首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P. B. Byrne 《Solar physics》1989,121(1-2):61-74
We present observational data on stellar flares from a range of wavelength regimes, many of which were obtained simultaneously. Physical parameters of these flares are derived and discussed in the frame-work of the general solar flare model. It is found that flares on dMe stars are solar-like, except in mean energy. The parameters of flares on RS CVn stars are more extreme, however, and may require new models for their interpretation.  相似文献   

2.
It is shown that the chronology of flare star discoveries in the Pleiades cluster and the Orion association can be described satisfactorily by various distribution functions (gamma, binomial, decreasing exponential, and delta) for the mean frequencies of stellar flares. However, it has been found that this is due to the uncertainty in the observationally derived distribution function for the mean frequency of stellar flares. The most likely function is that derived by Ambartsumian, which has a physical basis.Translated fromAstrofizika, Vol. 38, No. 1, pp. 25–32, January–March, 1995.  相似文献   

3.
4.
D. J. Mullan 《Solar physics》1977,54(1):183-206
Short-lived increases in the brightness of many red dwarfs have been observed for the last 30 yr, and a variety of more or less exotic models have been proposed to account for such flares. Information about flares in the Sun has progressed greatly in recent years as a result of spacecraft experiments, and properties of coronal flare plasma are becoming increasingly better known. In this paper, after briefly reviewing optical, radio and X-ray observations of stellar flares, we show how a simplified model which describes conductive plus radiative cooling of the coronal flare plasma in solar flares has been modified to apply to optical and X-ray stellar flare phenomena. This model reproduces many characteristic features of stellar flares, including the mean UBV colors of flare light, the direction of flare decay in the two-color diagram, precursors, Stillstands, secondary maxima, lack of sensitivity of flare color to flare amplitude, low flux of flare X-rays, distinction between so-called spike flares and slow flares, Balmer jumps of as much as 6–8, and emission line redshifts up to 3000 km s–1. In all probability, therefore, stellar flares involve physical processes which are no more exotic (and no less!) than those in solar flares. Advantages of observing stellar flares include the possibilities of (i) applying optical diagnostics to coronal flare plasma, whereas this is almost impossible in the Sun, and (ii) testing solar flare models in environments which are not generally accessible in the solar atmosphere.  相似文献   

5.
6.
7.
Giannina Poletto 《Solar physics》1989,121(1-2):313-322
According to one of the most popular classifications, solar flares may be assigned either to the category of small short-lived events, or to the category of large, long-duration two-ribbon (2-R) flares. Even if such abroad division oversimplifies the flare phenomenon, our knowledge of the characteristics of stellar flares is so poor, that it is worthwhile to investigate the possibility of adopting this classification scheme for stellar flares as well. In particular we will analyze Einstein observations of a long duration flare on EQ Peg to establish whether it might be considered as a stellar analogy of 2-R solar events. To this end we apply to EQ Peg data a reconnection model, developed originally for solar 2-R flares, and conclude that stellar observations are consistent with model predictions, although additional information is required to identify uniquely the physical parameters of the flare region. Application of the model to integrated observations of a 2-R solar flare, for which high spatial resolution data are also available, shows, however, that future integrated observations may allow us to solve the ambiguities of the model and use it as a diagnostic tool for a better understanding of stellar flares.  相似文献   

8.
Jan Kuijpers 《Solar physics》1989,121(1-2):163-185
An overview is given of the observations of stellar radio flares, defined as radio emission which is both variable in time and created by explosive releases of magnetic energy. The main sources of such flares are late-type Main-Sequence stars, classic close binaries, X-ray binaries, and pre-Main-Sequence stars.We summarize the interpretations of these observations in terms of the various incoherent and coherent emission mechanisms. The possible importance of a coherent emission process in electrostatic double layers is pointed out.We briefly indicate the diagnostic importance of radio emission for the flare process in classic and compact stars. In particular we discuss the possible production of radio flares from interactions between an accretion disk and the magnetic field of the central object.  相似文献   

9.
The formation of the Stark wings of hydrogen lines is considered on the basis of theoretical models of flares in type UV Cetus stars. It is shown that, under certain conditions (depending on the power of the beam of charged particles and their energy spectrum), very broad wings may be formed, extending 20 and more angstroms from the center of the line. Observations of such wings may provide valuable information concerning the energy spectra of the particles inducing the flare.Translated from Astrofizika, Vol. 38, No. 1, pp. 33–44, January–March, 1995.  相似文献   

