首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Late Weichselian glaciation history of the northern North Sea   总被引:8,自引:1,他引:8  
Based on new data from the Fladen, Sleipner and Troll areas, combined with earlier published results, a glaciation curve for the Late Weichselian in the northern North Sea is constructed. The youngest date on marine sedimentation prior to the late Weichselian maximum ice extent is 29.4 ka BP. At this time the North Sea and probably large parts of southern Norway were deglaciated (corresponding to the Alesund interstadial in western Norway). In a period between 29.4 and c. 22 ka BP, the northern North Sea experienced its maximum Weichselian glaciation with a coalescing British and Scandinavian ice sheet. The first recorded marine inundation is found in the Fladen area where marine sedimentation started close to 22 ka BP. After this the ice fronts receded both to the east and west. The North Sea Plateau, and possibly parts of the Norwegian Trench, were ice-free close to 19.0 ka, and after this a short readvance occurred in this area. This event is correlated with the advance recorded at Dimlington, Yorkshire, and the corresponding climatostratigraphic unit is denoted the Dimlington Stadial (18.5 ka to 15.1 ka). The Norwegian Trench was deglaciated at 15.1 ka in the Troll area. The data from the North Sea, together with the results from Andwa, northern Norway (Vorren et al . 1988; Møller et al . 1992), suggest that the maximum extent of the last glaciation along the NW-European seaboard from the British Isles to northern Norway was prior to c . 22 ka BP.  相似文献   

2.
The occurrence of till beds alternating with glaciomarine sediment spanning oxygen isotope stages 6 to 2, combined with morphological evidence, shows that the southwestern fringe of Norway was inundated by an ice stream flowing through the Norwegian Channel on at least four occasions, the last time being during the Late Weichselian maximum. All marine units are deglacial successions composed of muds with dropstones and diamictic intrabeds and a foraminiferal fauna characteristic of extreme glaciomarine environments. Land‐based ice, flowing at right angles to the flow direction of the ice stream, fed into the ice stream along an escarpment formed by erosion of the ice stream. Each time the ice stream wasted back, land‐based ice advanced into the area formerly occupied by the ice stream. During the last deglaciation of the ice stream (c. 15 ka BP), the advance of the land‐based ice occurred immediately upon ice stream retreat. As a result, the sea was prevented from inundating the upland areas, allowing most of the glacioisostatic readjustment to occur before the land‐based ice melted back at about 13 ka BP. This explains the low Late Weichselian sea levels in the area (10–20 m) compared with those of the Middle Weichselian and older sea‐level high stands (~200 m). Regional tectonic movements cannot explain the location of the observed marine successions. The highest sea level recorded (>200 m) is represented by glaciomarine sediments from the Sandnes interstadial (30–34 ka BP). Older interstadial marine sediments are found at somewhat lower levels, possibly as a result of subsequent glacial erosion in these deposits. Ice streams developed in the Norwegian Channel during three Weichselian time intervals. This seems to correspond to glacial episodes both to the south in Denmark and to the north on the coast of Norway, although correlations are somewhat hampered by insufficient dating control.  相似文献   

3.
This study presents the Weichselian stratigraphy on Kriegers Flak in the southwestern Baltic Sea, and correlates it to new sections in southernmost Sweden and to previously published stratigraphic sequences from SW Skåne. A total of four Weichselian advances are identified based on our correlations. The oldest till, observed only on Kriegers Flak, is dated to the Early or Middle Weichselian and tentatively correlated to the Ristinge advance, previously identified in Denmark. It is overlain by three interstadial sediment units, starting with brackish clay and followed by terrestrial and lacustrine deposits, which have been dated to 42–36 ka, and finally by glaciolacustrine clay dated to 28.5–26 ka. After 30 ka, the Fennoscandian ice sheet advanced through the Baltic Basin and into the coastal areas of southernmost Sweden where the Allarp Till was deposited, followed by a deglaciation sequence. The uppermost tills, the Dalby Till and the Lund till, were deposited during the LGM advance and the subsequent re‐advances through the Baltic Basin. Based on the new evidence it has been possible to identify and date a Middle and Late Weichselian till succession in southern Sweden and provide a strong correlation to the established glacial stratigraphies in Sweden and Denmark.  相似文献   

