共查询到20条相似文献,搜索用时 15 毫秒
1.
Teruo Yamashita 《Pure and Applied Geophysics》1990,132(3):545-568
The effect of randomly distributed cracks on the attenuation and dispersion ofSH waves is theoretically studied. If earthquake ruptures are caused by sudden coalescence of preexisting cracks, it will be crucial for earthquake prediction to monitor the temporal variation of the crack distribution. Our aim is to investigate how the property of crack distribution is reflected in the attenuation and dispersion of elastic waves.We introduce the stochastic property, in the mathematical analysis, for the distributions of crack location, crack size and crack orientation. The crack size distribution is assumed to be described by a power law probability density (p(a) a
– fora
minaa
max according to recent seismological and experimental knowledge, wherea is a half crack length and the range 13 is assumed. The distribution of crack location is assumed to be homogeneous for the sake of mathematical simplicity, and a low crack density is assumed. The stochastic property of each crack is assumed to be independent of that of the other cracks. We assume two models, that is, the aligned crack model and the randomly oriented crack model, for the distribution of crack orientation. All cracks are assumed to be aligned in the former model. The orientation of each crack is assumed to be random in the latter model, and the homogeneous distribution is assumed for the crack orientation. The idea of the mean wave formalism is employed in the analysis, and Foldy's approximation is assumed.We observe the following features common to both the aligned crack model and the randomly oriented crack model. The attenuation coefficientQ
–1 decays in proportion tok
–1 in the high frequency range and its growth is proportional tok
2 in the low frequency range, wherek is the intrinsic wave number. This asymptotic behavior is parameter-independent, too. The attenuation coefficientQ
–1 has a broader peak as increases and/ora
min/a
max decreases. The nondimensional peak wave numberk
p
a
max at whichQ
–1 takes the peak value is almost independent ofa
min/a
max for =1 and 2 while it considerably depends ona
min/a
max for =3. The phase velocity is almost independent ofk in the rangeka
max<1 and increases monotonically ask increases in the rangeka
max>1. While the magnitude ofQ
–1 and the phase velocity considerably depend on the orientation of the crack in the aligned crack model, the above feature does not depend on the crack orientation.The accumulation of seismological measurements suggests thatQ
–1 ofS waves has a peak at around 0.5 Hz. If this observation is combined with our theoretical results onk
p
a
max, the probable range ofa
max of the crack distribution in the earth can be estimated for =1 or 2. If we assume 4 km/sec as theS wave velocity of the matrix medium,a
max is estimated to range from 2 to 5 km. We cannot estimatea
max in a narrow range for =3. 相似文献
2.
In seismic exploration, elastic waves are sent to investigate subsurface geology. However, the transmission and interpretation of the elastic wave propagation is complicated by various factors. One major reason is that the earth can be a very complex medium. Nevertheless, in this paper, we model some terrestrial material as an elastic medium consisting of randomly distributed inclusions with a considerable concentration. The waves incident on such an inhomogeneous medium undergo multiple scattering due to the presence of inclusions. Consequently, the wave energy is redistributed thereby reducing the amplitude of the coherent wave.The coherent or average wave is assumed to be propagating in a homogeneous continuum characterized by a bulk complex wavenumber. This wavenumber depends on the frequency of the probing waves; and on the physical properties and the concentration of discrete scatterers, causing the effective medium to be dispersive. With the help of multiple scattering theory, we are able to analytically predict the attenuation of the transmitted wave intensity as well as the dispersion of the phase velocity. These two sets of data are valuable to the study of the inverse scattering problems in seismology. Some numerical results are presented and also compared, if possible, with experimental measurements. 相似文献
3.
Scattering of an arbitrary elastic wave incident upon a spherically symmetric inclusion is considered and solutions are developed in terms of the spherical vector system of Petrashen, which produces results in terms of displacements rather than displacement potentials and in a form suitable for accurate numerical computations. Analytical expressions for canonical scattering coefficients are obtained for both the cases of incidentP waves and incidentS waves. Calculations of energy flux in the scattered waves lead to elastic optical theorems for bothP andS waves, which relate the scattering cross sections to the amplitude of the scattered fields in the forward direction. The properties of the solutions for a homogeneous elastic sphere, a sphere filled by fluid, and a spherical cavity are illustrated with scattering cross sections that demonstrate important differences between these types of obstacles. A general result is that the frequency dependence of the scattering is defined by the wavelength of the scattered wave rather than the wavelength of the incident wave. This is consistent with the finding that the intensity of thePS scattering is generally much stronger than theSP scattering. When averaged over all scattering angles, the mean intensity of thePS converted waves is2V
p
2
/V
s
4
times the mean intensity of theSP converted waves, and this ratio is independent of frequency. The exact solutions reduce to simple and easily used expressions in the case of the low frequency (Rayleigh) approximation and the low contrast (Rayleigh-Born) approximation. The case of energy absorbing inclusions can also be obtained by assigning complex values to the elastic parameters, which leads to the result that an increase in attenuation within the inclusion causes an increased scattering cross section with a marked preference for scatteredS waves. The complete generality of the results is demonstrated by showing waves scattered by the earth's core in the time domain, an example of high-frequency scattering that reveals a very complex relationship between geometrical arrivals and diffracted waves. 相似文献
4.
