首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
煤系关键金属的开发利用对于缓解我国战略性矿产资源紧缺具有重要意义。内蒙古胜利煤田乌兰图嘎低阶煤中除富集关键金属Ge以外,同时富集有害元素Be、F、As、Hg、Sb和W,出于对关键金属的提取利用及环境保护2个方面考虑,须对研究区煤炭进行洗选处理。基于前期研究认识,浮选对于乌兰图嘎煤中As、Sb和W脱除效果相对较好,对于F和Hg的脱除效果较差,基于此,采用浮沉实验(重选法)以及XRD、XRF、SEM-EDS和EMPA等实验方法和测试手段,研究关键金属Ge以及Be、F、As、Hg等有害元素在不同密度级煤中的分布特征,结果表明:(1) 乌兰图嘎煤中矿物主要包括石膏、石英、黄铁矿、高岭石等,矿物含量随煤密度级增大而增加,电子探针分析结果表明,Co、As、Sb和Hg赋存在黄铁矿中。(2) 经过重选,低密度精煤中Ge元素富集,表明Ge主要以有机态存在,Be、F、As等可能与有机质相关,或者赋存在嵌布于有机质中的微细粒矿物中,煤中Hg和大部分亲石性元素在高密度级煤中含量较高,表明其赋存在矿物中。(3) 重选对于Hg元素的脱除效果较好,对Be、F、As和一些亲硫或亲铁性元素浮选脱除效果优于重选。建议乌兰图嘎低阶煤使用重选?浮选联合脱除法进行有害元素的脱除。   相似文献   

2.
Results of the study of a new Ge-bearing area of the Pavlovka brown coal deposit are presented. Ge is accumulated in bed III2 lying at the bottom of the Late Paleogene-Early Neogene coal-bearing sequence adjacent to the Middle Paleozoic granite basement. The Ge content in coals and coal-bearing rocks varies in different sections from 10 to 200–250 ppm, reaching up to 500–600 ppm in the highest-grade lower part of the bed. The metalliferous area reveals a geochemical zoning: complex Ge-Mo-W anomalies subsequently grades along the depth and strike into Mo-W and W anomalies. Orebodies, like those at many Ge-bearing coal deposits, are concentric in plan and dome-shaped in cross-section. Coals in their central parts, in addition to Ge, W, and Mo, are enriched in U, As, Be, Ag, and Au. Distribution of Ge and other trace elements in the metalliferous sequence and products of gravity separation of Ge-bearing coals is studied. These data indicate that most elements (W, Mo, U, As, Be) concentrated like Ge in the Ge-bearing bed relative to background values are restricted to the organic matter of coals. The electron microscopic study shows that Ge-bearing coals contain native metals and intermetallic compounds in association with carbonates, sulfides, and halogenides. Coal inclusions in the metalliferous and barren areas of the molasse section strongly differ in contents of Ge and associated trace elements. Ge was accumulated in the coals in the course of the interaction of ascending metalliferous solutions with organic matter of the buried peat bogs in Late Miocene. The solutions were presumably represented by N2-bearing thermal waters (contaminated by volcanogenic CO2) that are typical of granite terranes.  相似文献   

3.
One hundred twenty-two samples of Jurassic and Paleogene brown coals and 1254 peat samples from the south-eastern region of the Western-Siberian platform were analyzed for gold by the neutron-activation method. Mean content of Au in Jurassic coals is 30 ± 8 ppb, in Paleogene coals is 10.6 ± 4.8 ppb, and in peat is 6 ± 1.4 ppb. Concentrations of gold as high as 4.4 ppm were found in coal ash and 0.48 ppm in the peat ash. Coal beds with anomalous gold contents were found at Western-Siberian platform for the first time.Negative correlation between gold and ash yield in coals and peat and highest gold concentrations were found in low-ash and ultra-low-ash coals and peat. Primarily this is due to gold's association with organic matter.For the investigation of mode of occurrence of Au in peat the bitumen, water-soluble and high-hydrolyzed substances, humic acids, cellulose and lignin were extracted from it. It was determined that in peat about 95% of gold is combined with organic matter. Forty to sixty percent of Au is contained in humic acids and the same content is in lignin. Bitumens, water-soluble and high-hydrolyzed substances contain no more than 1% of general gold quantity in peat.The conditions of accumulation of high gold concentrations were considered. The authors suggest that Au accumulation in peat and brown coals and the connection between anomalous gold concentrations and organic matter in low-ash coals and peat can explain a biogenic–sorption mechanism of Au accumulation. The sources of formation of Au high concentration were various Au–Sb, Au–Ag Au–As–Sb deposits that are abundant in the Southern and South-Eastern peripheries of the coal basin.  相似文献   

