenvillian (North America), the Sveconorwegian (northern Europe) and the Kibaran in central Africa. CGM are present in numerous, mostly small pegmatites, although larger examples also occur (e.g., Manono in the D.R. Congo; Melcher et al., 2015). Pegmatite fields often display a zonal arrangement of mineralised pegmatites with respect to assumed “fertile” parent granites. They intrude metasediments, metabasites, gneiss and granite of middle to upper crustal levels and display a variety of mineralogical and chemical characteristics. Pegmatites of the Sveconorwegian and Grenville domains are usually of the NYF type and CGM are characterised by elevated Y, REE, Th and Sc. In contrast, the pegmatites of central (Kibara Belt) and southwestern Africa (Orange River Belt) are commonly of LCT affinity carrying spodumene, beryl and cassiterite (Melcher et al., 2015). These CGM have elevated conce ntrations of Li, Mg, Sn and Hf. Total REE concentrations are low except for the Sveconorwegian, and exhibit a variety of shapes in normalised diagrams.The fourth major pegmatite-forming event coincides with amalgamation of Gondwana at the Neoproterozoic/Paleozoic boundary around 550 Ma ago. This event is omnipresent in Africa (“Panafrican”) and South America (“Brasiliano event” documented in the Eastern Brazilian pegmatite and Borborema provinces). Pegmatites often intruded high-grade metamorphic terrains composed of metasediments including schist, marble, quartzite, as well as gneiss, amphibolite, ultramafic rocks, and granite. Within the Neoproterozoic, rare-metal granites of NYF affinity are locally abundant. Pegmatites show both LCT and NYF affinities, and mixed types occur in Mozambique. The Alto Ligonha and Madagascar provinces are characterised by abundant REE and Sc both within Ta–Nb-oxides and as separate mineral phases. Notably, some pegmatite provinces are almost devoid of cassiterite, whereas others carry cassiterite in economic amounts.In the Phanerozoic (younger than 542 Ma), pegmatites formed at all times in response to orogenetic processes involving various continents and terranes during the long-time amalgamation of Pangea and the Alpine orogenies. Whereas some activity is related to the Pampean, Acadian and Caledonian orogenies, the Variscan/Hercynian and Alleghanian orogenies are of utmost importance as manifested in pegmatite formation associated with Sn–W mineralised granites in central and western Europe as well as in the Appalachians. Most of the Variscan and Alleghanian pegmatites are of LCT affinity, although NYF and some mixed types have been described as well. Variscan pegmatite formation culminated at ca. 330 to 300 Ma, whereas Alleghanian pegmatites range in age from about 390 Ma to about 240 Ma. Most are syn- to post-orogenic and were emplaced at different crustal levels and into a variety of host rocks. Degree of fractionation as well as minor and trace element geochemistry of Ta–Nb oxides are rather variable and cover the complete field of CGM compositions. REE patterns are characterised by prominent negative Eu anomalies.Some Mesozoic and Cenozoic pegmatites and rare-metal granites from Southeast Asia and the Russian Far East are included in the compilation. Rare-metal granites of the Jos Plateau (Nigeria) were previously investigated (Melcher et al., 2015). The proportion of NYF pegmatites and rare-metal granites in the Mesozoic is striking, i.e. illustrated by Jos, Orlovka, Ulug Tanzek as well as the southeast Asian deposits related to tin granites. CGM from these areas are invariably rich in REE, Sc, Y and Th. In all rare-metal granites, Ta–Nb oxides are characterised by high total REE concentrations and both, negative Eu and Y anomalies in chondrite-normalised REE diagrams.Although constituting a vastly different magmatic system compared to rare metal pegmatites and granites, we included the Upper Fir carbonatite from the Canadian Cordillera, for comparison, because it is characterised by unusal high Ta contents. As expected, the CGM differ from the pegmatitic CGM by having high Mg and Th, and low U concentrations in columbite-(Fe) and lack an Eu anomaly. However, they also show similarities to primitive CGM from rare metal pegmatites of the NYF family in terms of the REE pattern and the increase in #Ta and #Mn towards the margins of the CGM. Our findings support recent results presented in Chudy (2014) indicating that the Ta enrichment in some carbonatites might be attributed to magmatic processes and conditions that are similar to the pegmatitic systems.  相似文献   