In this work, a hybrid boundary integral equation method (BIEM) is developed, based on both displacement and hypersingular traction formulations, for the analysis of time-harmonic seismic waves propagating through cracked, multi-layered geological regions with surface topography and under plane strain conditions. Specifically, the displacement-based BIEM is used for a multi-layered deposit with interface cracks, while the regularized, traction-based BIEM is used when internal cracks are present within the layers. The standard uni-dimensional boundary element with parabolic shape functions is employed for discretizing the free surface and the layer interfaces, while special discontinuous boundary elements are placed near the crack tips to model the asymptotic behaviour of both displacements and tractions. This formulation yields displacement amplitudes and phase angles on the free surface of a geological deposit, as well as stress intensity factors near the tips of the cracks. Finally, in the companion paper, numerical results are presented which show that both scattered wave and stress concentration fields are sensitive to the incidence seismic wave parameters and to specific site conditions such as surface topography, layering, the presence of cracks and crack interaction. 相似文献
5.
6.
Abraham I. Beltzer 《Pure and Applied Geophysics》1988,128(1-2):147-156
Basic ideas of the causal approach to wave propagation in random media are first overviewed. This approach appeals from the outset to the linearity, causality, and passivity of the effective medium and is therefore particularly simple from the conceptual viewpoint. The energy analysis and the Kramers-Kronig relations play the major role in this method, which does not resort to ensemble averaging.Then the dispersion of plane wave propagation in randon media is evaluated by extending Wu's results on attenuation induced by scattering. These results are particularly suitable for seismic waves, for which the so-called mean-field approach may not provide adequate modeling. The presence of intrinsic losses is also incorporated. The analysis also includes the case of propagation of a small-amplitude discontinuity. 相似文献
7.
Rayleigh波在浅圆凹陷地形附近的散射:高频解答 总被引:4,自引:1,他引:4
利用波函数展开法给出了Rayleigh波在浅圆凹陷地形附近散射的一个高频解析解,并分析了入射频率、凹陷地形宽度和深度等因素对波散射的影响。数值结果表明,由于Rayleigh波幅值随深度而衰减,凹陷地形表面位移幅值整体上较小,且随着凹陷地形深度的增加而减小;由于Rayleigh波幅值还随频率而衰减,随着入射频率的升高,凹陷地形表面位移幅值逐渐减小;由于凹陷地形的屏障作用,在人射波的近端,地表位移分布变得相对复杂,地表位移峰值出现在左角点附近,而在入射波远端,地表位移分布相对简单,地表位移峰值出现在距凹陷地形较远的地方。 相似文献
8.
Ari Ben-Menahem 《Pure and Applied Geophysics》1988,128(1-2):133-146
A nonstochastic and noniterative theory of vector scattering in inhomogeneous media is presented. The elastodynamic vector wave-equation for 3D inhomogeneous media is solved for a weak heterogeneity at the high-frequency region. It is shown that there exists a forward scattered field which decays slowly along the source-receiver path. Its rate of attenuation depends on the azimuth of the path relative to the direction of the inhomogeneity, but is independent of frequency. The Green's tensor for the above regime is derived in closed form and leads to the quantification of fields of dipolar sources in weak inhomogeneous media. The inhomogeneity at the source creates a source-induced scattering (in addition to path-scattering) having a radiation-pattern that bears the signature of the source. The availability of the analytic Green's tensor, in conjunction with the Huygens-Kirchhoff-Helmholtz formalism, opens new ways to calculate the scattered fields due to various structural inhomogeneities applicable to exploration and earthquake seismology. The theoretical results of this study point to the conclusion that the scalar wave approximation may not always be valid for the propagation of seismic waves in the earth's lithosphere. 相似文献
9.
