首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Jiama deposit, located in the eastern part of the well-known Gangdese Metallogenic Belt on the Tibetan Plateau, is the largest porphyry Cu–polymetallic system in the region, with the largest exploration budget, and is economically viable in the Gangdese Belt to undergo large-scale development. The deposit is well preserved and has experienced little erosion. The proven resources of the deposit are 7.4 Mt Cu, 0.6 Mt Mo, 1.8 Mt Pb + Zn, 6.65 Moz Au, and 360.32 Moz Ag. The results presented in this paper are based on geological and tectonic mapping, geological logging, and other exploration work performed by members of the Jiama Exploration Project Team over a period of 6 years. We propose that the Jiama porphyry Cu–polymetallic system is composed of skarn Cu–polymetallic, hornfels Cu–Mo, porphyry Mo ± Cu, and distal Au mineralization. The development of skarn Cu–polymetallic orebodies at the Jiama deposit was controlled mainly by the contact zone between porphyries and marbles, an interlayer detachment zone, and the front zone of a gliding nappe structure. The hornfels Cu–Mo and porphyry Mo ± Cu orebodies were controlled mainly by a fracture system related to intrusions, and the distal Au mineralization resulted from late-stage hydrothermal alteration.On the basis of field geological logging, optical microscopy, and chemical analysis, we verify that the alteration zones in the Jiama deposit include potassic, phyllic, propylitic, and argillic alteration, with a local lithocap, as well as endoskarn and exoskarn zones. The endoskarn occurs mainly as epidote alteration in quartz diorite porphyry and granite porphyry, and is cut by massive andradite veins. The exoskarn includes garnet–pyroxene and wollastonite skarn, in which the mineralogy and mineral chemical compositions display an outward zonation with respect to the source porphyry. From the proximal skarn to the intermediate skarn to the distal skarn, the garnet/pyroxene ratio varies from > 20:1 to ~ 10:1 to ~ 5:1, the garnet color varies from red-brown to brown-green to green-yellow, and the average composition of garnet varies from Ad80.1Gr18.9(Sp + Py)1.0 to Ad76.3Gr23(Sp + Py)0.7 to Ad59.5Gr39.5(Sp + Py)1.0, respectively. The pyroxene is not as variable in composition as the garnet, and is primarily light green to white diopside with a maximum hedenbergite content of ~ 20% and an average composition of Di88.6Hd8.9Jo2.5. From the proximal skarn to the intermediate skarn to the distal skarn, the mineralization changes from Cu–Mo to Cu ± Mo to Pb–Zn ± Cu ± Au ores, respectively. The wollastonite skarn displays no zonation and hosts mainly bornite mineralization. The Cu and Mo mineralization is closely related to the potassic and phyllic zones in the porphyry–hornfels.Zircons from four mineralized porphyries yield U–Pb ages of 15.96 ± 0.5 Ma, 15.72 ± 0.14 Ma, 15.59 ± 0.09 Ma, and 15.48 ± 0.08 Ma. The Re–Os ages of molybdenite from the skarn, hornfels, and porphyry are 15.37 ± 0.15 Ma, 14.67 ± 0.37 Ma, and 14.66 ± 0.27 Ma, respectively. The present results are consistent with the findings of previous research on fluid inclusions, isotopes, and other such aspects. On the basis of the combined evidence, we propose a porphyry Cu–polymetallic system model for the Jiama deposit and suggest a regional exploration strategy that can be applied to prospecting for porphyry-skarn mineralization in the Lhasa area.  相似文献   

2.
The Hongtoushan copper–zinc deposit is a volcanic-associated massive sulfide deposit in the Archean greenstone belt in Liaoning, China. Polymetamorphism has resulted in changes to the composition and textures of minerals in the deposit, along with remobilization. During metamorphism, the original alteration minerals that formed with the ore minerals, such as chlorite and sericite, were transformed into cordierite, anthophyllite, and phlogopite. After further remobilization, new minerals, such as gahnite and actinolite, were formed. In this process, the original textures were destroyed and new textures were formed, including recrystallization and growth textures, brittle and ductile deformation textures, durchbewegung textures, replacement textures, chalcopyrite disease, and retrograde textures. The ore-forming components underwent two periods of remobilization. In the first (early) stage, mechanical remobilization was important, and formed a high grade Cu–Zn–Au–Ag “ore pillar” along the vertical hinge of a synformal fold. In the second (late) stage, the mixed hydrothermal–mechanical remobilization affected the ores, and was typically characterized by matrix sulfides, together with silicate minerals, moving from the matrix into individual fractured pyrite metablasts and replacing them to varying degrees.  相似文献   