3.
The 3.09 to 2.97 Ga Murchison Greenstone Belt is an important metallotect in the northern Kaapvaal Craton (South Africa), hosting several precious and base metal deposits. Central to the metallotect is the Antimony Line, striking ENE for over 35?km, which hosts a series of structurally controlled Sb–Au deposits. To the north of the Antimony Line, hosted within felsic volcanic rocks, is the Copper–Zinc Line where a series of small, ca. 2.97 Ga Cu–Zn volcanogenic massive sulfide (VMS)-type deposits occur. New data are provided for the Malati Pump gold mine, located at the eastern end of the Antimony Line. Crystallizations of a granodiorite in the Malati Pump Mine and of the Baderoukwe granodiorite are dated at 2,964?±?7 and 2,970?±?7?Ma, respectively (zircon U–Pb), while pyrite associated with gold mineralization yielded a Pb–Pb age of 2,967?±?48?Ma. Therefore, granodiorite emplacement, sulfide mineral deposition and gold mineralization all happened at ca. 2.97?Ga. It is, thus, suggested that the major styles of orogenic Au–Sb and the Cu–Zn VMS mineralization in the Murchison Greenstone Belt are contemporaneous and that the formation of meso- to epithermal Au–Sb mineralization at fairly shallow levels was accompanied by submarine extrusion of felsic volcanic rocks to form associated Cu–Zn VMS mineralization.  相似文献   

4.
The distribution of rare and rare earth elements in zircon at the Yastrebets, Azov (Zr–REE–Y), and Perzhan (Be) rare metal deposits of the Ukrainian Shield was studied. Additional evidence for magmatic genesis of these deposits is obtained: unaltered zircon is characterized by a magmatic REE distribution spectrum with a somewhat higher δ18O value than that of the mantle (6.6‰ on average). The final formation stage of the deposit was marked by predominance of fluids enriched in Y, REE, Nb, and heavy oxygen, resulting in anomalous geochemical characteristics of zircon rims and alteration zones (up to 81500 Y ppm, over 10300 ppm Nb, and 13.9‰ δ18O). The age of zircon formed in ore-bearing Yastrebets and Azov nonnepheline syenite deposits was estimated at ~1770 Ma (U–Pb, SHRIMP-II).  相似文献   

5.
The central-eastern part of the Sierra de Velasco (Sierras Pampeanas, NW Argentina) is formed by the large Huaco (40 × 30 km) and Sanagasta (25 × 15 km) granite massifs and the small La Chinchilla stock (2 × 2 km). The larger granites intrude into Ordovician metagranitoids and crosscut Devonian (?) mylonitic shear zones, whereas the small stock sharply intrudes into the Huaco granite. The two voluminous granites are biotitic-muscovitic and biotitic porphyritic syeno- to monzogranites. They contain small and rounded tonalitic and quartz-dioritic mafic microgranular enclaves. The small stock is an equigranular, zinnwaldite- and fluorite-bearing monzogranite. The studied granites are silica-rich (SiO2 >70%), potassium-rich (K2O >4%), ferroan, alkali-calcic to slightly calk-alkalic, and moderately to weakly peraluminous (A/CNK: 1.06–1.18 Huaco granite, 1.01–1.09 Sanagasta granite, 1.05–1.06 La Chinchilla stock). They have moderate to strong enrichments in several LIL (Li, Rb, Cs) and HFS (Nb, Ta, Y, Th, U) elements, and low Sr, Ba and Eu contents. U–Pb monazite age determinations indicate Lower Carboniferous crystallization ages: 350–358 Ma for the Huaco granite, 352.7 ± 1.4 Ma for the Sanagasta granite and 344.5 ± 1.4 Ma for the La Chinchilla stock. The larger granites have similar ?Nd values between ?2.1 and ?4.3, whereas the younger stock has higher ?Nd of ?0.6 to ?1.4, roughly comparable to the values obtained for the Carboniferous San Blas granite (?1.4 to ?1.7), located in the north of the sierra. The Huaco and Sanagasta granites have a mainly crustal source, but with some participation of a more primitive, possibly mantle-derived, component. The main crustal component can be attributed to Ordovician peraluminous metagranitoids. The La Chinchilla stock derives from a more primitive source, suggesting an increase with time in the participation of the primitive component during magma genesis. The studied granites were generated during a post-orogenic period in a within-plate setting, possibly as a response to the collapse of the previous Famatinian orogen, extension of the crust and mantle upwelling. They are part of the group of Middle Devonian–Lower Carboniferous granites of the Sierras Pampeanas. The distribution and U–Pb ages of these granites suggests a northward arc-parallel migration of this mainly post-orogenic magmatism with time.  相似文献   