4.
A glacial chronology for northern East Greenland   总被引:3,自引:1,他引:3  
In East Greenland between 75 and 76N three different glacial episodes can be identified: (1) An early period with more or less total ice cover and in which the ice reached out onto the continental shelf - the Kap Mackenzie stadial; (2) a period with glaciation of intermediate extent, when nunataks and a few ice-free lowland areas existed - the Muschelbjerg stadial; and (3) a final period with glacial advance, when the glaciers were mainly restricted to fjords and larger valleys - the Nanok stadial. Each of these stadials was followed by a period with general deglaciation, from which marine shell-bearing sediments have been found; the Hochstetter Forland interstadial, the Peters Bugt interstadial and the Flandrian interglacial, respectively. The marine limit sank with each of these ice-free periods; probably an isostatic effect of the decreasing amplitude of the glacial advances. The deglaciation after the Nanok stadial began about 9500 B.P. It is not known for certain when this glacial advance started, but 13,000 B.P. or earlier is suggested. According to 14C datings the Peters Bugt interstadial dates from at least 45,000 B.P. and the Hochstetter Forland interstadial from at least 49,000 B.P. However, amino acid analyses indicate a distinct age difference between these two interstadial, and Th/U datings give age estimates of 70,000–115,000 B.P. for the Hochstetter Forland interstadial, which therefore seems to be of Early Weichselian age although a pre-Weichselian age cannot be excluded. The same applies to the preceding Kap Mackenzie stadial. The correspondence between the present glacial chronology and similar tripartite ones on Bafffin Island, Ellesmere Island and Svalbard seems reasonably good  相似文献   

5.
Eemian—Weichselian sequences, located outside the maximum limit of the Late Weichselian ice sheet, provide excellent opportunities for the discovery of continuous sedimentary records encompassing the whole Last Interglacial/Glacial cycle. Such a sequence is recorded in a borehole (117P) through the succession in a small kettlehole lake located at Medininkai, eastern Lithuania. The succession consists of peat, gyttja and silt deposited on top of a Saalian till. Pollen and plant macrofossil analysis, lithological analysis, U/Th dating and mineral magnetic measurements on the sediments have allowed 19 lithostratigraphic units and 16 local pollen assemblage zones (LPAZ) to be identified. The palaeocarpological record reveals a clear transition from the Saalian Glacial to the Weichselian stadial and interstadial phases. The mineral magnetic parameters suggest a good correlation between the concentration of magnetic minerals and stadial and interstadial periods. The Merkine (Eemian) Interglacial and two Early Weichselian Interstadials, Jonionys 1 (Brörup) and Jonionys 2 (Odderade), separated by cryomers, are identified. Intervals interpreted as analogous to the Middle Weichselian Denekamp and Hengelo interstadials are also recognized on the basis of pollen assemblages. The results show alternating periglacial and interstadial palaeoenvironments in Lithuania during the Early and Middle Weichselian and are of importance for Late Pleistocene palaeoenvironmental reconstruction of the Baltic area as a whole.  相似文献   

6.
《Sedimentary Geology》2007,193(1-4):221-231
The palaeogeographical development of South Lithuania during the last ice age (Nemunas = Weichselian) was reconstructed by various methods. The recurring permafrost and cryogenic structures in the ground were an important phenomenon of the southeastern periglacial zone. The 3–4 lithocomplexes of the extraglacial cover correlate with the Lithuanian and Mid-European Late Pleistocene Weichselian (Nemunas) biostratigraphic divisions. In the northwest, the palaeogeography is influenced by the deglaciation during the Žiogeliai (Frankfurt) Phase and the Baltija (Pomeranian) Stage of the last ice age. The deglatiation process is shown in a series of palaeogeography maps. During the Weichselian, the SW–NE oriented middle part of the area, commonly regarded as part of the Vilnius-Warsaw-Berlin Urstromtal (ice-marginal streamway), underwent intensive interstadial fluvial erosion and accumulation, glacial erosion and sedimentation, followed by subsequent glaciofluvial accumulation on sandurs and glaciolacustrine sedimentation in a series of small basins.  相似文献   

