首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present smoothed particle hydrodynamic (SPH) simulations of the response of gas discs to a spiral potential. These simulations show that the commonly observed spurs and feathering in spiral galaxies can be understood as being due to structures present in the spiral arms that are sheared by the divergent orbits in a spiral potential. Thus, dense molecular cloud-like structures generate the perpendicular spurs as they leave the spiral arms. Subsequent feathering occurs as spurs are further sheared into weaker parallel structures as they approach the next spiral passage. Self-gravity of the gas is not included in these simulations, stressing that these features are purely due to the hydrodynamics in spiral shocks. Instead, a necessary condition for this mechanism to work is that the gas need be relatively cold (1000 K or less) in order that the shock is sufficient to generate structure in the spiral arms, and such structure is not subsequently smoothed by the gas pressure.  相似文献   

2.
Observations of turbulent velocity dispersions in the H  i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud–cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H  i velocity dispersion profiles and the characteristic value of  ∼10 km s−1  observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area  ≳10−3 M yr−1 kpc−2  .  相似文献   

3.
We present Very Large Array H  i observations of the gas-rich, interacting spiral galaxies, NGC 1253/1253A (Arp 279). The larger of the two galaxies, NGC 1253, has a very pronounced H  i ring and well-defined spiral structure. The velocity structure of the H  i data shows a sudden change at the position of the spiral arms; we identify this change as evidence of a strong spiral shock and hence proceed to estimate the pattern speed, Ωp, of the spiral arms in NGC 1253. Assuming that the pattern speed is constant across the disc our derived value places the outer Lindblad resonance (OLR) at the position of the observed H  i ring. As an accumulation of gas is expected at the OLR when this falls within the disc of a galaxy this agreement provides independent support for the derived value of Ωp.  相似文献   

4.
Using high-resolution SPH simulations in a fully cosmological Λ cold dark matter context, we study the formation of a bright disc-dominated galaxy that originates from a 'wet' major merger at   z = 0.8  . The progenitors of the disc galaxy are themselves disc galaxies that formed from early major mergers between galaxies with blue colours. A substantial thin stellar disc grows rapidly following the last major merger and the present-day properties of the final remnant are typical of early-type spiral galaxies, with an i -band bulge-to-disc ratio ∼0.65, a disc scalelength of 7.2 kpc,   g − r = 0.5 mag  , an H  i linewidth ( W 20/2) of 238 km s−1 and total magnitude   i =−22.4  . The key ingredients for the formation of a dominant stellar disc component after a major merger are (i) substantial and rapid accretion of gas through cold flows followed at late times by cooling of gas from the hot phase, (ii) supernova feedback that is able to partially suppress star formation during mergers and (iii) relative fading of the spheroidal component. The gas fraction of the progenitors' discs does not exceed 25 per cent at   z < 3  , emphasizing that the continuous supply of gas from the local environment plays a major role in the regrowth of discs and in keeping the galaxies blue. The results of this simulation alleviate the problem posed for the existence of disc galaxies by the high likelihood of interactions and mergers for galaxy-sized haloes at relatively low z .  相似文献   

5.
Oxygen abundances in the spiral galaxies expected to be richest in oxygen are estimated. The new abundance determinations are based on the recently discovered ff relation between auroral and nebular oxygen-line fluxes in high-metallicity H  ii regions. We find that the maximum gas-phase oxygen abundance in the central regions of spiral galaxies is 12+log(O/H) ∼ 8.75. This value is significantly lower (by a factor of ≳5) than the previously accepted value. The central oxygen abundance in the Milky Way is similar to that in other large spirals.  相似文献   