6.
The Hongshi gold deposit is located in the southwestern margin of the Kanggur–Huangshan ductile shear zone in Eastern Tianshan, Northwest China. The gold ore bodies are predominantly hosted in the volcanogenic metasedimentary rocks of the Lower Carboniferous Gandun Formation and the Carboniferous syenogranite and alkali-feldspar granite. The syenogranite and the alkali-feldspar granite yield SHRIMP zircon U–Pb ages of 337.6 ± 4.5 Ma (2σ, MSWD = 1.3) and 334.0 ± 3.7 Ma (2σ, MSWD = 1.1), respectively, indicating that the Hongshi gold deposit is younger than 334 Ma. The granitoids belong to shoshonitic series and are relatively enriched in large ion lithophile elements (Rb, K, Ba, and Pb) and depleted in high field-strength elements (Nb, Ta, P, and Ti). Moreover, these granitoids have high SiO2, Al2O3, and K2O contents, low Na2O, MgO, and TiO2 contents, low Nb/Ta ratios, and slightly positive Eu anomalies. The εHf(t) values of the zircons from a syenogranite sample vary from + 1.5 to + 8.8 with an average of + 5.6; the εHf(t) values of the zircons from an alkali-feldspar granite sample vary from + 5.0 and + 10.1 with an average of + 7.9. The δ34S values of 10 sulfide samples ranged from − 11.5‰ to + 4.2‰, with peaks in the range of + 1‰ to + 4‰. The above-mentioned data suggest that the Hongshi granitoids were derived from the melting of juvenile lower crust mixed with mantle components formed by the southward subduction of the paleo-Tianshan ocean plate beneath the Aqishan–Yamansu island arc during the Early Carboniferous. The Hongshi gold deposit was formed by post-collisional tectonism during the Permian. The granitoids most likely acted as impermeable barriers that prevented the leakage and runoff of ore-bearing fluids. Thus, the granitoids probably played an important role in controlling gold mineralization.  相似文献   

7.
The latest Carboniferous to lower Permian volcanism of the southern Variscides in Sardinia developed in a regional continental transpressive and subsequent transtensile tectonic regime.Volcanism produced a wide range of intermediate-silicic magmas including medium-to high-K calc-alkaline andesites,dacites,and rhyolites.A thick late Palaeozoic succession is well exposed in the four most representative Sardinian continental basins(Nurra,Perdasdefogu,Escalaplano,and Seui-Seulo),and contains substantial stratigraphic,geochemical,and geochronological evidence of the area's complex geological evolution from the latest Carboniferous to the beginning of the Triassic.Based on major and trace element data and LA-ICP-MS U-Pb zircon dating,it is possible to reconstruct the timing of postVariscan volcanism.This volcanism records active tectonism between the latest Carboniferous and Permian,and post-dates the unroofing and erosion of nappes in this segment of the southern Variscides.In particular,igneous zircon grains from calc-alkaline silicic volcanic rocks yielded ages between299±1 and 288±3 Ma,thereby constraining the development of continental strike-slip faulting from south(Escalaplano Basin)to north(Nurra Basin).Notably,andesites emplaced in medium-grade metamorphic basement(Mt.Cobingius,Ogliastra)show a cluster of older ages at 332±12 Ma.Despite the large uncertainty,this age constrains the onset of igneous activity in the mid-crust.These new radiometric ages constitute:(1)a consistent dataset for different volcanic events;(2)a precise chronostratigraphic constraint which fits well with the biostratigraphic data and(3)insights into the plate reorganization between Laurussia and Gondwana during the late Palaeozoic evolution of the Variscan chain.  相似文献   

8.
In the northern extension of the Famatina and the southern Puna (NW Argentina) prominent rhyolitic volcanic rocks traditionally referred to as Ordovician are exposed, resting on metamorphic basement and covered by thick Late Paleozoic siliciclastic successions. We report new U–Pb SHRIMP ages from these rhyolites that show them to be of Mississippian (348–342 Ma) age, thus identifying a previously unknown volcanic event in this portion of western Gondwana. Whole-rock geochemistry and Sr–Nd isotopic analyses suggest a crustal source for these rocks but with a juvenile input (εNd(t) between ? 2.91 and ? 0.3, and TDM values between 1.09 and 1.1 Ga). This is different from the Early Paleozoic magmatism of western Argentina where crustal recycling took place without any involvement of mantle material. The Carboniferous magmatism is compatible with an extensional environment developed along the Terra Australis accretionary orogen as a result of tectonic switching processes. These rhyolites may be related to the coeval Mississippian A-type granites exposed to the east, in the Sierras Pampeanas, confirming the regional character of this magmatism.  相似文献   