3.
Experimentally derived phase relations of arsenide in sulfide melt are presented to quantify the fractionation paths of As-bearing sulfide melts. When a natural sulfide melt reaches arsenide saturation, a separate Ni–PGE-rich arsenide melt exsolves. The arsenic saturation concentration in an Fe–Ni–Cu sulfide melt is between 0.5 and 1.5 wt%. The affinities of the chalcophile metals for an immiscible arsenide melt follow the order Pt > Pd > Ni ? Fe ≈ Cu. In natural systems, arsenide exsolution will be triggered by the activity of the nickel arsenide components dissolved in sulfide melt, Ni being the most common base metal with strong affinity to the Asn? anionic species. Arsenic may have a major effect on the fractionation paths of sulfide melts even if no separate arsenide phase forms. Arsenic, and probably many other chalcogens and metalloids in magmatic melts, may undergo associations with Pt and Pd well before discrete PGE minerals become stable phases.  相似文献   

4.
Contamination sites pose significant environmental hazards to terrestrial ecosystems. Evaluation of the effects of contaminants in soils has become a priority for OECD countries. The biomarker approach is widely used both in vertebrates and in invertebrates for environmental biomonitoring. Eisenia fetida would provide diagnostic and prognostic early warning tests for monitoring soil contamination. These responses, often called early warning signals, would, in fact, give very important information when assessing the environmental risks of contamination. However, the use of biomarkers requires the identification of every possible variation that can influence the biochemical response, because ecosystems are generally subject to a mixture of pollutants,  相似文献   

5.
The ore body “T” is the newly discovered massive-pyrite type one which is located in the central part of the Bor copper mine. The main copper minerals are chalcocite-digenite, covellite and enargite. Small amounts of colusite are frequently present in the ore-body. It mostly occurs as the distinct exsolutions in digenite and, associating with enargite and covellite. Composition of the studied colusite shows enriched Sn content, giving an empirical formula from Cu24.7V1.8Fe0.2As5.1Sb0.2Sn0.8S32 to Cu26.7V2.0Fe0.3As3.0Sb0.3Sn3.5S32. This colusite represents a solid solution between colusite and nekrasovite within a range of 14–54 mol % nekrasovite. Most of the analyses show content of <50 mol % nekrasovite corresponding to the Sn-bearing colusite variety, while one analysis shows content of 54 mol % nekrasovite corresponding to the As-bearing nekrasovite.  相似文献   

6.
A process for the treatment of wastewater containing copper in an anaerobic sludge bed reactor has been studied. Sulfate-reducing bacteria (SRB) were cultivated in an anaerobic sludge bed reactor. When the concentrations of Cu^2+ in influent were 85 mg/L, the reactor could be successfully operated. Under this condition the removal rates of Cu^2+ and COD were 98.8% and 78.3%, respectively. When the retention time was 8 h, the removal rate of Cu^2+ did alter significantly and only can reach 81.9%. When the concentrations of Cu^2+ was less than 300 mg/L, the reactor operated successfully. When the Cu^2+ concentration in influent was higher than 400 mg/L, the activity of the sulfate-reducing bacteria was suppressed by Cu^2+.  相似文献   

7.
Contamination sites pose significant environmental hazards to terrestrial ecosystems. Evaluation of the effects of contaminants in soils has become a priority for OECD countries. The biomarker approach is widely used both in vertebrates and in invertebrat…  相似文献   

8.
Copper–palladium intermetallic compounds and alloys (2314 grains) from the Au–Pd ore of the Skaergaard layered gabbroic pluton have been studied. Skaergaardite PdCu, nielsenite PdCu3, (Cu,Pd)β, (Cu,Pd)α, (Pd,Cu,Au,Pt) alloys, and native palladium have been identified as a result of 1680 microprobe analyses. The average compositions and various chemical varieties of these minerals are characterized, as well as vertical and lateral zoning in distribution of noble metals. The primary Pd–Cu alloys were formed within a wide temperature interval broadly synchronously with cooling and crystallization of host gabbro and in close association with separation of Fe–Cu sulfide liquid. In the course of crystallization of residual gabbroic melt enriched in iron, noble and heavy metals and saturated with the supercritical aqueous fluid, PGE and Au are selectively concentrated in the Fe–Cu sulfide phase as Pd–Cu and Cu–Au alloys.  相似文献   

