首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the first diffraction-limited K-band image of the Red Rectangle with 76 mas resolution, an H-band image with 75 mas resolution, and an RG 715 filter image ( 800 nm wavelength) with 78 mas resolution (corresponding to 25 AU for a distance of 330 pc). The H and K images were reconstructed from 6 m telescope speckle data and the RG 715 image from 2.2 m telescope data using the speckle masking bispectrum method. At all wavelengths the images show a compact, highly symmetric bipolar nebula, suggesting a toroidal density distribution of the circumstellar material. No direct light from the central binary can be seen as it is obscured by a dust disk or circumbinary torus. Our first high-resolution HK color image of the nebula shows a broad red plateau of HK≈ 2m in the bright inner regions.The optical and near-infrared images and the available photometric continuum observations in a wide range of ultraviolet to centimeter wavelengths enabled us to model the Red Rectangle in detail using a two-dimensional radiative transfer code. Our model matches both the high-resolution images and the spectral energy distribution of this object very well, making the following picture much more certain. The central close binary system with a total luminosity of 3000 L is embedded in a very dense, compact circumbinary torus which has an average number density nH ≈5×1012 cm−3, an outer radius of the dense inner region of R≈30 AU (91 mas), and a ρ∝r−2 density distribution. The full opening angle of the bipolar outflow cavities in our model is 70°. By comparing the observed and theoretical images, we derived an inclination angle of the torus to the line of sight of 7°±1°.The radiative transfer calculations show that the dust properties in the Red Rectangle are spatially inhomogeneous. The modeling confirms that the idea of large grains in the long-lived disk around the Red Rectangle (Jura et al., 1997 [ApJ, 474, 741]) is quantitatively consistent with the observations. In our models, unusually large, approximately millimeter-sized grains dominate the emission of the compact, massive torus. Models with smaller average grain sizes can possibly be found in future studies, for instance, if it turns out that the radio spectrum is not mainly caused by continuum dust emission. Therefore, the large grains suggested by our models require further confirmation by both new observations and radiative transfer calculations. Assuming a dust-to-gas ratio ρdg of 0.005, the dense torus mass is 0.25 M. The model gives a lower limit of 0.0018 M, for the mass of the large particles, which produce a gray extinction of A≈ 28m, towards the center. A much smaller mass of submicron-sized dust grains is presumably located in the polar outflow cavities, their conical surface layers, and in the outer low-density parts of the torus (where ρ∝r−4, in the region of 30 AUr 2000 AU corresponding to 0.′′09–6′′).  相似文献   

2.
Radiation pressure acts to accelerate dust grains and, by transfer of momentum through collisions with the gas, drives the outflows of late-type stars. Some of these dust–gas collisions may be energetic enough to remove atoms from the dust grains. From an assumed initial size distribution for the dust grains, the method of Krüger et al. is used to study the evolution of a sample of spherical amorphous carbon grains under conditions typical of a late-type star. The size distribution of dust grains is presented for various sets of model parameters. One set of models assumes an initial Mathis, Rumpl & Nordsieck (MRN) distribution for the dust grains. The high-luminosity ( L ∗), high-effective temperature ( T eff) set of parameters has a terminal velocity ( v term) that is near, but above , the upper limit of observed outflow velocities for carbon stars (∼30 km s−1 for the assumed ̇ of 5×10−6 M yr−1). The low L ∗, T eff model has a v term that lies near, but below , the upper limit of observed velocities. A significant amount of sputtering occurs in the high L ∗, T eff model with ∼40 per cent of the grain mass sputtered. About ∼1 per cent of the dust mass is sputtered in the low L ∗, T eff. Another set of models assumes that the dust forms with a log-normal distribution. Here, v term is nearly the same for the high L ∗, T eff model as for the low L ∗, T eff model. This is a result of the large amount of dust mass loss (∼75 per cent) by sputtering in the high L ∗, T eff model.  相似文献   

3.
Planetary nebulae (PNe) are formed in a very fast process. In just about 1000 years, the nebula evolves from a spherical and slowly expanding AGB envelope to a PN, with usually axial symmetry and high axial velocities. Molecular lines are known to probe most of the nebular material in young PNe and protoplanetary nebulae (PPNe), and are therefore very useful to study such an impressive evolution. Many quantitative results on these objects have been so obtained, including general structure, total mass and density distribution, kinetic temperatures, velocity fields, etc. Existing observations probe both the gas accelerated by post-AGB shocks and the quiescent components. But the study of crucial regions to understand PN formation (recently shocked shells, regions heated by the stellar UV and inner rotating disks) requires observations at higher frequency and with better spatial resolution.   相似文献   