9.
Rare earth element (REE) mineralization is hosted within Neoproterozoic alkaline metaigneous rocks in the northwestern part of the Okcheon Metamorphic Belt (OMB), a polymetamorphosed fold-and-thrust belt transecting the Paleoproterozoic Gyeonggi and Yeongnam Massifs in the southern Korean Peninsula. The principal carrier phase of REEs is allanite. Allanite grains can be subdivided into several types based on the texture and mineral assemblage including quartz, K-feldspar, biotite, britholite, apatite, fergusonite, andradite, magnetite, zircon, titanite and fluorite. Electron microprobe analysis of allanite clearly distinguishes sample-to-sample variations in total REEs, Ca, Al, Fe and Y but the textural varieties from each rock sample do not show marked differences in those elements. Sensitive high-resolution ion microprobe dating of allanite and zircon reveals a complex history of multistage mineralization. Allanite grains from REE ores yielded Late Ordovician (444.6 ± 8.0 Ma), Permian to Triassic (ca. 300–220 Ma) and Early Jurassic (199–183 Ma) 208Pb/232Th ages. These multiple age components often coexist in single grains showing slight differences in backscattered electron brightness. The Ordovician components have distinctly higher Th/U than the younger domains in the same rock sample. The cores and rims of zircon from a syenite hosting REE ore bodies yielded Neoproterozoic (858.2 ± 6.3 Ma) and Early Jurassic (ca. 190 Ma) 206Pb/238U ages, respectively. The Early Jurassic ages (194–187 Ma) also obtained from zircon grains from granites taken from dykes occurring close to the ores and a drill core indicate the correspondence between granitic magmatism and REE mineralization. The Neoproterozoic zircon inheritance (weighted mean = 853.9 ± 3.8 Ma) in these granites is in sharp contrast to the dominant Paleoproterozoic inherited zircon from the widespread earliest Middle Jurassic granites enclosing the mineralized zone. The geotectonic significance of the Late Ordovician event recorded in the allanite, as well as in detrital zircon from the OMB, is still unclear but its temporal coincidence with intraplate volcanism and arc-related igneous activity, respectively, reported from the southwestern edge of the adjacent Taebaeksan Basin and the southwestern Gyeonggi Massif is noteworthy. The following Permian–Triassic and Early Jurassic mineralization events are probably linked to the continental suturing between the North and South China blocks and subsequent post-orogenic magmatism, and arc magmatism resulting from the paleo-Pacific plate subduction, respectively. Sub-grain Sm–Nd isotopic analyses of allanite by laser ablation multiple collector ICPMS yielded initial εNd values plotting along the Nd isotopic evolution path of the Neoproterozoic metaigneous rocks, indicating that REEs originating from the host rock have been recycled during multistage mineralization events. The profound differences in inherited zircon ages and Nd isotopic compositions between the Early and Middle Jurassic granites may reflect the presence of a major thrust-bounded crustal structure beneath the OMB.  相似文献   

10.
《地学前缘(英文版)》2019,10(2):725-751
Geochemical data and Sr–Nd isotopes of the host rocks and magmatic microgranular enclaves (MMEs) collected from the Oligocene Nodoushan Plutonic Complex (NPC) in the central part of the Urumieh–Dokhtar Magmatic Belt (UDMB) were studied in order to better understand the magmatic and geodynamic evolution of the UDMB. New U–Pb zircon ages reveal that the NPC was assembled incrementally over ca. 5 m.y., during two main episodes at 30.52 ± 0.11 Ma and 30.06 ± 0.10 Ma in the early Oligocene (middle Rupelian) for dioritic and granite intrusives, and at 24.994 ± 0.037 Ma and 24.13 ± 0.19 Ma in the late Oligocene (latest Chattian) for granodioritic and diorite porphyry units, respectively. The spherical to ellipsoidal enclaves are composed of diorite to monzodiorite and minor gabbroic diorite (SiO2 = 47.73–57.36 wt.%; Mg# = 42.15–53.04); the host intrusions are mainly granite, granodiorite and diorite porphyry (SiO2 = 56.51–72.35 wt.%; Mg# = 26.29–50.86). All the samples used in this study have similar geochemical features, including enrichment in large ion lithophile elements (LILEs, e.g. Rb, Ba, Sr) and light rare earth elements (LREEs) relative to high field strength elements (HFSEs) and heavy rare earth elements (HREEs). These features, combined with a relative depletion in Nb, Ta, Ti and P, are characteristic of subduction-related magmas. Isotopic data for the host rocks display ISr = 0.705045–0.707959, εNd(t) = −3.23 to +3.80, and the Nd model ages (TDM) vary from 0.58 Ga to 1.37 Ga. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.705513 to 0.707275 and εNd(t) from −1.46 to 4.62. The MMEs have TDM ranging from 0.49 Ga to 1.39 Ga. Geochemical and isotopic similarities between the MMEs and their host rocks demonstrate that the enclaves have mixed origins and were most probably formed by interactions between the lower crust- and mantle-derived magmas. Geochemical data, in combination with geodynamic evidence, suggest that a basic magma was derived from an enriched subcontinental lithospheric mantle (SCLM), presumably triggered by the influx of the hot asthenosphere. This magma then interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on Sr–Nd isotope data indicate that ∼50% to 90% of the lower crust-derived melt and ∼10% to 50% of the mantle-derived mafic magma were involved in the genesis of the early Oligocene magmas. In contrast, ∼45%–65% of the mantle-derived mafic magma were incorporated into the lower crust-derived magma (∼35%–55%) that generated the late Oligocene hybrid granitoid rocks. Early Oligocene granitoid rocks contain a higher proportion of crustal material compared to those that formed in the late Oligocene. It is reasonable to assume that lower crust and mantle interaction processes played a significant role in the genesis of these hybridgranitoid bodies, where melts undergoing fractional crystallization along with minor amounts of crustal assimilation could ascend to shallower crustal levels and generate a variety of rock types ranging from diorite to granite.  相似文献   

