首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The super-large Shuangjianzishan Pb–Zn–Ag deposit is a newly discovered deposit located in the Huanggang–Ganzhuermiao polymetallic metallogenic belt of Inner Mongolia, NE China. The deposit's resource includes 0.026 Mt Ag, 1.1 Mt Pb, and 3.3 Mt Zn. The deposit is controlled by a NW-trending ductile shear zone and NE- and NW-trending faults in black pelite assigned to the lower Permian Dashizhai Formation. LREE enrichment, HREE depletion, Nb, Ta, P, and Ti depletion, and Zr and Hf enrichment characterize felsic magmatic rocks in the Shuangjianzishan Pb–Zn–Ag district. The ages of porphyritic monzogranite, rhyolitic crystal–vitric ignimbrite, and porphyritic granodiorite are 254–252, 169, and 130 Ma, respectively. Pyrite sampled from the mineralization has Re–Os isochron ages of 165 ± 7 Ma, which suggest the mineralization is associated with the ca. 169 Ma magmatism in the Shuangjianzishan district.Zircons extracted from the porphyritic granodiorite yield εHf(t) values of − 11.34 to − 1.41, with tDM2 dates of 1275–1901 Ma. The εHf(t) values of zircons in the rhyolitic crystal–vitric ignimbrite and the ore-bearing monzogranite porphyry are 7.57–16.23 and 10.18–15.96, respectively, and their tDM2 ages are 177–733 and 257–632 Ma, respectively. Partial melting of depleted mantle resulted in the formation of the ca. 254–252 Ma ore-bearing porphyritic monzogranite and the ca. 169 Ma rhyolitic crystal–vitric ignimbrite; dehydration partial melting of subducted oceanic crust resulted in the formation of the ca. 130 Ma porphyritic granodiorite. The porphyritic monzogranite was emplaced during the late stages of closure of the Paleo-Asian Ocean during the transformation from a collisional to extensional tectonic setting. The ca. 170 and ca. 130 Ma magmatism and mineralization in the Shuangjianzishan district are related to subduction of the Mongolia–Okhotsk Ocean and subduction of the Paleo-Pacific Ocean Plate, respectively.  相似文献   

2.
3.
The Zhazixi Sb–W deposit in the Xuefeng uplift, South China, exhibits a unique metal association of W and Sb, where the W orebodies are hosted by interlayer fractures and the Sb orebodies are contained within NW-trending faults. This study proposes that the W and Sb mineralization took place in two separate periods. The mineral paragenesis of the W mineralization reveals a mass of quartz, scheelite and minor calcite. The mineral assemblage of the Sb mineralization developed after W mineralization and consists of predominantly quartz and stibnite, and small amounts of native Sb, berthierite, chalcostibnite, pyrite, and chalcopyrite. Fluid inclusions in quartz and coexisting scheelite are dominated by two-phase, liquid-rich, aqueous inclusions at room temperature. Microthermometric studies suggest that ore-forming fluids for W mineralization are characterized by moderate temperatures (170–270 °C), low salinity (3–7 wt% NaCl equiv.), low density (0.75–0.95 g/cm3), and moderate to high pressure (57.2–99.7 MPa) and these fluids experienced a cooling and dilution evolution during W mineralization. Ore-forming fluids for Sb mineralization are epithermal types with low temperatures (150–230 °C), low salinity (4–6 wt% NaCl equiv.), moderate density (0.82–0.94 g/cm3), and high pressure (42.2–122.5 MPa) and these fluids display an evident decline in homogenization temperature during Sb mineralization. Laser Raman analyses of the vapor phase indicate that the ore-forming fluids for both W and Sb mineralization contain a small amount of CO2.The ore-forming fluids for Sb mineralization are identified as predominantly originating from the continental crust, as suggested by the low 3He values (0.009 × 10−12 cc.STP/g) and 3He/4He ratios (0.002–0.056 Ra) as well as high 36Ar values (1.93 × 10−9 cc.STP/g) and 40Ar/36Ar ratios (909.5–2279.7). The source of S is identified to be the Neoproterozoic Wuqiangxi Formation, as traced by the δ34SV-CDT values of stibnite (3.1–9.4‰). The 208Pb/204Pb (37.643–40.222), 207Pb/204Pb (15.456–15.681), and 206Pb/204Pb (17.093–20.042) ratios suggest a mixture of lower crustal and supracrustal Pb sources.It is thus concluded that the ore genesis of the Zhazixi Sb–W deposit is related to the intracontinental orogeny during the early Mesozoic. Fluid mixing is considered to be the critical mechanism involved in W mineralization, whereas a fluid cooling process is responsible for Sb mineralization. Furthermore, the absence of Au is attributed to the low Σas content in Sb-mineralizing fluids.  相似文献   