6.
We study how well the complex gas velocity fields induced by massive spiral arms are modelled by the hydrodynamical simulations that we used recently to constrain the dark matter fraction in nearby spiral galaxies. More specifically, we explore the dependence of the positions and amplitudes of features in the gas flow on the temperature of the interstellar medium (assumed to behave as a one-component isothermal fluid), the non-axisymmetric disc contribution to the galactic potential, the pattern speed  Ωp  , and finally the numerical resolution of the simulation. We argue that, after constraining the pattern speed reasonably well by matching the simulations to the observed spiral arm morphology, the amplitude of the non-axisymmetric perturbation (the disc fraction) is left as the primary parameter determining the gas dynamics. However, owing to the sensitivity of the positions of the shocks to modelling parameters, one has to be cautious when quantitatively comparing the simulations to observations. In particular, we show that a global least-squares analysis is not the optimal method for distinguishing different models, as it tends to slightly favour low disc fraction models. Nevertheless, we conclude that, given observational data of reasonably high spatial resolution and an accurate shock-resolving hydro-code, this method tightly constrains the dark matter content within spiral galaxies. We further argue that, even if the perturbations induced by spiral arms are weaker than those of strong bars, they are better suited for this kind of analysis because the spiral arms extend to larger radii where effects like inflows due to numerical viscosity and morphological dependence on gas sound speed are less of a concern than they are in the centres of discs.  相似文献   

7.
Environment plays an important role in the evolution of the gas contents of galaxies. Gas deficiency of cluster spirals and the role of the hot intracluster medium in stripping gas from these galaxies is a well-studied subject. Loose groups with diffuse X-ray emission from the intragroup medium (IGM) offer an intermediate environment between clusters and groups without a hot IGM. These X-ray bright groups have smaller velocity dispersion and lower temperature than clusters, but higher IGM density than loose groups without diffuse X-ray emission. A single-dish comparative study of loose groups with and without diffuse X-ray emission from the IGM, showed that the galaxies in X-ray bright groups have lost more gas on average than the galaxies in non X-ray bright groups. In this paper we present GMRT H  i observations of 13 galaxies from four X-ray bright groups: NGC 5044, 720, 1550 and IC1459. The aim of this work is to study the morphology of H  i in these galaxies and to see if the hot IGM has in any way affected their H  i content or distribution. In addition to disturbed H  i morphology, we find that most galaxies have shrunken H  i discs compared to the field spirals. This indicates that IGM-assisted stripping processes like ram pressure may have stripped gas from the outer edges of the galaxies.  相似文献   

8.
We study the gas emission of galaxies with active star formation, consisting mostly of H  ii and starburst galaxies, as well as some Seyfert 2 galaxies, and determine chemical and physical parameters. The data consist of 19 high signal-to-noise ratio optical templates, a result of grouping 185 emission-line galaxy spectra. Underlying stellar population models (from Raimann et al.) were subtracted from the templates in order to isolate the pure emission component.
We analyse the distribution of these improved signal-to-noise ratio emission spectra in diagnostic diagrams and find that the H  ii templates show a smaller spread in log([O  iii ]/H β ) values than the individual galaxies, apparently as a result of the population subtraction and a better signal-to-noise ratio. We thus suggest the template sequence as a fiducial observational locus for H  ii galaxies which can be used as reference for models. The sequence of line ratios presented by the H  ii galaxies in the diagram log([O  iii ] λ 5007/H β ) versus log([N  ii ] λ 6584/H α ) is primarily owing to the gas metallicity, of which the log([N  ii ]/H α ) ratio is a direct estimator. We also study the properties of the starburst galaxies and those intermediate between H  ii and starburst galaxies, which are more metal rich and sit on more massive galaxies.
We discuss the present results in the frame of a recently proposed equivalent-width diagnostic diagram for emission-line galaxies (by Rola et al.) and conclude that the observed ranges in W ([O  ii ])/ W (H β ) and W (H β ) are mostly owing to the non-ionizing stellar population contribution. We propose that W (H β ) be used as an estimator of this contribution to the continuum, and briefly discuss implications to the cosmological use of H  ii galaxies.  相似文献   