7.
Sejrup, Hans Petter 1987 03 01: Molluscan and foraminiferal biostratigraphy of an Eemian-Early Weichselian section on Karmøy, southwestern Norway. Boreas , Vol. 16, pp. 27–42. Oslo. ISSN 0300–9483.
At Karmøy, southwestern Norway, a section with marine sediments from the last interglacial (the Avaldsnes Interglacial) and from two ice-free periods (the Torvastad and Bø Interstadial) in the Weichselian have been examined for molluscs and foraminifera. The following conclusions concerning the depositional environments of these sediments can be drawn: (1) The Avaldsnes Interglacial was a high-energy environment with a sea level 20 to 50 m higher than at present, regressing towards the end of the interglacial. Sea temperatures were as in the area today or slightly warmer. (2) During the Torvastad Interstadial (71–85 ka) the sea level was between 0 and c . 20 m higher than at present, and sea temperatures were as between Svalbard and northern Norway today. (3) The Bø Interstadial (40–64 ka) shows a complete interstadial cycle, with changing sea level and temperatures. Its optimum was close to the conditions prevailing in North Norway today or slightly colder. By comparison with other sites, a total of at least four interstadial episodes through the Weichselian in southwestern Norway is proposed. These date to c . 30 ka, 40–64 ka, 71–85 ka and 87–101 ka. The episodes and the glacial advances between them do not directly correlate with published interpretations of changes in surface circulation in the Norwegian Sea through the Weichselian. It is suggested that the nourishment of the southern part of the Scandinavian ice sheet might be more related to sea surface conditions in the North Atlantic than to those of the Norwegian Sea.  相似文献   

8.
This paper presents evidence on the timing and pattern of the Late Weichselian deglaciation in SW Scandinavia, particularly in the Öresund–Kattegat region before the Allerød interstadial. New radiocarbon ages and evaluated older dates demonstrate that active glacier ice had left eastern Denmark, southern Halland and western Skåne before 14,000 BP. The deglaciation in the Öresund region took place mainly under glacioestuarine conditions in a narrow fjord or inlet with some marine influence, as indicated by radiocarbon-dated finds of Polar Cod ( Boreogadus saida ) and the vertebra of a Ringed Seal ( Phoca hispida ). The Swedish west coast experienced glaciomarine and deltaic ice proximal conditions, where Vendsyssel was at the same time under full marine conditions with little evidence of ice rafting. A paleogeographic interpretation illustrates land, sea and ice configurations around 14,000 BP. We suggest that a subsequent lateglacial transgression reached the entire region almost simultaneously and peaked around 13,300 BP. This led to deposition of an ice-rafted diamicton ( the Öresund diamicton ) in Skåne and Sjælland, and of glaciolacustrine mud in Halland. We propose that the complex transgression and regression events recorded in the region were governed by interaction of the eustatic sea level rise, isostatic reponse to glacier unloading and possibly also by damming by an ice stream in the Skagerrak and northern Kattegat.  相似文献   

9.
The Quaternary stratigraphy in Finland is discussed on the basis of an example from the Oulainen area of Ostrobothnia. Organogenic deposits found beneath till at this site are correlated with the Eemian Interglacial on biostratigraphical evidence. This is confirmed by TL dates of 97,000 ± 18,000 B.P. and 150,000 ± 30,000 B.P., whereas a finite radiocarbon date of 63,200 +5500 -3200 B.P. is probably too young. Correlation of the Weichselian stratigraphy is based on deep-sea oxygen isotope data, in which the variations in isotope ratios are assumed to reflect global changes in climate and fluctuations in the volume of the ice-caps. It is concluded on the latter grounds that Finland must have been free of ice at two periods during the Early Weichselian but at least for the most part covered by ice thereafter up to the final deglaciation. The sediments attributed to the only known Weichselian interstadial in Finland, the Perapohjola Interstadial, are taken to correspond most probably to the Brørup, although some may represent the Odderade, Information on the Weichselian till stratigraphy in the Oulainen area is largely confined to the deglaciation phase, the relatively complex nature of which suggests that complete reconstruction of the earlier phases of the Weichselian in an area such as Finland, located towards the centre of the ice sheet, is scarcely feasible by the methods currently available.  相似文献   

