首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The rock mass around an excavation is generally traversed by different geological discontinuities such as faults, folds, slips, joints, etc. Fault is one of the major geological discontinuities which creates lot of difficulties during underground winning of coal. Entire stress regime and ground conditions in the formation are altered in and around the faults. Faults also impose detrimental effects by introducing impurities, including clay and various forms of mineral matter into the coal seams; opening of pathways for the influx of water and gas into the underground workings; displacing the coal seams upward/downwards making the coal seams difficult or sometimes impractical to mine. Appropriate evaluation of the effect of the fault on the stability of the underground workings is a requisite for safe design of the underground mining structures. In this paper, a study has been carried out to assess the effect of the fault on the stability of underground coal mines by numerical simulation with distinct element method (DEM). On the calibrated DEM model, parametric study has been performed by varying the selected parameters, the dip and the friction angles of the fault. The analysis of variance (ANOVA) shows that both the factors have statistically significant effect on the strength of the coal pillar. Similarly, the displacement of the immediate roof and the height of the disturbed strata are evaluated by the DEM modelling and statistical analysis when the fault passes through the middle of the gallery. The results of ANOVA for both cases indicate that the both factors have significant effect on the displacement of the immediate roof and the height of the disturbed strata. It is obtained from the study that the low angle fault causes high instability in the immediate roof. The paper has been supplemented with the field observations where instability in underground roadways of a coal mine in India is caused by the fault. It was observed in VK-7 incline mine of Singareni Collieries Company Limited, India that there was sudden failure of immediate roof of a roadway where a low angle fault crosses the middle of the roadway. The findings of the paper help to understand the behaviour of the coal pillar and the surrounding rock mass in the presence of the fault. The study would also help to take appropriate decisions about the unstable regions of the working safeguarding safety in underground coal mines.  相似文献   

2.
坚硬顶板是岩层控制的一大难题,高位坚硬岩层的破断失稳经常会诱发强矿压灾害,严重威胁矿井的安全生产,坚硬顶板的治理是煤矿安全生产的重大难题之一。针对神东矿区布尔台煤矿煤层顶板厚度大、硬度高、垮落难等问题,分析定向长钻孔分段水力压裂的压裂机理和技术优势,基于关键层理论确定了钻孔布置层位,采用拟三维裂缝模型对压裂注入时间和注入流速对裂缝扩展的影响进行分析计算,确定布尔台煤矿42108工作面顶板压裂钻孔布置方式,沿工作面倾向方向平行布孔3个,裂缝半长41 m,压裂控制区域覆盖了整个工作面。实践表明:42108工作面在实施了坚硬顶板分段水力压裂弱化后,工作面正常支架循环末阻力同比下降3.33%;周期来压期间,支架循环末阻力同比下降6.81%;动载系数平均降低了10.88%;强矿压显现减弱,保证工作面安全回采。   相似文献   

3.
随着煤矿开采强度的不断增大,矿井逐渐向深部转移,冲击地压灾害日益严峻。而深部冲击地压矿井往往存在一层或多层坚硬厚岩层,这些坚硬顶板厚度较大,整体性强,突然断裂时会释放大量弹性能,易引发冲击地压事故,严重制约矿井安全生产。以陕西彬长矿区孟村矿为例,针对矿区内煤层埋藏深、普遍存在多种坚硬厚岩层的特殊情况,提出针对性治理措施:对顶板上方0~80 m范围内厚度超过10 m的坚硬厚岩层进行破断、弱化处理,对煤层上方0~30 m范围的低位岩层采取顶板深孔爆破预裂措施,对煤层上方30~60 m范围内的中位坚硬岩层采取顶板定向长钻孔水力压裂措施,对煤层60 m以上高位坚硬岩层采取地面水平井分段压裂措施;使高、中、低位顶板产生的裂缝在垂向上实现贯穿,将顶板“切割”成相对规则的“块状”结构,使上覆岩层应力由“硬传递”转化为“软传递”;并结合煤层大直径孔卸压、煤层爆破等煤层卸压措施,形成了区域与局部相结合、煤层与岩层全覆盖的“井上下”立体防治模式。工程实践证明:采用“井上下”立体防治模式后,工作面103 J以上微震事件降低88%,周期来压强度降低23%,来压持续时间缩短61%,防冲效果良好。该技术模式的成功...  相似文献   