4.
Please?refer?to?the?attachment(s)?for?more?details.  相似文献   

5.
The large-scale Bayanbaolege Ag polymetallic deposit is situated in the Tuquan–Linxi Fe-Sn-Cu-Pb-Zn-Ag metallogenic sub-belt in eastern slopes of the southern Great Xing’an Range, NE China. The sulfide-quartz vein-type orebodies in the deposit are hosted primarily in the Early Cretaceous granodiorite porphyry and Late Permian strata. Three primary paragenetic stages of veining have been identified: (I) arsenopyrite- pyrite-quartz stage, (II) pyrite-sphalerite-quartz stage, and (III) galena-silver minerals (pyrargyrite, argentite, and pearceite)-calcite stage. The Rb–Sr dating of sulfides yielded an isochron age of 129.9 ± 2.9 Ma (MSWD = 2.1) for the sphalerite, which constrains the mineralization age to the Early Cretaceous. Rb and Sr concentrations in the sulfides ranged from 0.0940 to 1.0294 ppm and 0.0950–3.3818 ppm, respectively. The initial 87Sr/86Sr value of the sphalerite was 0.70852 ± 0.00018, indicating that the mineralized materials were derived from the mixed crust-mantle source area. S isotope analysis showed that the δ34S values of the sulfide samples varied in a narrow range, from −1.5‰ to +1.3‰ (mean −0.65‰), indicating a magmatic S source. Pb isotopic ratios of the sulfides (206Pb/204Pb = 18.306–18.416, 207Pb/204Pb = 15.524–15.605, 208Pb/204Pb = 38.095–38.479) and the granodiorite porphyry (206Pb/204Pb = 18.341–18.933, 207Pb/204Pb = 15.539–15.600, 208Pb/204Pb = 38.134–38.944) reflect that the ore-forming materials originated from contemporaneous magma with Early Cretaceous granodiorite porphyry. This study of the Bayanbaolege deposit and other hydrothermal deposits in the area provides compelling evidence that the widespread Mesozoic magmatism and mineralization in the southern Great Xing’an Range occurred in an intracontinental extensional tectonic setting, which was associated with the westward subduction of the paleo-Pacific plate.  相似文献   

6.
The Shanshulin Pb–Zn deposit occurs in Upper Carboniferous Huanglong Formation dolomitic limestone and dolostone, and is located in the western Yangtze Block, about 270 km west of Guiyang city in southwest China. Ore bodies occur along high angle thrust faults affiliated to the Weishui regional fault zone and within the northwestern part of the Guanyinshan anticline. Sulfide ores are composed of sphalerite, pyrite, and galena that are accompanied by calcite and subordinate dolomite. Twenty-two ore bodies have been found in the Shanshulin deposit area, with a combined 2.7 million tonnes of sulfide ores grading 0.54 to 8.94 wt.% Pb and 1.09 to 26.64 wt.% Zn. Calcite samples have δ13CPDB and δ18OSMOW values ranging from − 3.1 to + 2.5‰ and + 18.8 to + 26.5‰, respectively. These values are higher than mantle and sedimentary organic matter, but are similar to marine carbonate rocks in a δ13CPDB vs. δ18OSMOW diagram, suggesting that carbon in the hydrothermal fluid was most likely derived from the carbonate country rocks. The δ34SCDT values of sphalerite and galena samples range from + 18.9 to + 20.3‰ and + 15.6 to + 17.1‰, respectively. These values suggest that evaporites are the most probable source of sulfur. The δ34SCDT values of symbiotic sphalerite–galena mineral pairs indicate that deposition of sulfides took place under chemical equilibrium conditions. Calculated temperatures of S isotope thermodynamic equilibrium fractionation based on sphalerite–galena mineral pairs range from 135 to 292 °C, consistent with previous fluid inclusion studies. Temperatures above 100 °C preclude derivation of sulfur through bacterial sulfate reduction (BSR) and suggest that reduced sulfur in the hydrothermal fluid was most likely supplied through thermo-chemical sulfate reduction (TSR). Twelve sphalerite samples have δ66Zn values ranging from 0.00 to + 0.55‰ (mean + 0.25‰) relative to the JMC 3-0749L zinc isotope standard. Stages I to III sphalerite samples have δ66Zn values ranging from 0.00 to + 0.07‰, + 0.12 to + 0.23‰, and + 0.29 to + 0.55‰, respectively, showing the relatively heavier Zn isotopic compositions in later versus earlier sphalerite. The variations of Zn isotope values are likely due to kinetic Raleigh fractional crystallization. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the sulfide samples fall in the range of 18.362 to 18.573, 15.505 to 15.769 and 38.302 to 39.223, respectively. The Pb isotopic ratios of the studied deposit plot in the field that covers the upper crust, orogenic belt and mantle Pb evolution curves and overlaps with the age-corrected Proterozoic folded basement rocks, Devonian to Lower Permian sedimentary rocks and Middle Permian Emeishan flood basalts in a 207Pb/204Pb vs. 206Pb/204Pb diagram. This observation points to the derivation of Pb metal from mixed sources. Sphalerite samples have 87Sr/86Sr200 Ma ratios ranging from 0.7107 to 0.7115 similar to the age-corrected Devonian to Lower Permian sedimentary rocks (0.7073 to 0.7111), higher than the age-corrected Middle Permian basalts (0.7039 to 0.7078), and lower than the age-corrected Proterozoic folded basement (0.7243 to 0.7288). Therefore, the Sr isotope data support a mixed source. Studies on the geology and isotope geochemistry suggest that the Shanshulin deposit is a carbonate-hosted, thrust fault-controlled, strata-bound, epigenetic, high grade deposit formed by fluids and metals of mixed origin.  相似文献   