4.
乌兰图嘎超大型锗矿床含锗煤的矿物学   总被引:2,自引:0,他引:2  
内蒙古乌兰图嘎锗矿是我国近年来发现的产在煤层中的超大型锗矿床,锗金属储量达1600 t。以乌兰图嘎超大型锗矿床的含锗煤为研究对象,利用X射线衍射(XRD)、带能谱的扫描电镜(SEM-EDX)和电子探针(EPMA)详细研究了乌兰图嘎含锗煤及其同时代的红旗煤矿无矿煤的矿物学特征。分析结果表明,乌兰图嘎含锗煤中的主要矿物包括石英、蒙脱石;次要矿物包括长石、高岭石、伊利石;另含少量三水铝石、角闪石、叶蜡石、石膏、绿泥石、锐钛矿、黄铁矿、方解石、白云石和草酸钙石;微量的锆石、闪锌矿、白钨矿、重晶石、黄铜矿、卤化物、磷酸盐以及含Pb、Bi、Cr、As和Sb矿物。未发现含锗矿物。推测含锗煤中的锗可能主要呈有机结合,而Ba、Zn、Ti、W、Pb、Bi、Cr、Fe、As、Zr、Sb、Cu和REE可能主要与矿物相结合。此外,首次在乌兰图嘎含锗煤及红旗煤矿无矿煤中发现含银颗粒或自然银,推测胜利煤田的褐煤可能有相当规模的Ag矿化。  相似文献   

5.
The minerals and non-mineral inorganic constituents in Triassic and Tertiary low-rank coals from various coal deposits in South Australia were studied using selective chemical leaching and oxygen-plasma ashing techniques. Although gypsum may be present in some samples, most of the sodium, calcium and magnesium, as well as part of the sulphur, appears to occur as a combination of dissolved ions in pore water and exchangeable ions attached to carboxylate groups. Significant concentrations of iron and aluminium occur in acid-soluble form, probably as organometallic complexes within the hydrocarbon structure.Quartz is the dominant mineral in the Tertiary coal samples. It appears to be mainly detrital, but doubly terminated euhedral crystals suggest an authigenic origin in one of the deposits. Well crystallized kaolinite is common in the Triassic coals, while poorly crystallized kaolinite occurs in the Tertiary samples. Siderite, calcite and possibly collophane occur in the Triassic coals; sparse pyrite is present in both the Tertiary and the Triassic samples.The differences in minerals and other inorganic constituents between the Tertiary and Triassic deposits can be explained partly by variations in the composition of the pore waters permeating the strata, and partly by mobility of silica and alumina from different sources within the peat deposit. The relative mobility of the different inorganic constituents is also significant in beneficiation of the coal for use in combustion processes.  相似文献   

6.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

7.
This study presents the concentrations and modes of occurrence of trace elements in 81 coal samples from the Çan basin of northwestern Turkey. The concentration of trace elements in coal were determined by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Additionally, traditional coal parameters were studied by proximate, ultimate, X-ray diffraction, and petrographic analyses. Twenty trace elements, including As, B, Ba, Be, Cd, Cu, Co, F, Hg, Mo, Ni, Pb, Sb, Se Sn, Th, Tl, U, V, and Zn, receive much attention due to their related environmental and human health concerns. The Çan coals investigated in this study are lignite to sub-bituminous coal, with a broad range of ash yields and sulphur contents. The trace element concentrations show variety within the coal seams in the basin, and the affinities vary among locations. The concentrations of B, Ba, Be, Cd, Cu, Co, F, Hg, Mo, Ni, Pb, Sb, Se, Sn, Tl, and Zn in Çan coals are within the Swaine's worldwide concentration range, with the exception of As, Th, U, and V. On the other hand, compared with world coals, the Çan basin coals have higher contents of As, B, Cu, Co, Mo, Pb, Th, U, V, and Zn. Based on statistical analyses, most of the trace elements, except for U, show an affinity to ash yield. Elements including As, Cd, Hg, Se, Cu, Mo, Ni, and Zn, show a possible association with pyrite; however, the elements Se, B, and Mo can be have both organic and inorganic associations.  相似文献   