4.
Summary Based on field instrumentation in eight different coal mines representing varying depths and strata conditions, a relation for obtaining the critical convergence value has been established. In development heading for bord and pillar workings this relation can be used successfully to control the premature collapse of the roof. An empirical relation for rock load has been established. This can be utilized for optimum design of support system. The roofs have been categorized as stable, short-term stable and unstable. Proper attention should be provided for an unstable roof and the support design is to be changed before the convergence reaches the critical value.  相似文献   

5.
针对我国煤矿井下碎软煤层、坚硬岩层、冲击地压地层、破碎带、水敏性地层等复杂地质条件下钻探技术需求和存在的问题,总结了碎软煤层本煤层钻进与筛管护孔、碎软煤层梳状钻孔定向钻进、复杂顶板高位钻孔定向钻进、全断面硬岩穿层钻进、冲击地压卸压钻进等技术与装备方面的研究和应用情况。提出了碎软煤层双管护孔定向钻进及碎软煤层旋转定向钻进技术与装备的研究思路,有助于提升碎软煤层钻进的钻孔深度、护孔筛管直径和钻进效率等,而碎软煤层定向钻进技术与配套装备的完善也将促进碎软煤层瓦斯抽采模式的变革。防冲防突钻孔机器人的研究是煤矿井下复杂地质条件下钻探技术与装备的发展趋势,可为无人化矿井建设奠定基础;除此之外,还应着力解决好局部复杂地层对钻进的影响,更好地促进智能化钻探技术装备的进步,为煤矿安全高效生产提供保障。   相似文献   

6.
Summary In order to design roof bolting systems safely and economically, it is essential to understand the flexural behaviour of the immediate roof. Based on the strata sequence, the strata in the immediate roof are divided into three types. The flexural behaviour of the three strata types are investigated in terms of the following effects: roof span, horizontal stress, thickness and Young's modulus of the lowest strata.The suspension reinforcement mechanism is analysed using beam-column theory. The equations for the maximum bending stress, deflection and transferred bolt load for the bolted strata are derived. In the analysis, the bolt load is assumed to be a point load and a horizontal stress is uniformly applied to each stratum. The friction reinforcement mechanism is also investigated. The major function of roof bolting in this case is to create frictional resistance by tensioning the roof bolts so that the individual layers are combined into one single thick layer.A computer program and nomographs are developed for the determination of proper bolting pattern and bolt tension. It is hoped that this development can lead to maximum safety with minimum cost for the design of roof bolting systems in underground coal mines.  相似文献   

7.
采掘扰动是诱发冲击地压灾害的重要因素,深部采掘扰动区域则受冲击与巷道变形的双重威胁,针对该技术难题,本文研究了线性密集切顶防冲护巷技术.基于关键层理论分析了倾斜煤层关键层倾向破断结构特点,表明关键块B的空间状态是控制正在开采的工作面与迎采巷道矿压显现的关键,给出了采掘扰动工况下的最佳关键块断裂线位置.基于COMSOL模...  相似文献   

8.
Bed separation can occur in overlying strata, especially in hard and soft interbedded roof strata. If these strata prone to form bed separation are rich aquifers, water can accumulate into bed separation and maybe cause a serious water hazard under the condition of water inflow passages existence. Therefore, studying these types of roof water inrush mechanisms, forecasting roof water inrush, and formulating preventive and control measures in advance are extremely important to a mine. In this paper, we takes the typical case of water inrush in the workface number 1121 at Hongliu coal mine as an example, and study the mechanism of water inrush in detail. Primarily, field drilling with water leakage and color TV observations showed that the maximum height of the water conducting fractured zone was 12.50 times the thickness of the coal seams, which spread to the overlying coarse-grained sandstone aquifer. Secondly, the numerical simulation indicated that bed separation storage space was prone to form under the combination of coarse-grained sandstone and mudstone geological structure. The detection using UWTEM revealed that the groundwater accumulated in this bed separation and formed a water bag (bed separation water). When the water bag reached a certain degree, water bursting happened with the main roof collapsing. Finally, prevention, effective drainage methods, and successful experiences with bed separation water have been summarized, and it will have a major significance to coal mines suffering from bed separation water inrush.  相似文献   