9.
The Malanjkhand copper–molybdenum deposit in the Bhandara Craton, Central India, is hosted by a granite complex which consists of regionally dominant grey granitoid and pink granitoid confined to the mineralized zone. New SHRIMP RG data on zircons from both granite types are inferred to have crystallized during the same magmatic pulse at ca 2.48 Ga. The discrepancy between zircon age and earlier obtained Rb–Sr whole-rock age is attributed to modification of the Rb–Sr system by hydrothermal overprint. Similarity in petrographic features and chemical affinity in combination with identical age strongly indicate that the pink granite is the hydrothermally altered variety (microclinization and silicification) of the grey granite. The spatially associated, main Cu–Mo mineralization event at Malankhand appears to be broadly contemporaneous with and genetically related to the emplacement of the host granitoids at about 2.48 Ga.  相似文献   

10.
Proterozoic rocks of the Cloncurry district in NW Queensland, Australia, are host to giant (tens to hundreds of square kilometers) hydrothermal systems that include (1) barren regional sodic–calcic alteration, (2) granite-hosted hydrothermal complexes with magmatic–hydrothermal transition features, and (3) iron oxide–copper–gold (IOCG) deposits. Fluid inclusion microthermometry and proton-induced X-ray emission (PIXE) show that IOCG deposits and the granite-hosted hydrothermal complexes contain abundant high temperature, ultrasaline, complex multisolid (type 1) inclusions that are less common in the regional sodic–calcic alteration. The latter is characterized by lower salinity three-phase halite-bearing (type 2) and two-phase (type 3) aqueous inclusions. Copper contents of the type 1 inclusions (>300 ppm) is higher than in type 2 and 3 inclusions (<300 ppm), and the highest copper concentrations (>1,000 ppm) are found both in the granite-hosted systems and in inclusions with Br/Cl ratios that are consistent with a magmatic source. The Br/Cl ratios of the inclusions with lower Cu contents are consistent with an evaporite-related origin. Wide ranges in salinity and homogenization temperatures for fluid inclusions in IOCG deposits and evidence for multiple fluid sources, as suggested by halogen ratios, indicate fluid mixing as an important process in IOCG genesis. The data support both leaching of Cu by voluminous nonmagmatic fluids from crustal rocks, as well as the direct exsolution of Cu-rich fluids from magmas. However, larger IOCG deposits may form from magmatic-derived fluids based on their higher Cu content.  相似文献   

11.
Fractionation of tholeiitic magma in the Red Hill intrusion produced a gradational series of rocks ranging from dolerite to granophyre (McDougall, 1962). Granophyres are enriched in Fe, Si and alkalies, and impoverished in Mg, Ca and Al. With fractionation the magma was depleted rapidly in Cr and Ni owing to their removal in early crystallizing pyroxene and iron oxides. Cobalt decreases gradually from chilled dolerite to silicic dolerite, followed by a significant maximum in the most Fe‐enriched rocks, and finally decreases markedly in the granophyres. Cobalt follows Fe2+ closely and shows no obvious relationship with Mg. Copper was progressively enriched in the magma during the main stages of fractionation until precipitation of sulphide occurred, which caused impoverishment of Cu in the final liquid. Copper also is present in the silicates, it substitutes for Na in the feldspars and Fe2+ in pyroxenes and iron oxides.  相似文献   