11.
Cratonic stabilization was a critical crustal process during the Hadean to Archean for the formation of cratons.The understanding of how and where this process took place is significant to evaluate the architecture of continents.The Singhbhum Craton of eastern India has well preserved Precambrian volcanosedimentary sequences.The Simlipal volcano-sedimentary complex of Singhbhum Craton consists of circular bands of mafic volcanic rocks interlayered with quartzites/shales/phyllites.In the present study,we report petrographic and geochemical characteristics of quartzites from Simlipal Complex coupled with U–Pb ages of detrital zircons and zircon geochemistry to understand the provenance and depositional conditions and its connection with the crustal stabilization in the Singhbhum Craton.The quartzites are texturally mature with sub-angular to sub-rounded quartz grains followed by feldspars embedded in a silty matrix.Based on modal compositions and major element ratios,these quartzites are categorized as quartz arenite and sub-lithic arenites.Trace element abundances normalized to Archean Upper Continental Crust(AUCC)display positive anomalies at U,Zr,Hf and negative anomalies at Nb.REE patterns are characterized by negative Eu anomalies(Eu/Eu*=0.47–0.97)and flat HREE suggesting felsic provenance.These quartzites show depletion of LILE,enrichment of HFSE and transition metals relative to AUCC.High weathering indices such as CIA,PIA,and ICV are suggestive of moderate to intense chemical weathering.Low trace element ratios such as Th/Cr,Th/Sc,La/Sc,La/Co and Th/Co indicate a predominantly felsic source for these rocks.The overall geochemical signatures indicate passive margin deposition for these quartzites.Detrital zircons from the Simlipal quartzites yield U–Pb ages 3156±31 Ma suggesting Mesoarchean crustal heritage.The trace element geochemistry of detrital zircons suggests that the zircons are magmatic in origin and possibly derived from the 3.1 Ga anorogenic granite/granitoid provenance of Singhbhum Craton.These observations collectively indicate the Mayurbhanj Granite and Singhbhum Granite(SBG-III)provenance for these quartzites,thereby tracking the stabilization of the eastern Indian Shield/Singhbhum Craton back to Mesoarchean.  相似文献   

12.
International Journal of Earth Sciences - The Alvand intrusive complex in the Hamedan area in Iran is in the Sanandaj–Sirjan zone of the Zagros orogen. It consists of a wide range of plutonic...  相似文献   

13.
Porphyry copper deposits (PCDs) in Iran are dominantly distributed in Arasbaran (NW Iran), the middle segment of the Urumieh–Dokhtar Magmatic Arc (UDMA), and Kerman (central SE Iran), with minor occurrences in eastern Iran and the Makran arc. This paper provides a temporal–spatial and geodynamic framework of the Iranian porphyry Cu (Mo–Au) systems, based on geochronologic data obtained from zircon U–Pb and molybdenite Re–Os dating of host porphyritic rocks and molybdenites in 15 major PCDs. The dating results define a long metallogenic duration (39–6 Ma), and suggest a long history of tectonic evolution from the accretionary orogeny related to early Cenozoic closure of the Neo-Tethys Ocean to subsequent collisional orogeny for the Iranian porphyry copper systems.The oldest porphyry mineralization occurred in the eastern part of Iran after the closure of a branch of the Neo-Tethyan (Sistan) Ocean between the Lut and Afghan blocks in the late Eocene (39–37 Ma). This was followed by mineralization in the Kerman porphyry copper belt over a time interval of about 20 m.y., where two metallogenic epochs have been recognized, including late Oligocene (29–27 Ma) and Miocene (18–6 Ma). The Bondar-e-Hanza deposit formed in the late Oligocene, while and the remaining dated deposits belong to Miocene epoch. According to the deposits' characteristics and their ages, the Miocene epoch can be divided into early, middle, and late stages. The Darreh Zar, Bakh Khoshk, Chah Firouzeh and Sar Kuh deposits formed during the early–middle Miocene. The largest porphyry deposits occur in the middle stage during the middle Miocene (14–11 Ma) and include the Sar Cheshmeh, Meiduk, Dar Alu and Now Chun deposits. These deposits were formed during crustal thickening, uplift, and rapid exhumation of the belt. The final stage of porphyry mineralization occurred during the late Miocene (9–6 Ma), and formed the Iju, Kerver, Kuh Panj and Abdar deposits.There were two porphyry mineralization stages in the Arasbaran porphyry copper belt in NW Iran, including an older late Oligocene (29–27 Ma) and a younger early Miocene (22–20 Ma) events. The Haft Cheshmeh deposit belongs to the older stage, and the world-class Sungun and Masjed Daghi deposits formed during the early Miocene.In the middle segment of the UDMA (Saveh–Yazd porphyry copper belt), PCDs formed during middle Miocene time (17–15 Ma). The geochronological results reveal that the porphyry mineralization moved from the northwest to southeast of UDMA over the time.Our dating results, combined with the possible late Eocene–Oligocene timing for collision between the Arabian and Iranian plates, support a model for Iranian PCD formation by partial melting of previously subduction-modified lithosphere in a post-subduction and post-collisional tectonic setting.  相似文献   