7.
Liu  Han-Lun  Han  Yi  Wang  Ke-Yong  Li  Wen  Li  Jian  Cai  Wen-Yan  Fu  Li-Juan 《Arabian Journal of Geosciences》2018,11(24):1-13
Arabian Journal of Geosciences - Soil toxic metal pollution is one of the most prominent environmental problems in the rapid industrialization of societies because of the considerable harm caused...  相似文献   

8.
The Haobugao Zn–Fe deposit is a typical skarn deposit located in the southern part of the Great Xing’an Range that hosts polymetallic mineralization over a large region. The main ore minerals at the deposit include sphalerite, magnetite, galena, chalcopyrite and pyrite, and the main gangue minerals include andradite, grossular garnet, hedenbergite, diopside, ilvaite, calcite and quartz. There are broadly two mineralizing periods represented by the relatively older skarn and younger quartz–sulfide veins. In detail, there are five metallogenic stages consisting of an early skarn, late skarn, oxide, early quartz–sulfide, and late quartz–sulfide–calcite stages. Electron microprobe analyses show that the garnet at the deposit varies in composition from And97.95Gro0.41Pyr1.64 to And30.69Gro66.69Pyr2.63, and pyroxene is compositionally in the diopside–hedenbergite range (i.e. Di90.63Hd8.00Jo1.37–Hd88.98Di4.53Jo6.49). Petrographic observations and electron microprobe analyses indicate that the sphalerite has three generations ([Zn0.93Fe0.08]S–[Zn0.75Fe0.24]S). The Zn associated with the first generation sphalerite replaced Cu and Fe of early xenomorphic granular chalcopyrite (i.e. [Cu1.01Fe1.03]S2–[Cu0.99Fe0.99]S2), and part of the first generation sphalerite is coeval with late chalcopyrite (i.e. [Cu0.96Fe0.99Zn0.03]S2–[Cu1.00Fe1.03Zn0.01]S2). Magnetite has a noticeable negative Ce anomaly (δCe = ∼0.17 to 0.54), which might be a result of the oxidized ore-fluid. Thirty δ34SV-PDB analyses of sulfides from the ore range from −2.3 to −0.1‰ in value, which are indicative of a magmatic source. The δ13C‰ and δ18O‰ values for calcite from the ore formed at quartz–sulfide–calcite stage vary from −9.9 to −5.5‰ and from −4.2 to 1.1‰, respectively, contrasting with δ13C‰ (2.9–4.8‰) and δ18O‰ (9.8–13.9‰) values for calcite from marble. It is suggested that the ore-forming fluid associated with late stage of mineralization was predominantly magmatic in origin with some input of local meteoric water.Molybdenite from the Haobugao deposit defines an isochron age of 142 ± 1 Ma, which is interpreted as the mineralization age being synchronous, within error, with the zircon U–Pb ages of 140 ± 1, 141 ± 2, and 141 ± 1 Ma for granite at the deposit. These data and characteristics of lithology and mineralization further show that the Zn–Fe mineralization is temporally and spatially related to the emplacement of granite in an extensional tectonic setting during the Mesozoic.  相似文献   