10.
Giovanni Peres 《Solar physics》1989,121(1-2):289-298
This paper discusses the hydrodynamic modeling of flaring plasma confined in magnetic loops and its objectives within the broader scope of flare physics. In particular, the Palermo-Harvard model is discussed along with its applications to the detailed fitting of X-ray light curves of solar flares and to the simulation of high-resolution Ca xix spectra in the impulsive phase. These two approaches provide complementary constraints on the relevant features of solar flares. The extension to the stellar case, with the fitting of the light curve of an X-ray flare which occurred on Proxima Centauri, demonstrates the feasibility of using this kind of model for stars too. Although the stellar observations do not provide the wealth of details available for the Sun, and, therefore, constrain the model more loosely, there are strong motivations to pursue this line of research: the wider range of physical parameters in stellar flares and the possibility of studying further the solar-stellar connection.  相似文献   

11.
Observations of regular and irregular polarimetric variability in late-type stars are reviewed, and the related physical and geometrical effects are discussed. There are indications that the irregular part of the variability could be caused by transient events, possibly associated with flares. Polarimetric observations during flares are reviewed, and preliminary results of new observations of a well-known flare star, YY Geminorum, are presented. The results show that the small flare in YY Gem did not cause any significant variations in linear polarization, while the binary eclipse evidently causes an enhancement in the polarization. The reasons for the difficulties in stellar flare polarimetry are discussed. Finally, future prospects for the observations of flaring stars and for the utilization of linear polarimetry as a complementary method to other techniques of surface imaging of stellar activity and flares are presented.  相似文献   

12.
13.
14.
Byurakan Astrophysical Observatory; I. V. Kurchatov Institute of Atomic Energy. Translated from Astrofizika, Vol. 32, No. 3, pp. 405–413, May–June, 1990.  相似文献   

15.
B. R. Pettersen 《Solar physics》1989,121(1-2):299-312
We review the flaring activity of stars across the HR-diagram. Brightenings have been reported along the entire Main Sequence and in many stars off the Main Sequence. Some stars are decidedly young, others are in advanced stages of stellar evolution. Flares are common on stars with outer convection zones and outbursts have been reported also on other types of stars, although confirmations are needed for some of them.Analyses of flare occurrence sometimes find flares to be randomly distributed in time, and sometimes indicate a tendency for flares to come in groups. Preferred active longitudes have been suggested. Recent solar results, where the occurrence rate for flares is found to exhibit a periodicity of 152 days, suggest that stellar flare data should be reanalyzed over long time baselines to see if the present confusing situation can be resolved.The radiation from stellar flares is dominated by continuum emission and about equal amounts of energy have been recorded in the optical, UV, and X-ray regions of the spectrum. In solar flares strong continuum emission is rarely recorded and a large collection of bright emission lines takes prominence. Small flares occur more frequently than large ones and the latter have longer time-scales. Flare energies can exceed 1037 erg. The most productive flare stars are those where the convective envelopes occupy large volumes. Slow stellar rotation rates are believed to reduce the level when the star has been braked significantly from its young rotation rate.  相似文献   

16.
17.
A further development of the Kostyuk-Pikelner's model is presented. The response of the chromosphere heated by non-thermal electrons of the power-law energy spectrum has been studied on the basis of the numerical solution of the one-dimensional time-dependent equations of gravitational gas dynamics. The ionization and energy loss for the emissions in the Lyman and Balmer lines have been determined separately for the optically thin and thick L-line layers. Due to the initial heating, a higher-pressure region is formed. From this region, disturbances propagate upwards (a shock wave with a velocity of more than 1000 km s-1) and downwards. A temperature jump propagates downwards, and a shock is formed in front of the thermal wave. During a period of several seconds after the beginning of this process, the temperature jump intensifies the downward shock wave and the large radiative loss gives rise to the high density jump ( 2/ 1 100). The numerical solution has been analyzed in detail for the case heating of the ionized and neutral plasma, and a value of this heating is close to the upper limit of the admissible values. In this case, the condensation located between the temperature jump and the shock wave front, may emit in the observed optical continuum.In their essential features, the gas dynamic processes during the flares in red dwarf atmospheres are the same as those in the solar atmosphere. However, the high atmospheric densities, smaller height scale in red dwarf atmospheres, and greater energy of this processes in stellar flares, give rise, in practice, to the regular generation of optical continuum. The photometric parameters of a source with n 015 cm-3, T 9000 K, and z 10 km are in a good agreement with observations.  相似文献   

18.
19.
20.
D. J. Mullan 《Solar physics》1989,121(1-2):239-259
Although progress has been made in understanding certain aspects of the physics of solar and stellar flares, there are a number of topics which, in the author's opinion, still pose a problem. We summarize these topics here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号