8.
This paper presents a review of the genetic types and geochemical processes that have formed ‘metalliferous’ coals around the world. Primary attention is given to elements in coal that are currently being extracted from coal as raw material (Ge and U) or have, in our opinion, the best chance for such use (REE, Ag, Au, and PGE). Coals with anomalously high concentrations of other metals having potential for economic by-product recovery (Be, Sc, V, Ga, Sb, Cs, Mo, W, and Re) are briefly considered. Original data and a survey of the literature indicate that metalliferous coals are in many coal basins. Ore formation in coal-bearing structures may occur during peat accumulation, during diagenesis of the organic matter, or by epigenesis. Various metals are supplied to sedimentary basins as minerals that are transported by water and wind or as ionic species in surface water and descending and ascending underground water and may be incorporated into peat or coals. The modes of occurrence of metals in the enriched coals are diverse. The data presented in this review indicates that metalliferous coals should be regarded as promising for economic recovery for by-products in the course of coal mining and combustion.  相似文献   

9.
The first data are presented on large-scale Sb accumulation (up to 1175 ppm on a whole coal basis) in the Spetsugli (Special Coals) germanium deposit (Pavlovka brown coal deposit). The distribution of anomalous Sb contents is considered in the coal-bearing molasse section. The close correlation between Ge and Sb abundances in coals together with SEM data indicate an organic mode of Sb occurrence. Such a significant Sb accumulation was caused by the filtration of volcanogenic metalliferous solutions in molasse rocks during early diagenesis of organic matter in the Late Miocene. Extremely high contents and organic mode of Sb occurrence make it possible to consider Ge-bearing coals of the Pavlovka deposit not only as a complex raw material suitable for the extraction of Sb, but also as a potential source of ecological hazard.  相似文献   

10.
The occurrence and the chemical compositions of ore minerals (especially the silver‐bearing minerals) and fluid inclusions of the El Zancudo mine in Colombia were investigated in order to analyze the genetic processes of the ore minerals and to examine the genesis of the deposit. The El Zancudo mine is a silver–gold deposit located in the western flank of the Central Cordillera in Antioquia Department. It consists mainly of banded ore veins hosted in greenschist and lesser disseminated ore in porphyritic rocks. The ore deposit is associated with extensive hydrothermally altered zones. The ores from the banded veins contain sphalerite, pyrite, arsenopyrite, galena, Ag‐bearing sulfosalts, Pb‐Sb sulfosalts, and minor chalcopyrite, electrum, and native silver. Electrum is included within sphalerite, pyrite, and arsenopyrite, and is also partially surrounded by pyrite, arsenopyrite, sphalerite, and tetrahedrite. Native silver is present in minor amounts as small grains in contact with Ag‐rich sulfosalts. Silver‐bearing sulfosalts are argentian tetrahedrite–freibergite solid solution, andorite, miargyrite, diaphorite, and owyheeite. Pb‐Sb sulfosalts are bournonite, jamesonite, and boulangerite. Two main crystallization stages are recognized, based on textural relations and mineral assemblages. The first‐stage assemblage includes sphalerite, pyrite, arsenopyrite, galena and electrum. The second stage is divided into two sub‐stages. The first sub‐stage commenced with the deposition and growth of sphalerite, pyrite, and arsenopyrite. These minerals are characterized by compositional growth banding, and seem to have crystallized continuously until the end of the second sub‐stage. Tetrahedrite, Pb‐Cu sulfosalts, Ag‐Sb sulfosalt, and Pb‐Ag‐Sb sulfosalts crystallized from the final part of the first sub‐stage and during the whole second sub‐stage. However, one Pb‐Ag‐Sb sulfosalt, diaphorite, was formed by a retrograde reaction between galena and miargyrite. The minimum and maximum genetic temperatures estimated from the FeS content of sphalerite coexisting with pyrite and the silver content of electrum are 300°C and 420°C, respectively. These estimated genetic temperatures are similar to, but slightly higher than the homogenization temperatures (235–350°C) of primary fluid inclusions in quartz. The presence of muscovite in the altered host rocks and gangue suggest that the pH of the hydrothermal solutions was close to neutral. Most of the sulfosalts in this deposit have previously been attributed as the products of epithermal mineralization. However, El Zancudo can be classified as a xenothermal deposit, in view of the low pressure and high temperature genetic conditions identified in the present study, based on the mineralogy of sulfosalts and the homogenization temperatures of the fluid inclusions.  相似文献   