12.
Early Miocene igneous rocks associated with the Dalli porphyry ore body are exposed within the Urumieh-Dokhtar Magmatic Arc (UDMA). The Dalli porphyry Cu–Au deposit is hosted by subduction-related subvolcanic plutons with chemical composition from diorite to granodiorite, which intruded andesitic and dacitic volcanic rocks and a variety of sedimentary sequences. 40Ar/39Ar age data indicate a minimum emplacement age of ~21 million years for a potasically altered porphyritic diorite that hosts the porphyry system. The deposit has a proven reserve of 8 million tonnes of rock containing 0.75 g/t Au and 0.5% Cu. Chondrite-normalized rare earth element (REE) patterns for the subvolcanic rocks are characterized by light REE enrichments [(La/Sm) n ?=?2.57–6.40] and flat to gently upward-sloping profiles from middle to heavy REEs [(Dy/Yb) n ?=?0.99–2.78; (Gd/Yb) n ?=?1.37–3.54], with no significant Eu anomalies. These characteristics are generated by the fractionation of amphibole and the suppression of plagioclase crystallization from hydrous calc-alkaline magmas. In normalized multi-element diagrams, all analysed rocks are characterized by enrichments in large ion lithophile elements and depletions in high field strength elements, and display typical features of subduction-related calc-alkaline magmas. We used igneous mineral compositions to constrain the conditions of crystallization and emplacement. Biotite compositions plot above the nickel–nickel oxide (NNO) buffer and close to oxygen fugacity values defined by the hematite–magnetite (HM) buffer, indicating oxidizing conditions during crystallization. Assuming a minimum crystallization temperature of 775°C, the oxygen (fO2) and water (fH2O) fugacities are estimated to be 10?10.3 bars (~ΔNNO+4) and ≤748 bars, respectively, during the crystallization of biotite phenocrysts. The temperature and pressure conditions, estimated from temperature–corrected Al-in-hornblende barometry and amphibole-plagioclase thermometry, suggest that the hornblende phenocrysts in Dalli rocks crystallized at around 780 ± 20°C and 3.8 ± 0.4 kbar. An alternative method using the calcic amphibole thermobarometer indicates that the Dalli magmas were, on average, characterized by an H2O content of 4.3 wt.%, a relatively high oxygen fugacity of 10?11.0 bars (ΔNNO+1.3), and a hornblende phenocryst crystallization temperature of 880 ± 68°C and pressure of 2.6 ± 1.7 kbar.  相似文献   

13.
The paper presents data on the chemical composition and mineral association of Pd-bearing galena, discovered in hydrothermal–metasomatic sulfide Cu–Ni ores of the Sedova Zaimka mineralization (Western Siberia). In the Sedova Zaimka mineralization, galena is an accessory mineral and occurs in association with pyrrhotite, pentlandite, chalcopyrite, sphalerite, argentopentlandite, tsumoite, and native bismuth. The Pd contents in galena are 0.5–0.9 wt %. Palladium occurs in galena in the form of isomorphic impurities and is not related to microinclusions of Pd-bearing minerals.  相似文献   

14.
《International Geology Review》2012,54(10):1212-1238
The Barrigão re-mobilized copper vein deposit, Iberian Pyrite Belt, southern Portugal, is located about 60 km south of Beja and 10 km southeast of the Neves Corvo ore deposit, in Alentejo Province. The deposit is structurally associated with a NE–SW striking fault zone inferred to have developed during late Variscan deformation. The copper ore itself is a breccia-type ore, characterized by up to four ore-forming stages, with the late stages showing evidence of fluid-driven element re-mobilization. The ore is dominated by chalcopyrite?+?tennantite-tetrahedrite, with minor arsenopyrite, pyrite, and löllingite. The supergene paragenesis is composed mainly of bornite, covellite, and digenite. Whole-rock analyses show anomalous tin and germanium contents, with averages of 320 and 61 ppm, respectively. Electron microprobe analysis of Barrigão ores revealed the germanium and tin to be restricted to chalcopyrite, which underwent late-stage hydrothermal fluid overprint along distinct vein-like zones. The measured zonal enrichment of tin and germanium is related to limited element re-mobilization associated with mineral replacement, which resulted in distinctive mineral disequilibrium. Fluid-driven element zoning affected chalcopyrite and tennantite coevally. The average contents of germanium and tin in chalcopyrite are of 0.19 and 0.55 wt.%, respectively, as confirmed through additional micro-proton-induced X-ray emission (micro-PIXE) analysis. The distribution of tin and germanium in chalcopyrite correlates strongly with iron. Tin and germanium covary. Minute sub-microscopic inclusions of an unknown Cu–Sn–Ge sulphide phase have been detected in chalcopyrite and in small vugs therein. These inclusions hint at a stanniferous sulphide as the most possible host for tin and germanium in chalcopyrite, although the idea of limited incorporation of these two elements through element substitution cannot be completely excluded.  相似文献   