14.
Porphyry Cu ± Mo ± Au deposits typically formed in volcanoplutonic arcs above subduction zones. However, there is increasing evidence for the occurrence of porphyry deposits related to magmas generated after the underplating arc has ceased. Post-subduction lithospheric thickening, lithospheric extension, or mantle lithosphere delamination could trigger the remelting of subduction-modified arc lithosphere and lead to the formation of post-subduction porphyry deposits. The NNW-trending Yidun Terrane, located in the eastern Tethys, experienced subduction of Garze–Litang oceanic plate (a branch of the Paleotethys) in the Late Triassic and witnessed two mineralization events respectively associated with the ca. 215 Ma arc-related intermediate–felsic porphyries and the 88–79 Ma mildly-alkaline granitic porphyries. It is, therefore, an ideal place to investigate the genetic linkage between the subduction-related porphyry deposits and post-subduction porphyry deposits. Our new in situ zircon U–Pb dating of the two granitic intrusions (biotite granite, 213.4 ± 0.9 Ma; monzogranite porphyry, 86.0 ± 0.4 Ma) in the Xiuwacu district, the molybdenite Re–Os age (84.7 ± 0.6 Ma) of the mineralization, and previously published geochronological data, together show the spatially overlapping distribution of the multiple Mesozoic porphyry systems in the Late Triassic Yidun arc system. Furthermore, the arc-like elemental signatures and the mixed Sr–Nd–Hf isotopic signatures of the Late Cretaceous ore-related porphyries (i.e., originating from a mixed components between the ∼215 Ma juvenile arc crust and the Mesoproterozoic mafic lower crust) indicate a genetic linkage between the Late Triassic and Late Cretaceous porphyry systems. This suggests that the remelting of underplated arc-related mafic rocks formed during the subduction of the Garze–Litang Ocean could be responsible for the mixing between the mantle-derived components and the Mesoproterozoic lower crustal materials, when post-subduction transtension occurred in the Late Cretaceous. The formation of the Late Cretaceous porphyry–skarn Cu–Mo–W deposits could most likely be related to the remelting of Late Triassic residual sulfide-bearing Cu-rich cumulates in the subduction-modified lower crust that triggered by the Late Cretaceous transtension.  相似文献   

15.
An early Paleozoic Proto-Tethys ocean in western Yunnan has long been postulated although no robust geological evidence has been identified.Here we investigated the recently-identified Mayidui and Wanhe ophiolitic melanges in SW Yunnan,which occurs in a N-S trending belt east of the late Paleozoic Changning-Menglian suture zone.The ophiolites consist mainly of meta-basalts(amphibole schists),meta-(cumulate) gabbros and gabbroic diorites,and meta-chert-shale,representing ancient oceanic crust and pelagic and hemipelagic sediments,respectively.Six samples of gabbros and gabbroic diorites from 3 profiles(Mayidui,Kongjiao and Yinchanghe) yielded zircon U-Pb ages between 462±6 Ma and 447±9 Ma,constraining the formation of the Mayidui and Wanhe ophiolites to Middle Ordovician.Gabbros from the Mayidui and Kongjiao profiles share similar geochemical characteristics with affinities to tholeiitic series,and are characterized by depleted to slightly enriched LREEs relative to HREEs with(La/Sm)_N=0.69-1.87,(La/Yb)_N=0.66-4.72).These,along with their predominantly positive wholerock ε_(Nd)(t) and zircon ε_(Hf)(t) values,indicate a MORB-like magma source.By contrast,the meta-mafic rocks from the Yinchanghe profile show significantly enriched LREEs((La/Sm)_N=0.97-3.33,(La/Yb)N=1.19-14.93),as well as positive whole-rock ε_(Nd)(t) and positive to negative zircon ε_(Hf)(t) values,indicating an E-MORB-type mantle source.These geochemical features are consistent with an intra-oceanic setting for the formation of the Mayidui-Wanhe ophiolites.Our data,integrated with available geological evidence,provide robust constraints on the timing and nature of the Mayidui-Wanhe ophiolitic melange,and suggest that the ophiolites represent remnants of the Proto-Tethys Ocean,which opened through separation of the Indochina and Simao blocks from the northern margin of Gondwana before the Early Cambrian,and evolved through to the Silurian.  相似文献   