9.
针对任楼煤矿开采72煤过程中,巷道在强大的动压作用下,破坏严重的情况,从岩性组成、岩层组合类型和顶板岩体结构三个方面,研究了煤层顶板岩体特征。研究结果表明,72煤顶板岩体岩性以软岩为主,岩层组合以"直接顶+老顶"的组合形式为主,岩体结构以碎裂和块裂结构为主。研究结果为巷道布置、支护形式选择、顶板管理提供了科学依据。  相似文献   

10.
In underground coal mines, a lot of major fatalities have occurred due to roof fall in the newly developed faces or galleries of coal mines during the development or production of coal. There are around 500 underground coalmines in India, and continuous production or development or exploitation of coal depends upon the stability of the gateways developed in the form of galleries, which are supported in such a manner so that they can last up to that period, unless it has been finally extracted out with an operation called depillaring. A system of support design with roof bolting, resin bolting, and cable bolting for the aforesaid galleries is presently being decided on the basis of rock mass rating (RMR). The same support design has been attempted with the use of 3D numerical modeling technique—a tool nowadays very extensively used in geotechnical engineering to predict the stability of structures to be built or for the structures which are built against nature, i.e., underground mines. In this study, the support design system on the basis of RMR has also been validated with a numerical modeling technique for three locations of Monnet Ispat underground coalmine. After the study, it has been found that the numerical modeling technique can give better design of support system in underground coal mines in comparison with RMR-based support design system, and it will also play a major role in reducing the total cost incurred in coal exploitation from the underground coal mines.  相似文献   

11.
陕北榆神矿区煤层开采面临顶板水害防治与水资源协同保护技术需求,根据材料力学、断裂力学相关理论,以及不同覆岩类型的采动裂隙带统计成果,提出基于预裂–注浆改性(P-G)的煤层顶板失水控制技术思路,其基本原理为通过压裂工艺将连续性好的基岩层压裂成非连续性岩层,削弱采动导水裂隙在坚硬岩层中向上扩展的“尖端效应”,抑制导水裂隙发育高度。再采用黏土类软弱注浆材料将岩层改性为相对软弱的岩层,起到抑制导水裂隙带向上发育与降低上覆岩层导水能力的双重作用,从而实现煤层顶板含水层失水控制。本文以陕北能源基地榆神矿区为对象,提出以采煤工作面地质与水文地质条件分析,采煤工作面顶板含水层涌(失)水模式识别,P-G模式、层位与时间确定,顶板岩层水平孔水力压裂与注浆改性为主要思路,对榆神矿区采煤工作面顶板含水层失水控制方法进行了探讨,为我国陕北能源基地榆神矿区顶板水害防治和水资源协同保护技术实践提供一定的借鉴。   相似文献   

12.
鄂尔多斯盆地北部深埋煤田区地表主要有沙漠、基岩台地和黄土沟壑等地貌类型,沙漠区工作面涌水量比其他地貌区大1~2个数量级。为了查清煤层顶板直接充水含水层补给水源、导水通道和充水强度的控制要素,从地形地貌和地质沉积方面开展了研究,结果表明:沙漠地貌地势平缓,降水入渗系数大,第四系厚度大、富水性强,为下伏含水层提供了丰富的补给水源;基岩台地和黄土沟壑地貌,地形起伏大,降水入渗系数极小,浅部地层富水性极弱,是下伏含水层补给能力较弱的水源。陆相沉积形成的砂泥岩互层结构,不存在区域性稳定隔水层,各层段均属于弱-中等富水性含水层,3个矿井的白垩系含水层水位下降了20~130 m,证明浅部与深部含水层存在较密切的水力联系。煤层顶板主要发育七里镇砂岩和真武洞砂岩含水层,为厚度较大的中粗砂岩段,直接充水含水层地质沉积条件相似,但是沙漠区工作面顶板钻孔水量、累计预疏放水量和采空区涌水量均远大于其他地貌区,直接充水含水层富水性主要受地貌控制,深部含水层的水源为大气降水和第四系含水层。沙漠地貌区的不同矿井,工作面顶板钻孔水量、累计预疏放水量、采空区涌水量也存在较大差异,该差异与直接充水含水层厚度和岩性等有关,反映了地质沉积条件也是控制含水层富水性的重要因素。地形地貌和地质沉积是控制直接充水含水层富水性和工作面涌水量的关键要素。  相似文献   