IntroductionEarthquakedamageinvestigationsandtheoreticalanalysesshowthatahillamplifiesincidentwavestremendouslyduetomulti-reflectionofthewaveswithinthehill;notabledynamicstressconcentrationisobservedonwallofatunnel(Pao,Mow,1973;Lee,Trifunac,1979).Therefore,itmaybeassumedthattheexistenceofatunnelinahillmighthavegreateramplificationeffectonthegroundmotionnearby,andthedynamicstressconcentrationofthetunnelinthehillmightbemorenotable.Itiscommonthattherailwaysorhighwaysarethroughahilloramountainwi… 相似文献
10.
Koji Matsunami 《Pure and Applied Geophysics》1990,132(1-2):197-220
To study the effects of strong scattering on elastic waves, spatial fluctuation and scattering attenuation ofP waves were examined by laboratory experiments for 2-D models of random media approximately characterized by a triangular correlation function in the range of 2<ka<33, wherek is the wave number anda is the correlation distance of the heterogeneities, i.e., the heterogeneity size. The results obtained are as follows: (1) Forka>10, both the intensity and the correlation distance of the amplitude fluctuation are approximate for any phase of theP-wave train. The correlation distance nearly agrees with the heterogeneity size. These fluctuation properties are quite consistent with the theoretical prediction by the forward-scattering approximation. (2) For 3<ka<6, the fluctuation intensity becomes stronger in later phases of theP-wave train. This shows that scattering is approximately isotropic, and therefore, the scattered energy increases with time within theP-wave train. The correlation distance of the amplitude fluctuation disagrees with the heterogeneity size, and it shows a frequency-dependent property decreasing from 7a to 4a with the increase ofka from 3 to 6. These properties for 3<ka<6 have not yet been predicted theoretically. (3) Forka<3, though the fluctuation is considerably smaller compared with that ofka>10 and 3<ka<6, the fluctuation property is considered similar to that of 3<ka<6. (4) The observed scattering attenuation,Q
–1, increases withka forka<3, has a peak aroundka=35, and then decreases withka. (5) When min = 15° and = 0.075, the theoreticalQ
–1 curve, predicted by the approximate theory of Wu, roughly matches the observedQ
–1 values, where min is the minimum scattering angle measured from the propagation direction of theP waves and is the rms of fractional velocity fluctuation. This suggests that the energy scattered in the range of >15° is lost from theP waves, while the energy scattered in the range of <15° is retained; and that the approximate theory overestimates by about three times the value of the model media used owing to the neglect of multiple scattering. (6) When the size of velocity heterogeneities responsible for forward scattering at 3<ka<6 is estimated from the min value of 15° on the basis of Wu's theory, it nearly agrees with the correlation distance for the initial phase of theP-wave train. 相似文献
11.
An analytical solution for scattering of plane P waves by a semi-cylindrical hill was derived by using the wave function expansion method, and convergence of the solution and accuracy of truncation were verified. The effect of incident frequency and incident angle on the surface motion of the hill was discussed, and it was shown that a hill greatly amplifies incident plane P waves, and maximum horizontal displacement amplitudes appear mostly at the inclined incidence of waves, which are located at the half-space; and maximum vertical displacement amplitudes emerge mostly at the vertical incidence of waves, which are situated at the hill. 相似文献
12.
柱面波在半空间中洞室周围的散射 总被引:1,自引:1,他引:1
采用一种间接边界积分方程法求解了柱面波在半空间中洞室周围的散射问题。通过边界条件的验算以及退化解答与精确解的比较,验证了本文方法的计算精度。文中主要分析了入射波频率、波源与洞室距离等参数对洞室附近地表位移响应和洞室动应力集中的影响,得出了一些有益的结论。 相似文献
13.
Introduction The effect of local site conditions on wave propagation is one of the most attractive topics in engineering seismology. It may be resolved by either a numerical method or an analytical method. Numerical methods include the finite difference, finite element, boundary element method, etc. The analytical method is the wave function expansion method. The advantage of these numerical methods is that they can be applied to local inhomogeneity of arbitrary shapes, but analytical method … 相似文献
14.
15.