4.
OH 17.7 − 2.0 is a post-asymptotic giant branch star that is of great interest. The 1612-MHz OH emission from OH 17.7 − 2.0 is characterized by a double-peaked spectrum. Such a line profile has been assumed to represent maser emission from an expanding circumstellar shell. A new VLBI observation of the OH maser in OH 17.7 − 2.0 has been made using the European VLBI Network, and a relative position map of the eight OH maser spots has been obtained. Using the relative position map, it is found that the eight OH maser spots are distributed on an expanding circumstellar shell. The parameters of the expanding circumstellar shell have been obtained.  相似文献   

5.
ISOGAL is a survey at 7 and 15 μm with ISOCAM of the inner galactic disk and bulge of our Galaxy. The survey covers ∼ 22 deg2 in selected areas of the centrall = ±30 degree of the inner Galaxy. In this paper, we report the study of a small ISOGAL field in the inner galactic bulge (l = 0°,b = −1°, area = 0.033deg2). Using the multicolor nearinfrared data (IJKs) of DENIS (DEep Near Infrared Southern Sky Survey) and mid-infrared ISOGAL data, we discuss the nature of the ISOGAL sources. The various color-color and color-magnitude diagrams are discussed in the paper. While most of the detected sources are red giants (RGB tip stars), a few of them show an excess in J-Ks and Ks-[15] colors with respect to the red giant sequence. Most of them are probably AGB stars with large mass-loss rates.  相似文献   

6.
We present a new orbit for the visual binary ADS 8630 = γ Vir. Although it is one of the first visual double stars discovered, its orbital elements were still poorly known. Indeed the very high eccentricity of the orbit and the difficulty of observing the pair at periastron passage in 1836 has meant that it is only now that sufficient measures of the recent close approach in 2005 have allowed an orbital analysis which predicts the angular motion to an acceptable degree of accuracy. We present a series of 35 speckle measurements of ADS 8630 obtained with PISCO in Merate between 2004 and 2006. Those measures have been crucial for determining the new orbital elements since they cover an arc of 130 degrees in the apparent orbit and include the periastron passage of 2005. The masses of the individual F0V components of the binary are found to be 1.40 M with an accuracy of about 3%. We also investigate in detail the possibility of the presence of a third body in the system, that was proposed by other authors. The high‐angular resolution infra‐red image of γ Vir that we obtained in June 2006 with the LuckyCam instrument on the ESO NTT shows the absence of any companion as faint as a M0V star at a distance larger than 0.4″. Combined with the analysis of the residuals of our orbit, the values found for the masses of the individual components and the radial velocity measurements, this observation rules out the presence in the system of a third companion with a mass larger than 0.3 M. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Imaging polarimetry through J and H broad-band filters and a 3.4 μm narrow-band filter is used to highlight the regions of scattered light in the Red Rectangle. We find that the scattered light identifies the circumbinary dust component of the molecular disc seen in CO emission. This region also appears to be the origin of the recently discovered Blue Luminescence. We find that the degrees of polarization are consistent with the amorphous carbon dust model invoked by Men'shchikov. Spectropolarimetry from 1.4 to 2.5 μm confirms that the degree of polarization in the central arcsecond region is very low. This suggests that the central bicone seen in the near-infrared is predominantly due to emission from hot dust and/or from stochastically heated nanoparticles, rather than due to scattering by large grains.  相似文献   

8.
We have produced 22 VLBI images of the TeV blazar Markarian 421 at 11 epochs, including a Space VLBI observation with the HALCA satellite. We measure the speeds of the three innermost jet components to be 0.64±0.33, 0.48±0.09, and 0.06±0.09c (H0=65 km s−1 Mpc−1). Interpretation of these subluminal speeds in terms of the high Doppler factor demanded by the TeV observations is discussed.  相似文献   

9.
The mysterious 21 μm emission feature seen in sixteen C-rich proto-planetary nebulae (PPNe) remains unidentified since its discovery in 1989. Over a dozen of materials are suggested as the carrier candidates. In this work, we quantitatively investigate eight inorganic and one organic carrier candidates in terms of elemental abundance constraints, while previous studies mostly focus on their spectral profiles (which could be largely affected by grain size, shape and clustering effects). It is found that: (1) five candidates (TiC nanoclusters, fullerenes coordinated with Ti atoms, SiS2, doped-SiC and SiO2-coated SiC dust) violate the abundance constraints (i.e. they require too much Ti, S or Si to account for the emission power of the 21 μm band, (2) three candidates (carbon and silicon mixtures, Fe2O3 and Fe3O4), while satisfying the abundance constraints, exhibit secondary features which are not detected in the 21 μm sources and (3) nano FeO, neither exceeding the abundance budget nor producing undetected secondary features, seems to be a viable candidate, supporting the suggestions of Posch, Mutschke & Andersen.  相似文献   