13.
There were three landforms (i.e. desert, bedrock platform and loess gully) in deep-buried coalfield of northern Ordos Basin. Water inflow of working face in desert area was 1~2 orders of magnitude larger than that in other landform areas. In order to find out the key controlling factors of the directly water filled aquifers on the roof of the coal seam, we carried out research from the aspects of topography, landform and geological sedimentation. The results showed that desert landform provides abundant recharge water for underlying aquifers because of gentle topography, large precipitation infiltration coefficient, thick and water-rich quaternary system. While bedrock platform and loess gully landform were the water sources with weak recharge capacity of underlying aquifers. The sandstone-mudstone interbedding structure formed by continental deposits resulted in the absence of regional stable aquifers in Jurassic and Cretaceous strata on the roof of coal seams. Pumping tests of boreholes showed that all strata belong to weak to medium water-rich aquifers. The groundwater level of Cretaceous aquifer decreased by 20~130 m in three mines. There was a close hydraulic relationship between shallow and deep aquifers. The Mesozoic strata belonged to fluvial deposits. Qilizhen sandstone and Zhenwudong sandstone aquifers were mainly developed on the roof of the coal seam, which were characterized by thick medium-coarse sandstone sections. The geological and sedimentary conditions of direct water-filled aquifer were similar, but the amount of borehole water, cumulative pre-drainage water and water inflow from goaf in desert geomorphic area were much larger than those in bedrock platform and loess gully geomorphic area. The water-rich of the aquifer was mainly controlled by geomorphology, and the water sources of the deep aquifers were meteoric precipitation and Quaternary aquifer. In different mines with similar Quaternary conditions in Mu Us Desert, there were also great differences in the amount of borehole water, cumulative pre-drainage water and water inflow from goafs. The difference was related to the thickness and lithology of the aquifers. It reflected that the geological sedimentary conditions of the coal seam roof were also important factors to control the water-rich of the aquifers. Topography, landform and geological sedimentation were the key factors to control the water-rich of the aquifer directly and the water inflow from the working face.  相似文献   

14.
理论分析与实际资料证实,煤层顶、底板反射波的干涉,在煤层厚度所产生的时差小于半个周期时,导致反射波的振幅随着煤层厚度的减小而减弱,且在煤层厚度较小(趋于0m)的情况下,仍然是可以连续对比追踪的;大于半个周期时,反射波的振幅与干涉效应无关。通过实际资料的分析计算发现,在煤层厚度趋于0m时,其顶、底板反射波的干涉所形成的振幅极限值仍然是砂、泥岩界面反射波振幅的3倍,依据这个特征可有效识别煤系地层中的薄、无煤带。  相似文献   

15.
针对采煤过程对区域水文地质的影响和对地下水资源的破坏问题,论述了煤矿顶板水保水开采的理论基础、主要影响因素和技术研究现状,并介绍了陕西榆林市榆阳区煤矿保水开采的成功经验。研究结果表明,根据关键层理论、开采对岩层移动影响及离层规律和水在裂隙岩体中的渗流规律等理论,通过留设防水煤柱、充填开采和注浆加固等方法,抑制岩层导水裂隙带的发育和隔水关键层的离层和断裂,控制岩层潜水的渗流速度是解决煤炭生产中水资源破坏问题的根本方法,具有良好的经济和社会效益。   相似文献   