9.
Galaxies in compact groups tend to be deficient in neutral hydrogen compared to isolated galaxies of similar optical properties. In order to investigate the role played by a hot intragroup medium (IGM) for the removal and destruction of H  i in these systems, we have performed a Chandra and XMM–Newton study of eight of the most H  i deficient Hickson compact groups. Diffuse X-ray emission associated with an IGM is detected in four of the groups, suggesting that galaxy–IGM interactions are not the dominant mechanism driving cold gas out of the group members. No clear evidence is seen for any of the members being currently stripped of any hot gas, nor for galaxies to show enhanced nuclear X-ray activity in the X-ray bright or most H  i deficient groups. Combining the inferred IGM distributions with analytical models of representative disc galaxies orbiting within each group, we estimate the H  i mass-loss due to ram-pressure and viscous stripping. While these processes are generally insufficient to explain observed H  i deficiencies, they could still be important for H  i removal in the X-ray bright groups, potentially removing more than half of the interstellar medium in the X-ray bright HCG 97. Ram pressure may also have facilitated strangulation through the removal of galactic coronal gas. In X-ray undetected groups, tidal interactions could be playing a prominent role, but it remains an open question whether they can fully account for the observed H  i deficiencies.  相似文献   

10.
We have studied a mass model for spiral galaxies in which the dark matter surface density is a scaled version of the observed H  i surface density. Applying this mass model to a sample of 24 spiral galaxies with reliable rotation curves, one obtains good fits for most galaxies. The scaling factors cluster around 7, after correction for the presence of primordial helium. For several cases, however, different, often larger, values are found. For galaxies that cannot be fitted well, the discrepancy occurs at large radii and results from a fairly rapid decline of the H  i surface density in the outermost regions. Because of such imperfections and in view of possible selection effects, it is not possible to conclude here that there is a real coupling between H  i and dark matter in spiral galaxies.  相似文献   

11.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

12.
We investigate the properties of the first galaxies at   z ≳ 10  with highly resolved numerical simulations, starting from cosmological initial conditions and taking into account all relevant primordial chemistry and cooling. A first galaxy is characterized by the onset of atomic hydrogen cooling, once the virial temperature exceeds  ≃104 K  , and its ability to retain photoheated gas. We follow the complex accretion and star formation history of a  ≃5 × 107 M  system by means of a detailed merger tree and derive an upper limit on the number of Population III (Pop III) stars formed prior to its assembly. We investigate the thermal and chemical evolution of infalling gas and find that partial ionization at temperatures  ≳104 K  catalyses the formation of  H2  and hydrogen deuteride, allowing the gas to cool to the temperature of the cosmic microwave background. Depending on the strength of radiative and chemical feedback, primordial star formation might be dominated by intermediate-mass Pop III stars formed during the assembly of the first galaxies. Accretion on to the nascent galaxy begins with hot accretion, where gas is accreted directly from the intergalactic medium and shock heated to the virial temperature, but is quickly accompanied by a phase of cold accretion, where the gas cools in filaments before flowing into the parent halo with high velocities. The latter drives supersonic turbulence at the centre of the galaxy and could lead to very efficient chemical mixing. The onset of turbulence in the first galaxies thus likely marks the transition to Pop II star formation.  相似文献   

13.
We present data probing the spatial and kinematical distribution of both the atomic (H  i ) and molecular (CO) gas in NGC 5218, the late-type barred spiral galaxy in the spiral–elliptical interacting pair, Arp 104. We consider these data in conjunction with far-infrared and radio-continuum data, and N -body simulations, to study the galaxies interactions, and the star formation properties of NGC 5218. We use these data to assess the importance of the bar and tidal interaction on the evolution of NGC 5218, and the extent to which the tidal interaction may have been important in triggering the bar. The molecular gas distribution of NGC 5218 appears to have been strongly affected by the bar; the distribution is centrally condensed with a very large surface density in the central region. The N -body simulations indicate a time-scale since perigalacticon of  ∼3 × 108 yr  , which is consistent with the interaction having triggered or enhanced the bar potential in NGC 5218, leading to inflow and the large central molecular gas density observed. Whilst NGC 5218 appears to be undergoing active star formation, its star formation efficiency is comparable to a 'normal' SBb galaxy. We propose that this system may be on the brink of a more active phase of star formation.  相似文献   