11.
Trace elements and rare earth elements (REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry. The results indicate that V, Cu, Sn, Ga, Cd, In, and Se are concentrated in sphalerite, Sb, As, Ge, and Tl are concentrated in galena, and almost all trace elements in pyrite are low. The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites. The contents of Ge, Tl, In, and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites. It shows that REE concentrations are higher in pyrite than in sphalerite, and galena. In sphalerites, the REE concentration decreases from light-yellow sphalerites, brown sphalerites, to black sphalerites. The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites, respectively, indicating that the genesis of the Tianqiao Pb–Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis. The relationship between LnGa and LnIn in sphalerite, and between LnBi and LnSb in galena, indicates that the Tianqiao Pb–Zn ore deposit might belong to sedimentary-reformed genesis. Based on the chondrite-normalized REE patterns, δEu is a negative anomaly (0.13–0.88), and δCe does not show obvious anomaly (0.88–1.31); all the samples have low total REE concentrations (<3 ppm) and a wide range of light rare earth element/high rare earth element ratios (1.12–12.35). These results indicate that the ore-forming fluids occur under a reducing environment. Comparison REE compositions and parameters of sphalerites, galenas, pyrites, ores, altered dolostone rocks, strata carbonates, and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems, that is, different chronostratigraphic units could make an important contribution to the ore-forming fluids. Combined with the tectonic setting and previous isotopic geochemistry evidence, we conclude that the ore-deposit genesis is hydrothermal, sedimentary reformed, with multisources characteristics of ore-forming fluids.  相似文献   

12.
川滇黔铅锌矿集区是华南大面积低温成矿域的重要组成部分,区内铅锌矿床是否属于MVT型矿床长期存在争议。该区铅锌矿床以富集Ge等稀散元素为特征,闪锌矿是其主要载体矿物,但稀散元素在黄铁矿中是否富集、赋存状态及微量元素组成特征等研究基本属于空白。本文通过LA-ICPMS研究富乐黄铁矿中微量元素(尤其是稀散元素)的富集特征,发现黄铁矿中也相对富集Ge。本研究样品选自富乐矿床的富乐和富盛两个矿段,包括1350、1410和1536三个中段(由深到浅),LAICPMS分析结果表明,该矿床黄铁矿以富集Cu、As、Co、Ni为特征,局部富集Pb(Sb)和Zn(以方铅矿和闪锌矿显微包裹体形式赋存于黄铁矿中),该类黄铁矿富集的稀散元素主要为Se、Ge及少量Tl、Te,而Cd和In以类质同象形式赋存于含Zn的显微包裹体(闪锌矿)中,类质同象是其余稀散元素主要赋存形式,且黄铁矿中Ge与Cu存在较好相关关系,可能存在Cu~(2+)+Ge~(2+)?2Fe~(2+)耦合置换方式。此外,黄铁矿中稀散元素的富集与成矿元素(特别是Cu)的富集密切相关,随着成矿作用的进行,从矿体深部到浅部,成矿温度逐渐降低,Se/Te比值逐渐升高,且稀散元素与成矿元素呈逐渐增加趋势。研究表明,该矿床黄铁矿的Co/Ni比值基本都小于1. 00,暗示其属于沉积改造型黄铁矿,在Co-Ni和稀散元素Se-Tl含量投影图上,富乐矿床黄铁矿的投影点与MVT型矿床投影区基本一致,而明显有别于SEDEX、VMS和矽卡岩型矿床中黄铁矿的投影区,结合富乐矿床类似于MVT型的地质特征,我们认为富乐矿床属于MVT型铅锌矿床。  相似文献   