10.
Late Pleistocene glacial and lake history of northwestern Russia   总被引:1,自引:0,他引:1  
Five regionally significant Weichselian glacial events, each separated by terrestrial and marine interstadial conditions, are described from northwestern Russia. The first glacial event took place in the Early Weichselian. An ice sheet centred in the Kara Sea area dammed up a large lake in the Pechora lowland. Water was discharged across a threshold on the Timan Ridge and via an ice-free corridor between the Scandinavian Ice Sheet and the Kara Sea Ice Sheet to the west and north into the Barents Sea. The next glaciation occurred around 75-70 kyr BP after an interstadial episode that lasted c. 15 kyr. A local ice cap developed over the Timan Ridge at the transition to the Middle Weichselian. Shortly after deglaciation of the Timan ice cap, an ice sheet centred in the Barents Sea reached the area. The configuration of this ice sheet suggests that it was confluent with the Scandinavian Ice Sheet. Consequently, around 70-65 kyr BP a huge ice-dammed lake formed in the White Sea basin (the 'White Sea Lake'), only now the outlet across the Timan Ridge discharged water eastward into the Pechora area. The Barents Sea Ice Sheet likely suffered marine down-draw that led to its rapid collapse. The White Sea Lake drained into the Barents Sea, and marine inundation and interstadial conditions followed between 65 and 55 kyr BP. The glaciation that followed was centred in the Kara Sea area around 55-45 kyr BP. Northward directed fluvial runoff in the Arkhangelsk region indicates that the Kara Sea Ice Sheet was independent of the Scandinavian Ice Sheet and that the Barents Sea remained ice free. This glaciation was succeeded by a c. 20-kyr-long ice-free and periglacial period before the Scandinavian Ice Sheet invaded from the west, and joined with the Barents Sea Ice Sheet in the northernmost areas of northwestern Russia. The study area seems to be the only region that was invaded by all three ice sheets during the Weichselian. A general increase in ice-sheet size and the westwards migrating ice-sheet dominance with time was reversed in Middle Weichselian time to an easterly dominated ice-sheet configuration. This sequence of events resulted in a complex lake history with spillways being re-used and ice-dammed lakes appearing at different places along the ice margins at different times.  相似文献   

11.
Based on a large number of new boreholes in northern Denmark, and on the existing data, a revised event‐stratigraphy is presented for southwestern Scandinavia. Five significant Late Saalian to Late Weichselian glacial events, each separated by periods of interglacial or interstadial marine or glaciolacustrine conditions, are identified in northern Denmark. The first glacial event is attributed to the Late Saalian c. 160–140 kyr BP, when the Warthe Ice Sheet advanced from easterly and southeasterly directions through the Baltic depression into Germany and Denmark. This Baltic ice extended as far as northern Denmark, where it probably merged with the Norwegian Channel Ice Stream (NCIS) and contributed to a large discharge of icebergs into the Norwegian Sea. Following the break up, marine conditions were established that persisted from the Late Saalian until the end of the Early Weichselian. The next glaciation occurred c. 65–60 kyr BP, when the Sundsøre ice advanced from the north into Denmark and the North Sea, where the Scandinavian and British Ice Sheets merged. During the subsequent deglaciation, large ice‐dammed lakes formed before the ice disintegrated in the Norwegian Channel, and marine conditions were re‐established. The following Ristinge advance from the Baltic, initiated c. 55 kyr BP, also reached northern Denmark, where it probably merged with the NCIS. The deglaciation, c. 50 kyr BP, was followed by a long period of marine arctic conditions. Around 30 kyr BP, the Scandinavian Ice Sheet expanded from the north into the Norwegian Channel, where it dammed the Kattegat ice lake. Shortly after, c. 29 kyr BP, the Kattegat advance began, and once again the Scandinavian and British Ice Sheets merged in the North Sea. The subsequent retreat to the Norwegian Channel led to the formation of Ribjerg ice lake, which persisted from 27 to 23 kyr BP. The expansion of the last ice sheet started c. 23 kyr BP, when the main advance occurred from north–northeasterly directions into Denmark. An ice‐dammed lake was formed during deglaciation, while the NCIS was still active. During a re‐advance and subsequent retreat c. 19 kyr BP, a number of tunnel‐valley systems were formed in association with ice‐marginal positions. The NCIS finally began to break up in the Norwegian Sea 18.8 kyr BP, and the Younger Yoldia Sea inundated northern Denmark around 18 kyr BP. The extensive amount of new and existing data applied to this synthesis has provided a better understanding of the timing and dynamics of the Scandinavian Ice Sheet (SIS) during the last c. 160 kyr. Furthermore, our model contributes to the understanding of the timing of the occasional release of large quantities of meltwater from the southwestern part of the SIS that are likely to enter the North Atlantic and possibly affect the thermohaline circulation.  相似文献   