16.
With hard roof conditions and the influence of side and front abutment pressures, pressure bump and large deformations periodically occur in the advanced support area of longwall face gob-side gateroads. To control the strong strata behaviours in gob-side gateroads, “directional hydraulic fracturing, to cut off the roof hanging over the adjacent gob area, and pre-fracturing of the roof, located behind the working face being extracted,” are performed. The directional initiation of hydraulic fracturing is controlled by pre-slotting, and this action guides the propagation of hydraulic fractures in three-dimensional space. The oriented fractures meet engineering requirements by cooperating with both the in situ ground stresses and the mining-induced stresses, as well as the technology of hydraulic fracturing. In field applications, hydraulic fracturing has proven to be a viable option for weakening hard roofs, destressing the side and front abutment pressures at the mining face and also transferring in situ and mining-induced stresses. Successful field tests in the Tongxin coal mine, Datong district, as well as other coal mines, show that hydraulic fracturing in both a hanging roof over an adjacent gob area and in the gob area behind the advancing working face controls the behaviour of strong strata material on the gob-side of gateroads in longwall mining and also guarantees safe extraction at the working face.  相似文献   

17.
兖州矿区侏罗系红层水文地质特征研究   总被引:1,自引:0,他引:1  
侏罗系红层水是兖州矿区主要水害之一。为防治红层水害,对兖州矿区红层的物质组成、红层孔隙微观特征及分形特征、红层的渗透性、岩石力学特征、采动条件下覆岩破坏高度数值模拟、采动条件下红层裂隙的发育规律与渗透特征、红层突水判别模式及突水危险性分区等进行了研究,建立了红层突水判别模式,得到兖州矿区红层突水危险性分区图,对类似条件矿区的水害防治具有一定的参考价值。   相似文献   

18.
In underground coal mines, the failure of overlying strata can have disastrous effects where the working face is overlain by thin bedrock covered with thick alluvium. Roof failure under these conditions can cause a massive water and sand inrush. This paper presents a case study for a design to prevent such disasters in the Baodian mine, China. First, the engineering geological and hydrogeological conditions of the overlying lithified strata and the alluvium were obtained from field and laboratory studies. Numerical models were then built with different bedrock thicknesses using distinct-element modelling software. The deformation, failure, and subsidence of the overlying strata during simulated coal mining were studied using these computer models. Finally, the results of the model studies were combined with the geological data to design a reasonable layout for the longwall panel to be mined in the Baodian mine. Initial results showed that the alluvium was somewhat impervious and water-poor. The models showed that the first caving and weighting intervals of the roof decreased with decreasing bedrock thickness, and decreasing bedrock thickness also increased maximum subsidence of the alluvium. The maximum height of the caving zone and the minimum height of the sand-prevention coal and rock pillars were 34 m and 46 m, respectively. Knowing this allowed a somewhat shorter (204 m) but safe working face to be designed. This research provides a good background for the design of safe mines under similar conditions.  相似文献   

19.
Investigations were carried out at seven underground coal mines in India to characterise the responses of roof and pillars of underground workings to the vibrations induced by adjacent open-pit blasting. The roof rocks of the selected underground instrumented panels were having RMR between 36.7 to 57. Monitoring of strata behaviour was carried out before and after blasts. Arrangements were made to mount the transducers of seismographs in roof and pillars to monitor the vibration. Attempts were made to monitor the vibration simultaneously, for a blast, in the pillar and at the junction of the roof or away from the junction in the gallery. 102 sets of such vibration data were recorded in the underground mines. It was observed that the roof of underground roadways vibrated with higher peak particle velocity (PPV) compared to pillars. The amplification of vibration in the roof compared to pillars, away from the junction, was 1.02 to 2.58 times whereas at the junctions, it was 2.04 to 5.57 times.  相似文献   

20.
The presence of hard and massive sandstone above the coal seam in underground coal mines often leads to delay in caving of overlying rock beds thereby causing excessive load on supports and posing danger to underground workings. The problem is more prominent in blasting gallery (BG) as well as longwall mining methods in Indian coal mines. Induced caving by blasting is a promising means for hard roof management in underground coal mines. Based on extensive studies and data collected from different mines in India, a Blastability Index (BI) has been developed which can be used for the classification of roof according to the degree of ease in caving by induced blasting. Different charge factors have also been suggested based on the Blastability Index. Due to wide change in the method of extractions, ??Cavability Index?? for longwall panel was found ineffective in case of BG method of working as well as bord and pillar working. For this reason, this proposed Blastability Index would be of immense help for caving of hard roof by induced blasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号