13.
The Tres Marias carbonate-hosted Zn–Ge deposit in Chihuahua, Mexico contains sphalerite with the highest average Ge (960 ppm) and willemite with the highest reported Ge contents of Mississippi-Valley-type (MVT) deposits worldwide. This has prompted current exploration efforts to focus on the deposit as a high-grade source of germanium. The sulfide-rich ore type (>125,000 t at 20% Zn and 250 g/t Ge) contains Fe-rich botryoidal sphalerite (type I) associated with solid hydrocarbons. This type exhibits distinctive intimately intergrown lamellar texture of high-Fe sphalerite (average 9.9 wt.% Fe and 800 ppm Ge) and a somewhat less Fe-rich sphalerite phase (average 5.5 wt.% Fe and 470 ppm Ge). Reddish-brown banded sphalerite (type II, average 5.7 wt.% Fe and 1,320 ppm Ge) is subordinately followed by galena and pyrite. The sulfide-poor “oxidized” zinc ore (up to 50 wt.% Zn; 250 to 300 ppm Ge) is a fine-grained, often friable, alteration product of the sulfide ore and associated limestone and breccia host. While some areas are dominated by carbonates and sulfates, others are enriched in silicates such as hemimorphite and willemite. The gangue assemblage includes goethite, hematite, and amorphous silica or quartz. Minor wulfenite, greenockite, cinnabar, and descloizite also occur. Willemite occurs as interstitial replacement of sphalerite and fracture fillings in the oxidized ore and can be unusually rich in Pb (up to 2.0 wt.%) and Ge (up to 4,000 ppm). Oscillatory zonation reflects trace element incorporation into willemite from the oxidation of primary Ge-bearing sphalerite and galena by siliceous aqueous fluids. The Tres Marias deposit has hybrid characteristics consisting of a primary low-temperature MVT Ge-rich Zn–Pb sulfide ore body, overprinted by Ge-rich hemimorphite, willemite, and Fe oxide mineralization.  相似文献   

14.
Occurrence and morphology of pyrite in Bulgarian coals   总被引:2,自引:0,他引:2  
Coals with different degrees of coalification (ranging from lignite to anthracite) from seven Bulgarian coal basins have been investigated. The forms of pyrite and their distribution have been established. The types found are: massive pyrite, represented by the homogeneous, cluster-like and microconcretionary varieties; framboidal pyrite, appearing in inorganic and bacterial forms; euhedral pyrite, which is either isolated or clustered; anhedral pyrite, in its infilling and replacement varieties; and infiltrational pyrite, as a replacement or infilling mineral.Most of the forms of the euhedral, framboidal and massive pyrite developed during peat deposition. The anhedral replacement pyrite formed in the peat bed during early diagenesis. Infiltrational pyrite filled fractures and cleats formed during the diagenesis, catagenesis and metagenesis.Both similarities and differences with respect to the distribution of the pyrite types have been determined between coals of different ranks from Bulgarian coal basins. These differences are due to: the presence of Fe and S in the rocks adjacent to ancient peat bogs; the activities of ground and surface waters which brought Fe and S into the peat bogs; the geochemical character (pH and Eh) of the peat bogs and the sulphur bacteria development; and the tectonic situation during diagenesis, catagenesis and metagenesis.  相似文献   

15.
The geochemistry of trace elements in the underground and open-pit mine of the Goze Delchev subbituminous coal deposit have been studied. The coals in both mines are highly enriched in W, Ge and Be, and at less extent in As, Mn and Y as compared with the world-wide Clarkes for subbituminous coals. Ni and Ti are also enhanced in the underground coals, and Zr, Cr and Mo in the open-pit mine coals.Characteristic for the trace element contents in the deposit is a regular variation with depth. The following patterns were distinguished for profile I: a — the element content decreases from the bottom to the top of the bed paralleling ash distribution (Fe, Co, As, Sb, V, Y, Mo, Cs, REE, Hf, Ta, Th, P and Au); b — Ge and W are enriched in the near-bottom and near-top coals; c — in the middle part of the bed the content of K and Rb is maximal, while that of U is slightly enriched; d — Ba content decreases from the top to the bottom of the bed. In profile II, W and Be contents decrease from the bottom to the top. The near-bottom, and especially the near-roof samples of profile IV are highly enriched in Ge, while for W the highest is the content of the near-bottom sample.Ge, Be, As, Mn, Cl and Br are mainly organically associated. The organic affiliation is still strong for Co, B, Sr, Ba, Sb, U, Th, Mo, La, Ce, Sm, Tb and Yb in the underground coals, and Fe, Co, Na, W, Sr, Y and Ag in the coals from the open-pit mine. K, Rb, Ti, Zr, Hf and Ta are of dominant inorganic affinity. The chalcophile and siderophile elements correlate positively with Fe and each other and may be bound partly with pyrite or other sulphides and iron containing minerals.Compared statistically by the t-criteria, the elements Na, Li, Cu, Zn, Pb, Cr, Ni, Co, Mo, Fe and Be are of higher content in the open-pit mine. Tungsten is the only element of higher concentration in the underground mine. The contents of Ge, As, Sr, V, Mn, Y, Zr and P are not statistically different in both mines.It was supposed that there were multiple sources of the trace elements in the deposit. The source of the highly enriched elements (W, Ge, Be, and As) most probably were the thermal waters in the source area. The contemporary mineral springs are of high content of these elements. Another source were the hosting Mesta volcanic rocks, which are enriched in Sb, Mo, Hf, U, Th, As, Li and Rb. Some of the volcanics were hydrothermally altered and enriched or depleted of many elements. Thus, the hydrothermal solutions were also suppliers of elements for the coals. It is obvious that the contents, distribution and paragenesis, of the trace elements in both Goze Delchev coals reflect the geochemical specialization of the source area, including rocks, paleo- and contemporary thermal waters.  相似文献   