9.
The Yinshan Cu–Au–Pb–Zn–Ag deposit is located in Dexing, South China. Ore bodies are primarily hosted in low-grade phyllite of the Neoproterozoic Shuangqiaoshan Group along EW- and NNW-striking fault zones. Pb–Zn–Ag mineralization is dictated by Jurassic rhyolitic quartz porphyries (ca. 172 Ma), whereas Cu–Au mineralization is associated with Jurassic dacite porphyries (ca. 170 Ma). The main ore minerals are pyrite, chalcopyrite, galena, sphalerite, tetrahedrite–tennatite, gold, silver, and silver sulphosalt, and the principal gangue minerals are quartz, sericite, calcite, and chlorite. Two-phase liquid-rich (type I), two-phase vapor-rich (type II), and halite-bearing (type III) fluid inclusions can be observed in the hydrothermal quartz-sulfides veins. Type I inclusions are widespread and have homogenization temperatures of 187–303 °C and salinities of 4.2–9.5 wt.% NaCl equivalent in the Pb–Zn–Ag mineralization, and homogenization temperatures of 196–362 °C and salinities of 3.5–9.9 wt.% NaCl equivalent in the Cu–Au mineralization. The pervasive occurrence of type I fluid inclusions with low-moderate temperatures and salinities implies that the mineralizing fluids formed in epithermal environments. The type II and coexisting type III inclusions, from deeper levels below the Cu–Au ore bodies, share similar homogenization temperatures of 317–448 °C and contrasting salinities of 0.2–4.2 and 30.9–36.8 wt.% NaCl equivalent, respectively, which indicates that boiling processes occurred. The sulfur isotopic compositions of sulfides (δ34S = −1.7‰ to +3.2‰) suggest a homogeneous magmatic sulfur source. The lead isotopes of sulfides (206Pb/204Pb = 18.01–18.07; 207Pb/204Pb = 15.55–15.57; and 208Pb/204Pb = 38.03–38.12) are consistent with those of volcanic–subvolcanic rocks (206Pb/204Pb = 18.03–18.10; 207Pb/204Pb = 15.56–15.57; and 208Pb/204Pb = 38.02–38.21), indicating a magmatic origin for lead in the ore. The oxygen and hydrogen isotope compositions (δ18O = +7.8‰ to +10.5‰, δD = −66‰ to −42‰) of inclusion water in quartz imply that ore-forming fluids were mainly derived from magmatic sources. The local boiling process beneath the epithermal Cu–Au ore-forming system indicates the possibility that porphyry-style ore bodies may exist at even deeper zones.  相似文献   

10.
The Donggebi Mo deposit located in NW China is a newly discovered, large, stockwork-type Mo deposit with ore reserves of 441 Mt @ 0.115% Mo. Ore bodies occur along faults and fractures at the external contact zone of a concealed porphyritic granite and volcaniclastic rocks of Gandun Formation, spatially associated with a fine-grained granite. Mo-bearing veins are mainly assemblages of volatile-rich K-feldspar-quartz-oxide, K-feldspar-quartz, polymetallic sulfides and calcite-quartz. Zircon LA-ICP-MS U–Pb dating yielded concordant ages of 234.6 ± 2.7 Ma and 231.8 ± 2.4 Ma for the porphyritic granite and the fine-grained granite, respectively; molybdenite Re–Os dating gave an isochron age of 234.0 ± 2.0 Ma. These ages further confirm an important and extensive magmatic-metallogenic event in Eastern Tianshan during the Triassic Indosinian orogeny. Whole-rock major and trace element analyses indicate that the granitic rocks associated with Mo mineralization are high in Si, K, Rb, Th, Nb, Ta, Ga and LREE, but low in P, Ti, Sr and Ba, belonging to high-K calc-alkaline granites with A-type features. Magma was likely derived from the re-melting of thickened lower crust in a post-collision compression environment in the Late Permian, experienced strong crystal fractionation and formed the large Donggebi Mo deposit under an intra-plate extension setting in the Early to Middle Triassic.  相似文献   