16.
ABSTRACT

The east–central part of Jilin Province, NE China, hosts an important polymetallic metallogenic district that contains more than 10 recently discovered large-, medium-, and small-scale Mo deposits. The Mo deposits in this area include porphyry-, skarn-, and quartz vein-type mineralization, of which the porphyry-type deposits dominate. Few studies of these mineralization-related granitoids have been undertaken. Here, we present the results of a systematic regional survey of the geochemistry and geochronology of Mo mineralization-related granites in this area. Zircon U–Pb dating of the Fuanpu, Jidetun, Shuangshan, and Jiapigou granites, all of which are associated with Mo mineralization, yielded weighted mean 206Pb/238U ages of 167.05 ± 0.81, 170.91 ± 0.83, 183.8 ± 1.1, and 182.3 ± 2.2 Ma, respectively, indicating that these plutons were emplaced during the Early–Middle Jurassic. They have SiO2 = 62.59–73.5 wt.%, Al2O3 = 13.74–16.19 wt.%, and K2O/Na2O = 0.8–2.18. Chemically, they are metaluminous to peraluminous and belong to the high-K calc-alkaline to shoshonitic series. Moreover, they are enriched in large ion lithophile elements and light rare earth elements, and are depleted in high field strength elements, which are characteristics of I type granite. Whole rock Sr–Nd–Pb isotopic compositions of these granitoids are similar (initial 87Sr/86Sr = 0.70404 to 0.70554; εNd(t) = –0.9 to 2.4; (206Pb/204Pb)t = 15.549–15.567, (207Pb/204Pb)t = 18.035–18.530, (208Pb/204Pb)t = 37.966–38.229) and altogether suggest that the magmas from which the Mo deposits were generated originated from the mantle or juvenile crust. Combining our results with regional Jurassic tectonic setting, we conclude that the mineralization of these granitoids reflected Pacific plate subduction which induced magma underplating and promoted the remelting of the juvenile crust, resulting in voluminous granitic magma.  相似文献   

17.
The continental growth mechanism of the Altaids in Central Asia is still in controversy between models of continuous subduction–accretion versus punctuated accretion by closure of multiple oceanic basins. The Beishan orogenic belt, located in the southern Altaids, is a natural laboratory to address this controversy. Key questions that are heavily debated are: the closure time and subduction polarity of former oceans, the emplacement time of ophiolites, and the styles of accretion and collision. This paper reports new structural data, U- Pb and Ar–Ar ages from the eastern Beishan orogen that provide information on the accretion process and tectonic affiliation of various terranes. Our geochronological and structural results show that the younging direction of accretion was northwards and the subduction zone dipped southwards under the northern margin of the Shuangyingshan micro-continent. This long-lived and continuous accretion process formed the Hanshan accretionary prism. Our field investigations show that the emplacement of the Xiaohuangshan ophiolite was controlled by oceanic crust subduction beneath the forearc accretionary prism of the Shuangyingshan–Mazongshan composite arc to the south. Moreover, we address the age and terrane affiliation of lithologies in the eastern Beishan orogen through detrital zircon geochronology of meta-sedimentary rocks. We provide new information on the ages, subduction polarities, and affiliation of constituent structural units, as well as a new model of tectonic evolution of the eastern Beishan orogen. The accretionary processes and crustal growth of Central Asia were the result of multiple sequences of accretion and collision of manifold terranes.  相似文献   

18.
Zircon U–Pb and Hf isotope data integrated in this study for magmatic and metamorphic rocks from the Hida Belt,southwest Japan,lead to a new understanding of the evolution of the Cordilleran arc system along the ancestral margins of present-day Northeast Asia.Ion microprobe data for magmatic zircon domains from eight mafic to intermediate orthogneisses in the Tateyama and Tsunogawa areas yielded weighted mean ~(206)Pb/~(238)U ages spanning the entire Permian period(302–254 Ma).Under cathodoluminescence,primary magmatic growth zones in the zircon crystals were observed to be partially or completely replaced by inward-penetrating,irregularly curved featureless or weakly zoned secondary domains that mostly yielded U–Pb ages of 250–240 Ma and relatively high Th/U ratios( 0.2).These secondary domains are considered to have been formed by solid-state recrystallization during thermal overprints associated with intrusions of Hida granitoids.Available whole-rock geochemical and Sr–Nd isotope data as well as zircon age spectra corroborate that the Hida Belt comprises the Paleozoic–Mesozoic Cordilleran arc system built upon the margin of the North China Craton,together with the Yeongnam Massif in southern Korea.The arc magmatism along this system was commenced in the Carboniferous and culminated in the Permian–Triassic transition period.Highly positive εHf(t) values( +12) of late Carboniferous to early Permian detrital zircons in the Hida paragneisses indicate that there was significant input from the depleted asthenospheric mantle and/or its crustal derivatives in the early stage of arc magmatism.On the other hand,near-chondritic εHf(t) values(+5 to-2) of magmatic zircons from late Permian Hida orthogneisses suggest a lithospheric mantle origin.Hf isotopic differences between magmatic zircon cores and the secondary rims observed in some orthogneiss samples clearly indicate that the zircons were chemically open to fluids or melts during thermal overprints.Resumed highly positive zircon εHf(t) values(+9) shared by Early Jurassic granitoids in the Hida Belt and Yeongnam Massif may reflect reworking of the Paleozoic arc crust.  相似文献   