14.
The spiral pattern in the nearby spiral galaxy NGC 6946 has been studied using the wavelet transformation technique, applied to galaxy images in polarized and total non-thermal radio emission at λλ 3.5 and 6.2 cm, in broadband red light, in the λ 21.1 cm H  i line and in the optical Hα line. Well-defined, continuous spiral arms are visible in polarized radio emission and red light, where we can isolate a multi-armed pattern in the range of galactocentric distances 1.5–12 kpc, consisting of four long arms and one short spiral segment. The 'magnetic arms' (visible in polarized radio emission) are localized almost precisely between the optical arms. Each magnetic arm is similar in length and pitch angle to the preceding optical arm (in the sense of galactic rotation) and can be regarded as its phase-shifted image. Even details like a bifurcation of an optical arm have their phase-shifted counterparts in the magnetic arms. The average relative amplitude of the optical spiral arms (the stellar density excess over the azimuthal average) grows with galactocentric radius up to 0.3–0.7 at r ≃5 kpc, decreases by a factor of two at r =5–6 kpc and remains low at 0.2–0.3 in the outer parts of the galaxy. By contrast, the magnetic arms have a constant average relative amplitude (the excess in the regular magnetic field strength over the azimuthal average) of 0.3–0.6 in a wide radial range r =1.5–12 kpc. We briefly discuss implications of our findings for theories of galactic magnetic fields.  相似文献   

15.
High-resolution H  i imaging observations of a heterogeneous sample of small galaxy groups are presented. The five galaxy groups studied show a broad range of individual H  i properties: e.g. loose groups surrounding LGG 138 and the genuinely compact LGG 455 are identified; a massive ring of neutral gas is discovered encircling two luminous galaxies in the LGG 138 group; a galaxy-sized mass of H  i is found in LGG 455 confined to an extragalactic cloud which exceeds the threshold density for star formation, yet is optically invisible; and the CCG 1 group is argued to be a chance alignment of Centaurus cluster galaxies. Global results of the study are that the deficit of H  i flux in synthesis imaging data compared with single-dish data is put forward as a quantitative measure of the diffuseness of neutral gas in galaxy groups; several groups contain gas-poor galaxies that ordinarily would contain detectable quantities of H  i – this is interpreted as being caused by an increased chance of gas-sweeping collisions in the group environment; and some evidence is found to support previous findings that compact groups preferentially occur in loose systems.  相似文献   

16.
The H  i surface density maps for a sample of 18 galaxies in the Eridanus group are Fourier analysed. This analysis gives the radial variation of the lopsidedness in the H  i spatial distribution. The lopsidedness is quantified by the Fourier amplitude A 1 of the m = 1 component normalized to the average value. It is also shown that in the radial region where the stellar disc and H  i overlap, their A 1 coefficients are comparable. All the galaxies studied show significant lopsidedness in H  i . The mean value of A 1 in the inner regions of the galaxies (1.5–2.5 scalelengths) is ≥ 0.2. This value of A 1 is twice the average value seen in the field galaxies. Also, the lopsidedness is found to be smaller for late-type galaxies; this is opposite to the trend seen in the field galaxies. These two results indicate a different physical origin for disc lopsidedness in galaxies in a group environment compared to the field galaxies. Further, a large fraction (∼30 per cent) shows a higher degree of lopsidedness ( A 1≥ 0.3). It is also seen that the disc lopsidedness increases with the radius as demonstrated in earlier studies, but over a radial range that is two times larger than done in the previous studies. The average lopsidedness of the halo potential is estimated to be ∼10 per cent, assuming that the lopsidedness in H  i disc is due to its response to the halo asymmetry.  相似文献   