11.
The genesis of adakites and associated Mo–Cu mineralization in non–arc settings in China is poorly constrained. Here, we present geochronology, geochemistry and Sr–Nd–Pb isotopes for the Tongcun intrusive complex, and report Pb isotopes and 40Ar–39Ar age for the Tongcun Mo–Cu deposit. The Tongcun intrusive complex is composed mainly by granodiorite and monzogranite (phase 1 and phase 2), with emplacement age of 160 Ma to 148 Ma. The Tongcun complex can be classified as typical high–K calc–alkaline I–type granitoid and also shows adakitic geochemical features. Moreover, the negative Nb, Ta, Ti, and P anomalies and enriched initial 87Sr/86Sr ratios of 0.7083–0.7092 of the Tongcun intrusive complex are consistent with those of the subduction–related magmatism. The 40Ar–39Ar dating of sericite, which is intergrown with chalcopyrite, indicates that the late Cu mineralization event occurred at ~ 155.5 Ma. The early Mo (Cu) and the late Cu mineralization events in this deposit were temporally, spatially and genetically associated with the emplacement of monzogranite (phase 1). There are no obvious linear correlation between SiO2 and most of the major and trace elements, and all rock samples fall within the fields of unfractional crystallization felsic granites in Zr + Nb + Ce + Y versus FeOT/MgO and (K2O + Na2O)/CaO diagrams, indicating that partial melting rather than fractional crystallization has played an important role for the formation of the Tongcun intrusive complex. Magmatic inherited zircons from the Tongcun granitoids with the age peaked at 780–812 Ma, imply that the Neoproterozoic igneous rocks in the lower crust have been incorporated into the magma source. The uniform εNd(t) (− 6.3 to − 7.3), initial 87Sr/86Sr, 207Pb/204Pb (15.596–15.621), and 208Pb/204Pb (38.374–38.650), as well as high K2O contents (3.36–4.10 wt.%) and relatively high Mg# values (35.40 to 40.30) suggest the Tongcun intrusive complex was derived from partial melting of the thickened lower continental crust triggered by basaltic magma underplating plus additional input from the EM II mantle-derived basaltic melts. The Tongcun area was controlled by a compression setting related to the subduction of the Paleo–Pacific Plate in Mesozoic period.  相似文献   

12.
The Keketale Pb–Zn deposit is located in the Devonian volcanic-sedimentary Maizi basin of the Altay orogenic belt. The mineralization at Keketale is hosted in marbles and deformed volcanic tuffs and biotite–garnet–chlorite schists, folded into a series of overturned synclines formed in multiple deformation events. Keketale contains economic amounts of Pb (0.89 Mt @ 1.51 wt.%), Zn (1.94 Mt @ 3.16 wt.%) and Ag (650 t @ 40 g/t).Detailed petrographic studies have defined two main generations of sulfide development. The banded pyrite of the early Stage A is commonly stratiform, with minor galena, sphalerite and chalcopyrite. Stage B is characterized by a large amount of polymetallic sulfides including pyrrhotite, chalcopyrite, sphalerite and galena, with minor pyrite hosted in quartz veins.Three types of fluid inclusions (FIs), including mixed carbonic-aqueous (C-type), pure carbonic (PC-type) and aqueous (W-type), have been recognized in quartz of stage B. The C-type FIs have homogenization temperatures of 150–326 °C and salinities of 0.2–16.6 wt.% NaCl equivalent. The PC-type FIs are dominated by CO2 with minor CH4 and N2 and have initial ice-melting temperatures of − 57.5 to − 56.7 °C, CO2 homogenization temperatures of 11–14.1 °C. The W-type primary FIs were completely homogenized at temperatures of 124–359 °C with salinities of 5.0–14.6 wt.% NaCl equivalent. Such CO2-rich fluid inclusions are consistent with those discovered in orogenic-type deposits in the Altay area and elsewhere.Muscovite separates from the polymetallic quartz veinlets of stage B yield a well-defined 40Ar/39Ar isotopic plateau age of 259.33 ± 2.56 Ma, with an isochron age of 259.62 ± 2.65 Ma. This age is coeval with the closure of the Paleo-Asia Ocean and reactivation of the Ertix Fault system.LA-ICP-MS analyses of two generations of pyrite indicate that the banded pyrite of stage A is relatively depleted in metallic elements and contains low contents of Cu (0.39 ppm), Ag (0.20 ppm), Au (below the detection limits), Pb (17.43 ppm) and Zn (14.38 ppm); whereas the pyrite in quartz–polymetallic sulfide veinlets of the stage B is relatively rich in metallic elements, e.g., Cu (2.56 ppm), Ag (3.07 ppm), Au (0.01 ppm), Pb (1047 ppm) and Zn (1136 ppm). The trace amounts of Cu, Pb, Zn, Au and Ag are interpreted to have been initially locked in the lattice of type-A pyrite, and then liberated and precipitated as micromineral inclusions with type-B pyrite during subsequent metamorphism and deformation.Two key factors are considered vital to the formation of economic ores of the Keketale Pb–Zn deposit, namely the original Devonian banded pyrite formed in a VMS system and subsequent Permian deformation and metamorphic processes that liberated Cu, Pb, Zn, Au and Ag from the lattice of type-A pyrite to form galena, sphalerite and chalcopyrite with minor muscovite in quartz veinlets. The model provides a new interpretation of VMS Pb–Zn deposit occurring in back-arc basin environments followed by collision, and new insights into the unique regional Fe–Cu–Pb–Zn–Au mineralization in the Altay orogenic belt.  相似文献   