19.
The North China Craton (NCC) has been considered to be part of the supercontinent Columbia. The nature of the NCC western boundary, however, remains strongly disputed. A key question in this regard is whether or not the Alxa Block is a part of the NCC. It is located in the vicinity of the inferred boundary, and therefore could potentially resolve the issue of the NCC's relationship to the Columbia supercontinent. Some previous studies based on the Alxa Block's geological evolution and detrital zircon ages suggested that it is likely not a part of the NCC. The lack of evidence from key igneous rock units, however, requires further constraints on the tectonic affinity of the western NCC and Alxa Block and on the timing of their amalgamation.In this study, new zircon U–Pb age and Hf–O isotopes and whole-rock geochemical and Sr–Nd–Pb isotopic data for the Paleozoic granitoids in or near the eastern Alxa Block were used to constrain the petrogenesis of these rocks and the relationship between the Alxa Block and NCC. Secondary ion mass spectrometry (SIMS) U–Pb zircon dating indicates that the Bayanbulage, Hetun, Diebusige and South Diebusige granitoids were formed at ca. 423 Ma, 345 Ma, 345 Ma and 337 Ma, respectively. The Late Silurian (Bayanbulage) quartz diorites have variable SiO2 (58.0–67.9 wt.%), and low Sr/Y (20–24) values, while the Early Carboniferous (Hetun, Diebusige and South Diebusige) monzogranites have high SiO2 (71.5–76.7 wt.%) and Sr/Y (40–94) values. The Late Silurian quartz diorites display relatively homogeneous and high zircon δ18O (8.5–9.1‰) and εHf(t) (− 8.6 to − 5.3) values, high whole-rock εNd(t) values (− 9.2 to − 7.6) and highly radiogenic Pb isotopes (206Pb/204Pb = 18.13–18.25), whereas the Early Carboniferous monzogranites exhibit relatively low and variable zircon δ18O (5.7–7.2‰) and εHf(t) (− 23.1 to − 7.4) values, low whole-rock initial 87Sr/86Sr (0.7043–0.7070) and εNd(t) (− 19.1 to − 13.5) values and variable Pb isotopes (206Pb/204Pb = 16.06–18.22). The differences in whole rock Nd model ages and Pb isotope compositions of the Paleoproterozoic–Permian rocks in either side of the west fault of the Bayanwulashan–Diebusige complexes suggest that the Alxa Block is not a part of the NCC, and that the western boundary of the NCC is probably located on this fault. Furthermore, the linear distribution of the Early Paleozoic–Early Carboniferous granitoids, the high zircon δ18O values of the Late Silurian quartz diorites, the Early Devonian metamorphism and the foreland basin system formed during the collision between the Alxa Block and the NCC indicate that a Paleozoic cryptic suture zone likely existed in this area and records the amalgamation of the Alxa Block and North China Craton. Together with detrital zircon data, the initial collision was considered to have possibly occurred in Late Ordovician.  相似文献   

20.
《Gondwana Research》2014,26(4):1614-1626
Two suites of leucogranites were emplaced at 508 ± 5.9 Ma in the Okombahe District of the Damara belt (Namibia) synchronous with the peak of regional high-temperature metamorphism. The Sr (87Sr/86Srinit: 0.707 to 0.711), Nd (εNdinit: − 4.5 to − 6.6), and Pb isotopic (206Pb/204Pb: 18.51–19.13; 207Pb/204Pb: 15.63–15.69; 208Pb/204Pb: 38.08–38.66) compositions indicate that these peraluminous S-type granites were derived from mid- to lower-crustal rocks, which are slightly different to the metapelitic rocks into which they intruded. Since the leucogranites are unfractionated and show no evidence for assimilation or contamination, they constrain the temperature and pressure conditions of their formation. Calculated Zr and LREE saturation temperatures of ca. 850 °C indicate high-temperature crustal melts. High Rb/Sr and low Sr/Ba ratios are consistent with biotite dehydration melting of pelitic source rocks. Qz–Ab–Or systematics reveal that melting and segregation for the least fractionated samples occurred at ca. 7 kbar corresponding to a mid-crustal level of ca. 26 km. However, there is no evidence for a mantle component that could have served as a local heat source for crustal melting. Therefore, the hot felsic magmas that formed close to the time of peak metamorphism are the result of long-lasting high temperature regional metamorphic conditions and intra-crustal collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号