16.
作为华南大面积低温成矿域的重要组成部分,川滇黔铅锌矿集区是我国重要的铅锌银等资源基地之一,同时该矿集区也是Ge、Cd、Ga和In等稀散元素的超常富集区域。毛坪矿床是该矿集区内第二大铅锌矿床,累计探明铅锌金属储量超过3Mt(Pb+Zn平均品位≥18%),锗(Ge)保有储量182t。本文以新发现的Ⅵ矿带(铅锌金属已探明储量≥60万t,Pb+Zn平均品位≥20%)为研究对象,利用LA-ICPMS对主要矿石矿物闪锌矿和黄铁矿进行了微区原位微量元素组成和Mapping分析。研究结果显示Ⅵ矿带闪锌矿普遍富集Ge(最高580×10^(-6),均值81.1×10^(-6))、Cd(最高3486×10^(-6),均值1613×10^(-6))和Ga(最高190×10^(-6),均值44.4×10^(-6));黄铁矿普遍富集Mn、As、Pb、Cu、Ag和Sb。与Ⅰ和Ⅱ号矿带闪锌矿相比,Ⅵ号矿带闪锌矿更富集Ge和Ga。闪锌矿中Fe和Pb以类质同象为主,偶见黄铁矿和方铅矿显微包体;Cu、Ge、Ag和As赋存形式主要为类质同象,替代方式为Ge^(4+)+2(Cu+,Ag+,As+)↔3Zn^(2+);Cd以类质同象方式赋存为主,替代机制为Cd^(2+)↔Zn^(2+);Ga和In可能主要以类质同象方式存在。黄铁矿中Pb和Mn主要以方铅矿和碳酸盐矿物显微包体为主;Cu、As和Sb以类质同象形式存在于黄铁矿中;Ag和Zn可能以独立矿物形式赋存;Co和Ni以类质同象方式替代Fe进入黄铁矿晶格中,替代方式为Ni^(2+)+Co^(2+)↔2Fe^(2+)。毛坪矿床新发现Ⅵ矿带硫化物相比典型MVT矿床硫化物具有不同的In和Ge含量以及Cd/Fe比值,结合矿床地质特征和其他证据,表明毛坪矿床成因类型特殊,有别于经典MVT铅锌矿床,属于川滇黔型铅锌矿床。  相似文献   

17.
临沧锗矿床成因初探   总被引:15,自引:3,他引:15  
胡瑞忠  毕献武 《矿物学报》1996,16(2):97-102
本文根据临沧锗矿床中富锗煤与硅质岩的空间分布规律,富锗煤中黄铁矿的硫同位素组成,锗在矿化煤层中的品位变化规律以及硅质岩的地球化学特征,探讨了分散元素锗形成独立矿床的可能机制,研究结果表明,与矿化煤层互层的硅质岩为热水沉积成因,矿化煤层中的锗主要来自形成硅质岩的热水溶液,而这种热水溶液中的锗则主要由盆地基底的富锗花岗岩所提供。  相似文献   

18.
The mechanism of formation of the Lincang germanium deposit is discussed in the light of the spatial distribution of Ge-rich coal and siliceous rocks,the sulfur isotopic composition of pyrite in the Ge-rich coal,the variation of Ge abundance in the coal seams and the geochemical characteristics of the siliceous rocks.The results show that the siliceous rocks intercalated with the coal seamw were deposited from a hyrothermal medium through which germanium was enriched in the coal beds.The primary source of germanium is thought to be the Gerich granite in the basement of the sedimentary basin.  相似文献   