13.
The newly discovered Jiyuan Cu–Ag–(Pb–Zn–Au) deposit is located in the southern section of the eastern Tianshan orogenic belt, Xinjiang, northwestern China. It is the first documented deposit in the large Aqikekuduke Ag–Cu–Au belt in the eastern Tianshan orogen. Detailed field observations, parageneses, and fluid inclusion studies suggest an epithermal ore genesis for the main Cu–Ag mineralization, accompanied by a complicated hydrothermal alteration history most likely associated with the multi-stage tectonic evolution of the eastern Tianshan. The Jiyuan Cu–Ag ore bodies are located along the EW-striking, south-dipping Aqikekuduke fault and are hosted by Precambrian marble and intercalated siliceous rocks. Early-stage skarn alteration occurred along the contact zone between the marble layers and Early Carboniferous diorite–granodiorite and monzogranite intrusions; the skarns are characterized by diopside–tremolite–andradite–pyrite–(magnetite) assemblages. Local REE-enriched synchysite–rutile–arsenopyrite–(clinochlorite–microcline–albite) assemblages are related to K–Na alteration associated with the monzogranite intrusions and formed under conditions of high temperature (310°C) and high salinity (19.9 wt.% NaCl). Subsequent hydrothermal alteration produced a series of quartz and calcite veins that precipitated from medium- to low-temperature saline fluids. These include early ‘smoky’ quartz veins (190°C; 3.0 wt.% NaCl) that are commonly barren, coarse-grained Cu–Ag mineralized quartz veins (210°C; 2.4 wt.% NaCl), and late-stage unmineralized calcite veins (140°C; 1.1 wt.% NaCl). Tremolite and Ca-rich scapolite veins formed at an interval between early and mineralized quartz veins, indicating a high-temperature, high-salinity (>500°C; 9.5 wt.% NaCl) Ca alteration stage. Fluid mixing may have played an important role during Cu–Ag mineralization and an external low-temperature Ca-rich fluid is inferred to have evolved in the ore-forming system. The Jiyuan auriferous quartz veins possess fluid characteristics distinct from those of the Cu–Ag mineralized quartz veins. CO2-rich fluid inclusions, fluid boiling, and mixing all demonstrate that these auriferous quartz veins acted as hosts for the orogenic-type gold mineralization, a common feature in the Tianshan orogenic belt.  相似文献   

14.
The Bavanat Cu–Zn–Ag Besshi-type volcanogenic massive sulfide (VMS) deposit occurs within the Surian volcano-sedimentary complex in the Sanandaj–Sirjan zone (SSZ) of southern Iran. The Surian complex is comprised of pelite, sandstone, calcareous shale, basalt, gabbro sills, and thin-bedded limestone. Mineralization occurs as stratiform sheet-like and tabular orebodies hosted mainly by greenschist metamorphosed feldspathic and quartz feldspathic sandstone, basalt, and pelites. The basalts of the Surian complex show predominantly tholeiitic to transitional affinities, with a few samples that are alkalic in composition. Primitive mantle-normalized trace and rare earth element (REE) patterns of the Surian basalts display depletions in light REE, negative anomalies of Nb, Ta, and Ti, and positive anomalies of P. Positive P anomalies are indicative of minor crustal contamination. Furthermore, Th enrichments in the mid-ocean ridge basalt-normalized patterns of the Surian basalts are characteristic of rifted arc basalts emplaced in continental margin subduction zones. The high MgO content (>6?wt.%) of most Surian basalts and low TiO2 content of two samples (0.53 and 0.62?wt.%) are characteristic of boninites. The aforementioned features of the basalts indicate arc tholeiites emplaced in intra-arc rift environments and continental margin subduction zones. U–Pb dating by laser ablation- inductively coupled plasma mass spectrometry of detrital zircons extracted from the host feldspathic and quartz feldspathic sandstone yields various ages that are predominantly Permian and Triassic; however, the youngest zircons give a mean Early Jurassic concordant U–Pb age of 191?±?12?Ma. This age, together with geological and petrochemical data, indicate that VMS mineralization formed in the Early Jurassic in pull-apart basins within the SSZ. These basins and the VMS mineralization may be temporally related to an intra-arc volcano–plutonic event associated with Neo-Tethyan oblique subduction.  相似文献   