10.
The goal of this article is to show that, if one avoids star forming regions, mass-losing AGB stars can generally be selected from the data that will be provided by the near-infrared surveys which are presently considered. Also, if IRAS data are available, the separation between carbon-rich and oxygen-rich stars can be operated by their positions in infrared colour diagrams. In extragalactic systems, red supergiants can be discriminated from AGB stars by their luminosities.based on observations obtained with the ESO 1-m telescope  相似文献   

11.
12.
Silicon carbide (SiC), a refractory material, condenses near the photospheres of C-rich asymptotic giant branch stars, giving rise to a conspicuous emission feature at 11.3 μm. In the presence of a stellar wind, the SiC grains are carried outwards to colder regions, where less-refractory carbonaceous material can condense, either by itself or in mantles upon SiC grains. Enough carbon can condense on the latter that their specific feature is completely veiled. Thus the following may be explained: (i) the coexistence of the SiC feature protruding above a carbonaceous continuum, with a range of contrasts, corresponding to various volume ratios of mantle to core; or (ii) the ultimate disappearance of the 11.3-μm feature from the interstellar medium, where the mantle has become completely opaque due to the much higher cosmic abundance of carbon.  相似文献   

13.
Stars in the post-asymptotic giant branch (post-AGB) phase of evolution are surrounded by detached circumstellar envelopes containing dust which emits thermally in the mid- and far-infrared. Here we present 850-μm SCUBA photometry of nine candidate post-AGB stars. All targets are detected at 850 μm and we use these fluxes to estimate the envelope dust masses and, by comparison with the 100-μm IRAS fluxes, the dust emissivity index.  相似文献   

14.
15.
16.
17.
The dust shell around the evolved star HD 179821 has been detected in scattered light in near-IR imaging polarimetry observations. Here, we subtract the contribution of the unpolarized stellar light to obtain an intrinsic linear polarization of between 30 and 40 per cent in the shell that seems to increase with radial offset from the star. The J - and K -band data are modelled using a scattering code to determine the shell parameters and dust properties. We find that the observations are well described by a spherically-symmetric distribution of dust with an r −2 density law, indicating that when mass-loss was occurring, the mass-loss rate was constant. The models predict that the detached nature of a spherically-symmetric, optically-thin dust shell, with a distinct inner boundary, will only be apparent in polarized flux. This is in accordance with the observations of this and other optically-thin circumstellar shells, such as IRAS 17436+5003. By fitting the shell brightness we derive an optical depth to the star that is consistent with V -band observations and that, assuming a distance of 6 kpc, gives an inner-shell radius of     , a dust number density of     at r in and a dust mass of     . We have explored axisymmetric shell models but conclude that any deviations from spherical symmetry in the shell must be slight, with an equator-to-pole density contrast of less than 2:1. We have not been able to fit simultaneously the high linear polarizations and the small     colour excess of the shell and we attribute this to the unusual scattering properties of the dust. We suggest that the dust grains around HD 179821 either are highly elongated or consist of aggregates of smaller particles.  相似文献   

18.
19.
We study the central (inner few hundred parsecs) stellar populations of four starburst galaxies (NGC 34, 1614, 3310 and 7714) in the near-infrared (NIR), from 0.8 to 2.4 μm, by fitting combinations of stellar population models of various ages and metallicities. The NIR spectra of these galaxies feature many absorption lines. For the first time, we fit simultaneously as much as 15 absorption features in the NIR. The observed spectra are best explained by stellar populations containing a sizable amount (20–56 per cent by mass) of ∼1-Gyr-old stellar population with thermally pulsing asymptotic giant branch stars. We found that the metallicity of the stars which dominates the light is solar. Metallicities substantially different from solar give a worse fit. Though the ages and metallicities we estimate using the NIR spectroscopy are in agreement with values from the literature based on the ultraviolet/optical, we find older ages and a larger age spread. This may be due to the fact that the optical is mostly sensitive to the last episode of star formation, while the NIR better maintains the record of previous stellar generations. Another interesting result is that the reddening estimated from the whole NIR spectrum is considerably lower than that based on emission lines. Finally, we find a good agreement of the free emission-line spectrum with photoionization models, using as input spectral energy distribution the synthetic composite template we derived as best fit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号