15.
Application of multiple chronometers (including U–Pb and 40Ar/39Ar geochronology and zircon and apatite (U–Th)/He thermochronology) to porphyry intrusions at the Bajo de la Alumbrera porphyry copper–gold deposit, Argentina, reveals a complex history of reheating that spans millions of years. Previous U–Pb geochronology, combined with our new 40Ar/39Ar data, shows that the multiple porphyritic intrusions at Bajo de la Alumbrera were emplaced during two episodes, the first at about 8.0 Ma (P2 and associated porphyries) and the second about a million years later (Early and Late P3 porphyries). Complex overprinting alteration events have obscured the earliest hydrothermal history of the deposit. By contrast, 40Ar/39Ar data reveal the close temporal relationship of ore-bearing potassic alteration assemblages (7.12 ± 0.13 Ma; biotite) to the emplacement of the P3 intrusions. Consistent with low closure temperatures, younger ages have been determined for associated hydrothermal alkali feldspar (6.82 ± 0.05 Ma and 6.64 ± 0.09 Ma). The temperature-sensitive Ar data also record an unexpected prolonged cooling history (to below 200°C) extending to 5.9 Ma. Our data suggest that the Bajo de la Alumbrera system underwent protracted cooling, after the collapse of the main hydrothermal system, or that one or more low-temperature (~100–200°C) reheating events occurred after emplacement of the porphyritic intrusions at Bajo de la Alumbrera. These have been constrained in part by our new 40Ar/39Ar data (including multidomain diffusion modeling) and (U–Th)/He ages. Single-grain (U–Th)/He ages (n = 5) for phenocrystic zircon from P2 and P3 intrusive phases bracket these thermal events to between 6.9 (youngest crystallization of intrusion) and 5.1 Ma. Multidomain modeling of alkali feldspar data (from both igneous and hydrothermal crystals) is consistent with the deposit cooling rapidly from magmatic temperatures to below about 300°C, with a more protracted history down to 150°C. We conclude that the late-stage low-temperature (150 to 200°C) thermal anomaly localized at Bajo de la Alumbrera resulted from radiation of heat and/or fluids sourced from deeper-seated magma bodies, emplaced beneath the deposit. To produce the observed thermal longevity of the porphyry system, magma bodies underlying the Bajo de la Alumbrera deposit must have been repeatedly replenished by new magma batches. Without replenishment, crystallization of the source magma will occur, and heat release will stop, leading to rapid cooling (in less than ten thousand years). The influx of deep-seated magma may have caused the development of late low-temperature hydrothermal alteration assemblages at Bajo de la Alumbrera, at the same time that mineralization formed at Agua Rica, some 25 km away. All available chronologic data for the Bajo de la Alumbrera deposit suggest that the hydrothermal system was active episodically over at least a three-million and possibly up to a four-million-year period. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
陈希泉  周涛发  王彪  刘鑫  彭康 《岩石学报》2023,(10):3121-3138
武山铜矿床是长江中下游成矿带九瑞矿集区内典型的层控-接触带矽卡岩型铜多金属矿床,铜资源量达到大型,此外还共生硒、碲、钴、镓、铊等关键金属矿产,具备良好的矿产资源综合利用前景,但矿床中关键金属的分布规律、赋存状态和富集机制等研究尚未开展。本文以武山铜矿床为研究对象,系统采集了矿床南矿带接触带矽卡岩型矿体3条勘探线(W3-2、S4-2、N6-1)、北矿带层控硫化物型矿体3条勘探线(E9-2、E2-1、W4-1)和层控矽卡岩型矿体1条勘探线(E7-3)代表性岩矿石样品。通过光学显微镜和扫描电镜的观察,结合全岩地球化学和矿物原位LA-ICP-MS分析,查明了矿床中硒、碲、钴等关键金属的空间分布规律与赋存状态,初步探讨了硒、碲、钴的迁移沉淀机制。研究结果表明矿床中伴生硒、碲、钴的估算资源量分别为5513t、611t和9597t,均达到大-中型规模;武山矿床是成矿带内硒含量最高、潜在资源量最大的矿床。北矿带矿体中Se、Te、Co含量明显高于南矿带,北矿带中部成矿中心向东西远端,矿体中Se、Te、Co含量规律性增高。矿石中Se、Te、Co含量与S含量具有较强的正相关性,矿石中硫化物的含量是关键金属含量主要控制指标;Se和Co富集于含铜黄铁矿矿石、含铜白云岩矿石、含铜矽卡岩矿石(高硫)中;Te富集于含铜黄铁矿矿石和含铜白云岩矿石中。矿床中硒、碲主要以独立矿物和硫化物中类质同象替换两种赋存形式,钴则主要以Co^(2+)类质同象形式进入黄铁矿矿物晶格。矿床中硒、碲随着成矿流体温度降低、硫逸度升高、氧逸度降低、pH值升高逐渐沉淀富集;钴主要随着硫化物的沉淀富集在黄铁矿中。  相似文献   