地下多孔介质中的孔隙类型复杂多样,既有硬孔又有扁平的软孔.针对复杂孔隙介质,假设多孔介质中同时含有球型硬孔和两种不同产状的裂隙(硬币型、尖灭型裂隙),当孔隙介质承载载荷时,考虑两种不同类型的裂隙对于孔隙流体压力的影响,建立起Biot理论框架下饱和流体情况含混合裂隙、孔隙介质的弹性波动方程,并进一步求取了饱和流体情况下仅由裂隙引起流体流动时的含混合裂隙、孔隙介质的体积模量和剪切模量,随后,在此基础上讨论了含混合裂隙、孔隙介质在封闭条件下地震波衰减和频散的高低频极限表达式.最后计算了给定模型的地震波衰减和频散,发现地震波衰减曲线呈现"多峰"现象,速度曲线为"多频段"频散.针对该模型分析讨论了渗透率参数、裂隙纵横比参数以及流体黏滞性参数对于地震波衰减和频散的影响,表明三个参数均为频率控制参数. 相似文献
16.
IntroductionItiswellknownthatanisotropylieswidelyintheundergroundmedia.Anisotropicmediawhicharemetintheseismicengineeringandseismicexplorationofenergyaremainlycausedbytheperiodicthinlayers(PTL)andextensivedilatancyanisotropy(EDA).Insuchmedia,anisotropyleadstomorecomplicatepropagationofseismicwave,thesignificantfeatureinanisotropicmediaisvelocityanisotropy.Infact,undergroundstrataareverycomplicated,whichareusuallycomposedofsolidframeandfluid(suchasoil,gasesorwater)inpores.Inordertostudyseism… 相似文献
17.
Scattering of incident plane harmonic pseudo P‐, SH‐, and SV‐waves by a two‐dimensional basin of arbitrary shape is investigated by using an indirect boundary integral equation approach. The basin and surrounding half‐space are assumed to be generally anisotropic, homogeneous, linearly elastic solids. No material symmetries are assumed. The unknown scattered waves are expressed as linear combinations of full‐space time‐harmonic two‐dimensional Green functions. Using the Radon transform, the Green functions are obtained in the form of finite integrals over a unit circle. An algorithm for the accurate and efficient numerical evaluation of the Green functions is discussed. A detailed convergence and parametric analysis of the problem is presented. Excellent agreement is obtained with isotropic results available in the literature. Steady‐state surface ground motion is presented for semi‐circular basins with generally anisotropic material properties. The results show that surface motion strongly depends upon the material properties of the basin as well as the angle of incidence and frequency of the incident wave. Significant mode conversion can be observed for general triclinic materials which are not present in isotropic models. Comparison with an isotropic basin response demonstrates that anisotropy is very important for assessing the nature of surface motion atop basins. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
18.
Yushan Zhang 《地震科学(英文版)》2010,23(2):157-165
By expressing the wave functions in the form of Fourier-Bessel series,the analytical solution for the two-dimension scattering problem of plane P waves by the cylindrical canyon topography that contains arbitrary number of circular-arc-shaped layers is presented firstly.And then,the convergence of the proposed series solution with the truncation number of terms is discussed,which demonstrates that the analytical solution can converge even for very high frequencies of the incident P wave.Finally,using this solution,the influences that are imposed on the stationary ground motion by the number and the sequence of alluvial layers,as well as the stiffness of soft interlayer contained in the canyon,are studied. 相似文献
19.
On the basis of Biot dynamic theory, an analytic solution of two-dimensional scattering and diffraction of plane SV waves by circular cylindrical canyons in a half space of saturated porous media is presented in this paper for the first time. The solution is obtained by employing the Fourier–Bessel series expansion technique. Parametric studies had been carried out, which includes: the angle of incidence, the frequency of the incident SV wave, the porosity of saturated porous medium and the stiffness and Poisson's ratio of the solid-skeleton. All the outcomes are useful for the seismic analysis of the surface topography conditions. 相似文献
20.
The mechanical model for plane strain, time-harmonic seismic wave propagation problems in cracked, multi-layered geological regions with surface topography and non-parallel interfaces was described in the first part of this work. Here, this model is used to investigate the response of such a region to the presence of traveling elastic waves generated by a seismic source. The computational methodology that was developed in the first part is based on a combination of both the regular (displacement-based) and the hypersingular (traction-based) Boundary Integral Equation Method (BIEM). First, the accuracy and convergence characteristics of this hybrid BIEM are studied. Then, a series of problems involving four different configurations of a reference geological deposit with both interface and internal cracks are solved, for a loading that is due to a seismically-induced pressure wave propagating upwards from the underlying rigid half-plane. The purpose of the numerical study is to investigate the influence of various key parameters of the problem, such as frequency and incidence angle of the incoming wave, size of the surface relief, location and size of the buried cracks, interaction effects between cracks and finally the presence of layers, on both the scattered displacement field and the stress concentration field. 相似文献