15.
The Song Hien Rift basin is considered as one of the important regions for gold deposits in North East Vietnam. Host rocks of a number gold deposits in the Song Hien Rift basin are mainly in Lower Triassic sedimentary formations. However, there is the Hat Han gold deposit hosted in fined-grained mafic magmatic rocks with similar characteristics as gold deposit hosted in the Triassic sediments. Sulphur isotopic compositions of sulphide are similar to those in carbonaceous shale, suggesting that the sulphur was ‘borrowed’ from sedimentary rocks in filling the rift basin. Gold-bearing sulphides (pyrite and arsenopyrite) are the main form of Au presence in the ore. Gold in pyrite is present as Au+ 1, and a minor amount of as nanoparticles of native Au (Au0); whereas in arsenopyrite, gold is chemically bound as the octahedral complex AuAs2. Analysis of geology, as well as geochemical and isotopic studies show that the genesis of the Hat Han gold deposit is not related to the Cao Bang mafic magmatism; instead the latter only serves as (ore) host rock. The geochemical results presented above suggest that the gabbro host rock only supplies iron needed for sulphide formation. With regard to ore genesis, the Hat Han gold deposit in the Song Hien rift basin was generated in the similar way as sediment-hosted gold deposit. There are many similar typomorphic features between the Hat Han deposit and Carlin-like deposits in the Nanpanjang sedimentary basin in China.  相似文献   

16.
《地学前缘(英文版)》2020,11(4):1369-1380
This paper reports new geochronological (U–Pb) and isotope (C, O, and S) data to investigate the timing of mineralization and mode of ore genesis for the recently discovered Changtuxili Mn–Ag–Pb–Zn deposit, located on the western slopes of the southern Great Hinggan Range in NE China. The mineralization is hosted by intermediate–acidic lavas and pyroclastic rocks of the Baiyingaolao Formation. Three stages of mineralization are identified: quartz–pyrite (Stage I), galena–sphalerite–tetrahedrite–rhodochrosite (Stage II), and quartz–pyrite (Stage III). δ13C and δ18O values for carbonate from the ore vary from −8.51‰ to −4.96‰ and 3.97‰ to 15.90‰, respectively, which are indicative of a low-temperature alteration environment. δ34SV-CDT values of sulfides range from −1.77‰ to 4.16‰ and show a trend of equilibrium fractionation (δ34SPy ​> ​δ34SSp ​> ​δ34SGn). These features indicate that pyrite, sphalerite, and galena precipitated during the period of mineralization. The alteration mineral assemblage and isotope data indicate that the weakly acidic to weakly alkaline ore-forming fluid was derived largely from meteoric water and the ore-forming elements C and S originated from magma. During the mineralization, a geochemical barrier was formed by changes in the pH of the ore-forming fluid, leading to the precipitation of rhodochrosite. On the basis of the mineralization characteristics, new isotope data, and comparison with adjacent deposits, we propose that the Changtuxili Mn–Ag–Pb–Zn deposit is an intermediate-to low-sulfidation epithermal deposit whose formation was controlled by fractures and variability in the pH of the ore-forming fluid. The surrounding volcanic rocks yield zircon U–Pb ages of 160−146 ​Ma (Late Jurassic), indicating that the mineralization is younger than 146 ​Ma.  相似文献   

17.
Acta Geochimica - The Lake Siah iron ± apatite deposit is situated in the Bafq Mining District (BMD), Central Iran. The iron ± apatite orebodies are hosted by a...  相似文献   