17.
We collected groundwaters in and around a large (313 Mt at 1.08% Cu and 0.3% cutoff) undisturbed porphyry copper deposit (Spence) in the hyperarid Atacama Desert of northern Chile, which is buried beneath 30–180 m of Miocene piedmont gravels. Groundwaters within and down-flow of the Spence deposit have elevated Se (up to 800 μg/l), Re (up to 31 μg/l), Mo (up to 475 μg/l) and As (up to 278 μg/l) concentrations compared to up-flow waters (interpreted to represent regional groundwater flow). In contrast, Cu is only elevated (up to 2036 μg/l) in groundwaters recovered from within the deposit; Cu concentrations are low down gradient of the deposit. The differential behavior of the metals/metalloids occurs because the former group dissolves as anions, enhancing their mobility, whereas the base metals dissolve as cations and are lost from solution most likely through adsorption to clay surface exchange sites and through formation of secondary copper chlorides, carbonates, and oxides. Most groundwaters within and down-flow of the deposit have Eh–pH values around the FeII/FeIII phase boundary, limiting the impact of Fe-oxyhydroxides on oxyanions mobility. Se, Re, Mo, and As are all mobile (with filtered/unfiltered samples ~ 1) to the limit of sampling 2 km down gradient from the deposit. The increase in ore-related metals, metalloids, and sulfate and decrease in sulfate–S isotope ratios (from values similar to regional salars, + 4 to + 8‰ δ34SCDT to lower values closer to hypogene sulfides, + 1 to + 4‰ δ34SCDT) is consistent with active water–rock reactions between saline groundwaters and the Spence deposit. It is likely that hypogene and/or supergene sulfides are being oxidized under the present groundwater conditions and mineral saturation calculations suggest that secondary copper minerals (antlerite, atacamite, malachite) may also be actively forming, suggesting that supergene and exotic copper mineralization is possible even under the present hyperarid climate of the Atacama Desert.  相似文献   

18.
Hydrogen‐ and oxygen‐isotope analyses of biotite (19), sericite (8), chlorite (2), quartz (27), and total rocks (37) from the Panguna porphyry‐copper deposit on Bougainville Island, place important constraints on the origin of the hydrothermal fluids responsible for mineralization and alteration in the mine region. Early high‐temperature amphibole‐magnetite alteration resulted from magmatic‐hydrothermal fluids. Several lines of evidence indicate 500°C as a realistic average temperature for mineralization, development of quartz veins, and biotitization processes. On the basis of mineral isotope data, responsible fluids could represent either 18O‐shifted ground‐waters or magmatic‐hydrothermal fluids at submagmatic temperatures. Independent evidence, as well as total‐rock 18O data, support the magmatic‐hydrothermal model.

Late‐stage sericitization processes probably resulted from fluids produced by 18O shifting of groundwaters during the evolution of the propylitic zone. Outermost quartz veins and biotitization conceivably resulted from fluids similar to those that caused sericitization, indicating that some interaction between relatively cool, 18O‐poor meteoric waters and the ore fluids occurred near the margins of the deposit. The origin of the chlorite‐sericite alteration cannot be resolved solely by isotope studies.  相似文献   