12.
Th/U dating and radiocarbon dating of 'old' shells are discussed, and amino acid ratios from shells are used as a method of relative-age dating. The Svalbard area has been completely covered by an extensive ice sheet at leats once. New data from Sjuøyane indicate that such glaciation took place in the Early Weichselian. The Middle Weichselian was a period of interstadial conditions. Series of beaches of assumed Middle Weichselian age occur in several places in western Spitsbergen while no such beaches are known in the eastern part of the archipelago. The maximum glaciation in the Late Weichselian is assumed to have taken place about 18,000 B.P. In the western part of Spitsbergen, the Late Weichselian glaciation was limited and local, while the eastern part of the archipelago was covered by an ice sheet. Kongsøya has a pattern of Holocene shoreline displacement which indicates that the centre of this ice sheet was east of kong karts Land.  相似文献   

13.
Hättestrand, M. & Robertsson, A.‐M. 2010: Weichselian interstadials at Riipiharju, northern Sweden – interpretation of vegetation and climate from fossil and modern pollen records. Boreas, 10.1111/j.1502‐3885.2009.00129.x. ISSN 0300‐9483. The most complete records of Weichselian ice‐free conditions in northern Sweden have been retrieved from kettleholes in the Riipiharju esker. In an earlier study, the Riipiharju I core was described as containing two Weichselian interstadials and Riipiharju was chosen as type site for the second Weichselian interstadial in northern Sweden. Here, we present a palynological investigation of two new sediment cores (Riipiharju II and III) retrieved from Riipiharju. Together, the new cores comprise a late cold part of the first Weichselian interstadial recorded in northeastern Sweden (Tärendö I, earlier correlated with Peräpohjola in Finland) as well as a long sequence of the second Weichselian interstadial (Tärendö II, earlier named Tärendö). The results indicate that the climate during deposition of the Tärendö II sequence was more variable than earlier suggested. According to the present interpretation it was relatively warm in the early part of Tärendö II; thereafter a long cold phase persisted, and finally the climate was warmer again in the late part of Tärendö II. The warm phases are characterized by Betula‐dominant pollen assemblages, while the cold phase is characterized by high percentages of Artemisia and Gramineae pollen. Since there is still no firm chronology established of the interstadials in northeastern Sweden, two possible correlations are discussed; either Tärendö I and II are correlated with Brörup (MIS 5c) and Odderade (MIS 5a), or, perhaps more likely, they are correlated with Odderade and early Middle Weichselian (MIS 3) time.  相似文献   

14.
The Jæren area in southwestern Norway has experienced great changes in sea‐levels and sedimentary environments during the Weichselian, and some of these changes are recorded at Foss‐Eikeland. Four diamictons interbedded with glaciomarine and glaciofluvial sediments are exposed in a large gravel pit situated above the post‐glacial marine limit. The interpretation of these sediments has implications for the history of both the inland ice and the Norwegian Channel Ice Stream. During a Middle Weichselian interstadial, a large glaciofluvial delta prograded into a shallow marine environment along the coast of Jæren. A minor glacial advance deposited a gravelly diamicton, and a glaciomarine diamicton was deposited during a following marine transgression. This subsequently was reworked by grounded ice, forming a well‐defined boulder pavement. The boulder pavement is followed by glaciomarine clay with a lower, laminated part and an upper part of sandy clay. The laminated clay probably was deposited under sea‐ice, whereas more open glaciomarine conditions prevailed during deposition of the upper part. The clay is intersected by clastic dykes protruding from the overlying, late Weichselian till. Preconsolidation values from the marine clay suggest an ice thickness of at least 500 m during the last glacial phase. The large variations in sea‐level probably are a combined effect of eustasy and glacio‐isostatic changes caused by an inland ice sheet and an ice stream in the Norwegian Channel. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
The Late Quaternary ( c . 130,000–10,000 BP) glacial history of the central west coast of Jameson Land, East Greenland, is reconstructed through glacial stratigraphical studies. Seven major sedimentary units are described and defined. They represent two interglacial events (where one is the Holocene). one interstadial event and two glacial events. The older interglacial event comprises marine and fluvial sediments, and is correlated to the Langelandselv interglacial, corresponding to oxygen isotope sub-stage 5e. It is followed by an Early Weichselian major glaciation during the Aucellaelv stade, and subsequently by an Early Weichselian interstadial marine and deltaic event (the Hugin Sø interstade). Sediments relating to the Middle Weichselian have not been recognized in the area. The Hugin Sø interstade deposits have been overrun by a Late Weichselian ice advance, during the Flakkerhuk stade, when the glacier, which probably was a thin, low gradient fjord glacier in Scoresby Sund, draped older sediments and landforms with a thin till. Subsequent to the final deglaciation, some time before 10,000BP, the sea reached the marine limit around 70 m a.s.l., and early Holocene marine, fluvial and littoral sediments were deposited in the coastal areas.  相似文献   