17.
A dynamical model for the extraplanar gas in spiral galaxies   总被引:1,自引:0,他引:1  
Recent H  i observations reveal that the discs of spiral galaxies are surrounded by extended gaseous haloes. This extraplanar gas reaches large distances (several kiloparsecs) from the disc and shows peculiar kinematics (low rotation and inflow). We have modelled the extraplanar gas as a continuous flow of material from the disc of a spiral galaxy into its halo region. The output of our models is pseudo data cubes that can be directly compared to the H  i data. We have applied these models to two spiral galaxies (NGC 891 and NGC 2403) known to have a substantial amount of extraplanar gas. Our models are able to reproduce accurately the vertical distribution of extraplanar gas for an energy input corresponding to a small fraction (<4 per cent) of the energy released by supernovae. However, they fail in two important aspects: (1) they do not reproduce the right gradient in rotation velocity; (2) they predict a general outflow of the extraplanar gas, contrary to what is observed. We show that neither of these difficulties can be removed if clouds are ionized and invisible at 21 cm as they leave the disc but become visible at some point on their orbits. We speculate that these failures indicate the need for accreted material from the intergalactic medium that could provide the low angular momentum and inflow required.  相似文献   

18.
We have carried out an investigation of the environments of low redshift H  ii galaxies by cross-correlating their positions on the sky with those of faint field galaxies in the Automatic Plate Measuring Machine (APM) catalogues. We address the question of whether violent star formation in H  ii galaxies is induced by low-mass companions by statistically estimating the mean space density of galaxies around them. We argue that even if low-mass companions were mainly intergalactic H  i clouds, their optical counterparts should be detectable at faint limits of the APM scans.
A significantly positive signal is detected for the H  ii galaxy–APM galaxy angular cross-correlation function, but the amplitude is poorly determined. The projected cross-correlation function has a higher signal-to-noise ratio, and suggests that the amplitude is slightly lower than for normal field galaxies. This implies that these bursting dwarf galaxies inhabit slightly lower density environments than those of normal field galaxies, consistent with other studies of emission-line galaxies. This suggests that in these dwarf starburst galaxies, star formation is not always triggered by tidal interactions, and a significant fraction must have a different origin.  相似文献   

19.
We present the results of Australia Telescope Compact Array (ATCA) H  i line and 20-cm radio continuum observations of the galaxy quartet NGC 6845. The H  i emission extends over all four galaxies but can only be associated clearly with the two spiral galaxies, NGC 6845A and B, which show signs of strong tidal interaction. We derive a total H  i mass of at least  1.8 × 1010 M  , most of which is associated with NGC 6845A, the largest galaxy of the group. We investigate the tidal interaction between NGC 6845A and B by studying the kinematics of distinct H  i components and their relation to the known H  ii regions. No H  i emission is detected from the two lenticular galaxies, NGC 6845C and D. A previously uncatalogued dwarf galaxy, ATCA  J2001−4659  , was detected 4.4 arcmin NE from NGC 6845B and has an H  i mass of  ∼5 × 108 M  . No H  i bridge is visible between the group and its newly detected companion. Extended 20-cm radio continuum emission is detected in NGC 6845A and B as well as in the tidal bridge between the two galaxies. We derive star formation rates of  15–40 M yr−1  .  相似文献   

20.
We present a deep Giant Metrewave Radio Telescope (GMRT) search for H  i 21-cm emission from three dwarf galaxies, viz. POX 186, SC 24 and KKR 25. Based, in part, on previous single-dish H  i observations, these galaxies have been classified as a blue compact dwarf (BCD), a dwarf irregular and a transition galaxy, respectively. However, in conflict with previous single-dish detections, we do not detect H  i in SC 24 or KKR 25. We suggest that the previous single-dish measurements were probably confused with the local Galactic emission. In the case of POX 186, we confirm the previous non-detection of H  i but with substantially improved limits on its H  i mass. Our derived upper limits on the H  i mass of SC 24 and KKR 25 are similar to the typical H  i mass limit for dwarf spheroidal (dSph) galaxies, whereas in the case of POX 186, we find that its gas content is somewhat smaller than is typical of BCD galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号