19.
The sediment-hosted stratiform Cu–Co mineralization of the Luiswishi and Kamoto deposits in the Katangan Copperbelt is hosted by the Neoproterozoic Mines Subgroup. Two main hypogene Cu–Co sulfide mineralization stages and associated gangue minerals (dolomite and quartz) are distinguished. The first is an early diagenetic, typical stratiform mineralization with fine-grained minerals, whereas the second is a multistage syn-orogenic stratiform to stratabound mineralization with coarse-grained minerals. For both stages, the main hypogene Cu–Co sulfide minerals are chalcopyrite, bornite, carrollite, and chalcocite. These minerals are in many places replaced by supergene sulfides (e.g., digenite and covellite), especially near the surface, and are completely oxidized in the weathered superficial zone and in surface outcrops, with malachite, heterogenite, chrysocolla, and azurite as the main oxidation products. The hypogene sulfides of the first Cu–Co stage display δ34S values (−10.3‰ to +3.1‰ Vienna Canyon Diablo Troilite (V-CDT)), which partly overlap with the δ34S signature of framboidal pyrites (−28.7‰ to 4.2‰ V-CDT) and have ∆34SSO4-Sulfides in the range of 14.4‰ to 27.8‰. This fractionation is consistent with bacterial sulfate reduction (BSR). The hypogene sulfides of the second Cu–Co stage display δ34S signatures that are either similar (−13.1‰ to +5.2‰ V-CDT) to the δ34S values of the sulfides of the first Cu–Co stage or comparable (+18.6‰ to +21.0‰ V-CDT) to the δ34S of Neoproterozoic seawater. This indicates that the sulfides of the second stage obtained their sulfur by both remobilization from early diagenetic sulfides and from thermochemical sulfate reduction (TSR). The carbon (−9.9‰ to −1.4‰ Vienna Pee Dee Belemnite (V-PDB)) and oxygen (−14.3‰ to −7.7‰ V-PDB) isotope signatures of dolomites associated with the first Cu–Co stage are in agreement with the interpretation that these dolomites are by-products of BSR. The carbon (−8.6‰ to +0.3‰ V-PDB) and oxygen (−24.0‰ to −10.3‰ V-PDB) isotope signatures of dolomites associated with the second Cu–Co stage are mostly similar to the δ13C (−7.1‰ to +1.3‰ V-PDB) and δ18O (−14.5‰ to −7.2‰ V-PDB) of the host rock and of the dolomites of the first Cu–Co stage. This indicates that the dolomites of the second Cu–Co stage precipitated from a high-temperature, host rock-buffered fluid, possibly under the influence of TSR. The dolomites associated with the first Cu–Co stage are characterized by significantly radiogenic Sr isotope signatures (0.70987 to 0.73576) that show a good correspondence with the Sr isotope signatures of the granitic basement rocks at an age of ca. 816 Ma. This indicates that the mineralizing fluid of the first Cu–Co stage has most likely leached radiogenic Sr and Cu–Co metals by interaction with the underlying basement rocks and/or with arenitic sedimentary rocks derived from such a basement. In contrast, the Sr isotope signatures (0.70883 to 0.71215) of the dolomites associated with the second stage show a good correspondence with the 87Sr/86Sr ratios (0.70723 to 0.70927) of poorly mineralized/barren host rocks at ca. 590 Ma. This indicates that the fluid of the second Cu–Co stage was likely a remobilizing fluid that significantly interacted with the country rocks and possibly did not mobilize additional metals from the basement rocks.  相似文献   

20.
The bedded clastic ore widespread on the slopes and flanks of the deeply eroded sulfide mound at the Saf’yanovka volcanic-hosted copper massive sulfide deposit consists of products of destruction of the Paleozoic black smoker along with diverse newly formed sulfides. The size of ore clasts gradually decreases with distance from the massive ore mound, from more than tens of centimeters to a few millimeters. The clastic sediments are characterized by good preservation of sulfide material composed of hydrothermal sedimentary colloform pyrite, chalcopyrite with lamellae of relict isocubanite, and concentrically zoned sphalerite. Numerous pyrite framboids, nodules, and euhedral crystals; chalcopyrite segregations; and twinned sphalerite are typical of sulfide-bearing black shale. Enargite, tennantite, and galena were formed after pyrite, filling interstices between nodules or partially replacing and corroding the previously formed minerals. The interrelations between minerals show that the fine-clastic sulfide-bearing black shale underwent diagenesis in the presence of organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号