16.
A revised lithostratigraphy of Skåne, South Sweden, constitutes the basis of an alternative Weichselian glaciation model for southern Scandinavia, progressively anchored to the stratigraphy. Skåne was not glaciated during the Weichselian until 21,000 B.P. The concepts, outlet surge and marginal dome (the main tools of the model) are defined. The palaeogeography of the Baltic and Kattegatt basins during the Mid-Weichselian are reconstructed. Shorelines, during the advance stage, are calculated from an inferred proglacial depression. Outlet surges, which occurred in three basins of the Baltic, guided the ice sheet during its growth. The growth of marginal domes on the outlet surge lobes resulted in changes in the configuration of the ice sheet and in the lowering of its surface profile. The South Scandinavian ice divide became located over a former outlet surge lobe NNE-NE of the island of Gotland in the northern Baltic. This gave the main ice in South Sweden and Denmark a NE ice movement during the whole glaciation until the deglaciation of SE Sweden. The Kattegatt Ice Lake was formed due to damming in the Skagerack area. Surging ice tilled in the basin resulting in the formation of vast areas of stagnant ice in front of the advancing NE-ice. Marginal domes were formed on these giving rise to the early glacial episodes in the southwest of Sweden and Denmark. During the deglactanon, tnree pnases of marginal dome formation are recorded in the soutnern Baltic area and the growth of these domes resulted in the East Jylland advance, the Bælthav readvance and the Simrishamn readvance. The marginal domes were formed on vast fields of stagnant ice left behind by the receding main ice. Baltic erratics, englacially present in the main ice as well as in the stagnant ice in front of it, were transported (stepwise) towards the west and northwest, partly by the advancing marginal domes and partly by ice streams formed between the marginal domes and the main (NE-) ice. It is argued that the classical, so-called Low Baltic ice stream in the sense of a readvancing glacier lobe never existed. The first two marginal domes collapsed due to starvation and the ice movement returned gradually to the independent NE ice movement of the main ice. The third marginal dome collapsed due to a downdraw caused by a large transgression recorded in the Kattegatt and the Öresund regions. The transgression took place roughly around 13,300 B.P. and was possibly caused by damming of the Kattegatt basin in the north in connection with a marine downdraw. The collapse of the third marginal dome and the subsequent ‘ice lake downdraw’ of the dome centre NNE-NE of Gotland took place during a cold period of the deglaciation. This resulted in an extremely high recessional rate on the Swedish cast coast compared with the west coast and a contemporaneous westwards displacement of the South Scandinavian ice divide. After the downdraw, the recession rate on the east coast slowed down markedly and became more or less equal to that of the west coast. Pure dynamic causes for the extremely high recession rate in SE Sweden are expected because the decrease in this rate coincides with the onset of a recorded, marked climatic amelioration at around 12,600 B.P. Formation of the marginal domes during the deglaciation indicates periods of increased cyclon activity at the southwest margin of the Weichsclian Scandinavian ice sheet alternating with periods of ice sheet starvation. Detailed modelling of the marginal domes is therefore expected to have significant palaeoclimatic implications. The marginal dome concept is believed to he useful also in the reconstruction of earlier glaciations.  相似文献   

17.
《Quaternary Science Reviews》2007,26(5-6):627-643
Buried submarine landforms mapped on 3D reflection seismic data sets provide the first glacial geomorphic evidence for glacial occupation of the central North Sea by two palaeo-ice-streams, between 58–59°N and 0–1°E. Streamlined subglacial bedforms (mega-scale glacial lineations) and iceberg plough marks, within the top 80 m of the Quaternary sequence, record the presence and subsequent break-up of fast-flowing grounded ice sheets in the region during the late Pleistocene. The lengths of individual mega-scale glacial lineations vary from ∼5 to ∼20 km and the distance between lineations typically ranges from 100 to 1000 m. The lineations incise to a depth of 10–12 m, with trough widths of ∼100 m. The most extensive and best-preserved set of lineations, is attributed to the action of a late Weichselian ice stream which either drained the NE sector of the British–Irish ice sheet or was sourced from the SW within the Fennoscandian ice sheet. The 30–50 km wide palaeo ice-stream is imaged along its flow direction for 90 km, trending NW–SE. An older set of less well-preserved lineations is interpreted as an earlier Weichselian or Saalian ice-stream, and records ice flow in an SW–NE orientation. Cored sedimentary records, tied to 3D seismic observations, support grounded ice sheet coverage in the central North Sea during the last glaciation and indicate that ice flowed over a muddy substrate that is interpreted as a deformation till. The identification of a late Weichselian ice stream in the Witch Ground area of the North Sea basin provides independent geomorphic evidence in support of ice-sheet reconstructions that favour complete ice coverage of the North Sea between Scotland and Norway during the Last Glacial Maximum.  相似文献   