19.
Permian coals of the southern hemisphere are generally considered to contain lower concentrations of sulfides, halogens, and trace elements when compared to northern hemisphere Carboniferous coals. Few studies have considered the trace element content in South African coals, and little or no work has been published for Highveld coals. Of the nineteen coal fields in South Africa, the Highveld coal field is one of the nine currently producing, and is second largest in terms of production. Five run of mine samples and a high ash middlings product from the Number 4 Lower seam were analyzed, totaling six sample sets. Fourteen trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, V, and Zn) were selected for this study based on the global perception that these elements may be hazardous to human health and/or the environment when they are released during coal utilization. Several sample preparation techniques were tested using certified reference materials (SARMs 18, 19 and 20) to determine the most repeatable technique for these coals. The samples were analyzed by ICP-AES and CVAA (Hg only). Microwave digestion proved to be generally unreliable despite the utilization of several different methods. A slurry direct injection method into the ICP-AES provided good correlations with the reference material, but requires further development to enhance the confidence level in this relatively unexplored technique. Samples prepared based on three ASTM standards for the determination of trace elements in coal provided repeatable results in most instances, and were the preparation methods utilized for the Highveld coals.The trace element values determined for the Highveld coals are generally in good agreement with values available in literature for South African coals, with the exception of Hg, Mn and Cr. Hg values reported here are lower, Cr and Mn higher. Results generally agree well with analyses on the same samples conducted by the United States Geological Survey. When considering the global ranges for trace elements, the Highveld range values are within Swaine's range boundaries with the exception of Cr. Compared to the cited global average values for the fourteen trace elements determined, the values obtained for the Highveld coals generally fall below or well below these average values, with the exception of Cr and Mn. Concentrations of Cd and Cu are lower compared to global average values, and As, Mo, Pb, Se, Sb, and Zn can be considered low to very low. Arsenic is ten times lower compared to typical USA values. Concentrations of Co and Ni are similar to global averages, with V and Hg being very slightly higher. The middlings samples reported higher concentrations of most elements, related to the higher ash content of these samples. Of interest, the chalcophile elements determined are all depleted in the Highveld coals compared to global averages, and the siderophile elements are enriched or comparable to global averages.Risk-based health studies in the USA on coals with similar or higher Hg and significantly higher As contents have not reported negative health effects, and therefore it could be assumed that the mobilization of these trace elements from the five Highveld coals are unlikely to cause human health problems. Work is ongoing to determine the modes of occurrence of these HAPs and to address the partitioning behaviors and speciation states of these elements during coal utilization.  相似文献   

20.
This study is focused on the occurrence and distribution of mineral matter and major and trace elements in the high volatile bituminous coal from Puertollano (south-central Spain). The relationship between ash behaviour and inorganic composition, as well as the possible formation of fouling and slagging deposits in boilers during the conversion process, were investigated. The Puertollano coals do not exhibit plastic properties, despite their rank, probably because of their high ash and inertinite contents.The Puertollano coal has medium to low total S content (0.48% to 1.63% db, with a mean of 1.0% db) and is characterised by relatively high contents of Si, Pb, Sb, and Cs. Some elements such as As, Cd, Co, Cr, Cu, Ge, Li, Mn, Ni, W, and Zn are also present in relatively high contents. The enrichment in a number of heavy metals could be attributed to the common sulphide ores occurring near the Puertollano coal deposit.The following trace elements affinities are deduced: (a) sulphide affinity: As, Co, Cd, Cu, Ni, Sb, Tl, and Zn; (b) aluminum–silicate affinity: K, Ti, B, Co, Cr, Cs, Cu Ga, Hf, Li, Nb, Rb, Sn, Ta, Th, V, Zr, and LREE; (c) Carbonate affinity: Ca, Mg, Mn, and B; (d) organic affinity: B.The very high Si levels and the anomalous enrichment in Cs, Ge, Pb, Sb, and Zn shown by the Puertollano coals account for the high contents of these elements in the Puertollano fly ash when compared with the other Spanish coal fly ashes.The chemical composition of the high temperature ash (HTA) is consistent with the trend shown by the ash fusion temperatures (AFT) and also with the predictive indices related to slagging and fouling propensities. Thus, the ash fusion temperatures increase with high values of Al2O3 as well as with the decrease in Fe2O3, CaO, and MgO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号