18.
《International Geology Review》2012,54(12):1435-1449
Recent research has identified an early to late Carboniferous magmatic arc that extends from Suzuo Qi to Xiwu Qi in Inner Mongolia, China, but the eastern extension of this arc is unknown. Understanding the relationship between this arc and the Hegenshan ophiolite belt and Xilamulun Solonker suture zone is important to our understanding of the tectonic evolution of the late Palaeozoic Palaeo-Asian Ocean. Here, we present new zircon laser ablation–inductively coupled plasma mass spectrometry U–Pb and geochemical data for the Maoliger quartz monzodiorites within the Jalaid Qi area. The Maoliger quartz monzodiorites formed at 329 ± 2 Ma, are low-K and tholeiitic, and have geochemical signatures indicative of formation within a magmatic arc. These rocks are large-ion lithophile element (e.g. Rb, Ba, and Sr)-enriched and high-field-strength element (e.g. Nb and Ta)-depleted. Combined with previously published researches, it is suggested that the quartz monzodiorites within the Jalaid Qi area formed contemporaneously with and are geochemically similar to quartz diorites of the Xiwu Qi area and the Baolidao pluton in the Suzuo Qi area. This indicates that the early to late Carboniferous magmatic arc in this region extends eastward to the Jalaid Qi area. This arc is located in an area parallel to a southerly early Permian magmatic arc, suggesting that the Palaeo-Asian Ocean subduction zone migrated south between the early Carboniferous and early Permian. The new data show that the Palaeo-Asian Ocean closed after the late Carboniferous.  相似文献   

19.
The Xiaobaishitou W (–Mo) deposit is located in the eastern segment of the Central Tianshan, northwestern China. The deposit represents a skarn system distributed in the contact zones of biotite granite and crystalline limestone of the Mesoproterozoic Kawabulag Group. The Xiaobaishitou deposit is characterized by a typical calc-silicate mineralogy dominated by garnet, diopside and wollastonite, with minor epidote, tremolite, actinolite, chlorite, quartz, fluorite and calcite. The prograde and retrograde skarns are characterized by garnet–clinopyroxene–wollastonite and epidote–tremolite–actinolite–chlorite, respectively, intruded and replaced by mineral assemblages of scheelite–cassiterite–magnetite, quartz–sulfides and calcite–quartz–fluorite in younger order.Six molybdenite samples from the deposit yielded Re  Os isotope model ages ranging from 239.7 ± 3.6 Ma to 251.4 ± 3.6 Ma. The zircon crystals from biotite granite and Mo-mineralized granite yield weighted 206Pb/238U age of 242 ± 1.7 and 240.5 ± 2.1 Ma, respectively. Both the zircon U  Pb and the molybdenite Re  Os ages obtained in this study fall in a narrow span of 242–240 Ma, which suggest that the Xiaobaishitou W (–Mo) system was formed in the Triassic. The Re contents of the molybdenites range from 40.33 to 64.67 ppm, suggesting that the ore-forming materials were derived mainly from continental crust together with the involvement of minor mantle components. Combined with the 87Sr/86Sr ratios of tungsten-bearing quartz veins from other studies, which scatter between 0.707153 and 0.709877, demonstrating mixing between two end-member isotopic compositions of crust and mantle. It can be concluded that the Indosinian Xiaobaishitou deposit was formed in a tectonic transition from collisional crust shortening and thickening to post-collisional extension and thinning.  相似文献   

20.
The Longbohe Cu deposit, which is located in the southern part of the Honghe ore-forming zone, Yunnan Province, China, belongs to a typical ore field where volcanic rocks are of wide distribution and are associated with Cu mineralization in time and space. The volcanic rocks in the ore field, which have experienced varying degree of alteration or regional metamorphism, can be divided into three types, i.e., meta-andesite, meta-subvolcanic rock and meta-basic volcanic rock in accordance with their mineral assemblages. These three types of volcanic rocks in the ore field are relatively rich in Na and the main samples plot in the area of alkali basalts in the geochemical classification diagram. With the exception of very few elements, these three types of volcanic rocks are similar in the content of trace elements. In comparison to the basalts of different tectonic settings, the meta-volcanic rocks in the ore field are rich in high field strength elements (HFSE) such as Th, Nb, etc. and depleted in large ion lithophile elements (LILE) such as Sr, Ba, etc. and their primary mantle-normalized trace element patterns show remarkable negative Th and Nb anomalies and negative Sr and Ba anomalies. These three types of volcanic rocks are similar in REE content range and chondrite-normalized REE patterns with the exception of Eu anomaly. Various lines of evidence show that these three types of volcanic rocks in the ore field have the same source but are the products of different stages of magmatic evolution, their original magma is a product of partial melting of the metasomatically enriched mantle in the tensional tectonic setting within the continent plate, and the crystallization differentiation plays an important role in the process of magmatic evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号