18.
The coastal cliffs of Cape Shpindler, Yugorski Peninsula, Arctic Russia, occupy a key position for recording overriding ice sheets during past glaciations in the Kara Sea area, either from the Kara Sea shelf or the uplands of Yugorski Peninsula/Polar Urals. This study on Late Quaternary glacial stratigraphy and glaciotectonic structures of the Cape Shpindler coastal cliffs records two glacier advances and two ice‐free periods older than the Holocene. During interglacial conditions, a sequence of marine to fluvial sediments was deposited. This was followed by a glacial event when ice moved southwards from an ice‐divide over Novaya Zemlya and overrode and disturbed the interglacial sediments. After a second period of fluvial deposition, under interstadial or interglacial conditions, the area was again subject to glacial overriding, with the ice moving northwards from an inland ice divide. The age‐control suggests that the older glacial event could possibly belong to marine oxygen isotope stage (MOIS) 8, Drenthe (300–250 ka), and that the underlying interglacial sediments might be Holsteinian (>300 ka). One implication of this is that relict glacier ice, buried in sediments and incorporated into the permafrost, may survive several interglacial and interstadial events. The younger glacial event recognised in the Cape Shpindler sequence is interpreted to be of Early‐to‐Middle Weichselian age. It is suggested to correlate to a regional glaciation around 90 or 60 ka. The Cape Shpindler record suggests more complex glacial dynamics during that glaciation than can be explained by a concentric ice sheet located in the Kara Sea, as suggested by recent geological and model studies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The consistent geographical and altitudinal distribution of autochthonous block fields (mantle of bedrock weathered in situ) and trimlines in southern Norway suggests a multi-domed and asymmetric Late Weichselian ice sheet. Low-gradient ice-sheet profiles in the southern Baltic region, in the North Sea, and along the outer fjord areas of southern Norway, are best explained by movement of ice on a bed of deforming sediment, although water lubricated sliding or a combination of the two, may not be excluded. The ice-thickness distribution of the Late Weichselian Scandinavian ice sheet is not in correspondence with the modern uplift pattern of Fennoscandia. Early Holocene crustal rebound was apparently determined by an exponential, glacio-isostatic rise. Later, however, crustal movements appear to have been dominated by large-scale tectonic uplift of the Fennoscandian Shield, centred on the Gulf of Bothnia, the region of maximum lithosphere thickness.  相似文献   

20.
Based on c. 1500 km reflection seismic profiles, the Quaternary formations and their pre-Quaternary substratum in the southeastern Kattegat are described and a geological interpretation is suggested. The major volume of Quaternary deposits is found in a broad north-northwest south-southeast trending topographic depression. The substratum consists of Upper Cretaceous limestone in the region north of the Sorgenfrei–Tornquist Zone, and inside this zone older Mesozoic sedimentary rocks and Precambrian crystalline rocks are found. The Quaternary is divided into four seismic units. No direct stratigraphic control is available, but the units are assumed to represent a period ranging from Late Saalian to Holocene. The oldest unit (unit 3) is composed of deposits of supposed Late Saalian to Middle Weichselian age. This unit was severely eroded probably by the Late Weichselian ice sheets in a zone extending 40–50 km from the Swedish coast. Unit 2 represents the Late Weichselian till deposits. North and east of the island of Anholt unit 3 is cut by a system of channels eroded by glacial meltwater. By the erosion a relief up to c. 100 m was formed. After the recession of the Late Weichselian ice, an up to 100 m thick sequence of water-lain sediments (unit 1) was deposited in the erosional basin and channels. Holocene deposits (unit 0) of considerable thickness have only been identified in the channels in the northern part of the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号