首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We calculate the polarization of the radiation from an optically thick accretion disk with a vertical averaged magnetic field. The polarization arises from the scattering of light by free electrons in a magnetized disk plasma. The Faraday rotation of the polarization plane during the propagation of a photon in a medium with a magnetic field is considered as the main effect. We discuss various models of optically thick accretion disks with a vertical averaged magnetic field. Our main goal is to derive simple asymptotic formulas for the polarization of radiation in the case where the Faraday rotation angle Ψ ≫ 1 at the Thomson optical depth τ = 1. The results of our calculations allow the magnetic field strength in the region of the marginally stable orbit near a black hole to be estimated from polarimetric observations, including X-ray observations expected in the future. Since the polarization spectrum of the radiation strongly depends on the accretion disk model, a realistic physical model of the accretion disk can be determined from data on the polarization of its radiation.  相似文献   

2.
Oded Regev   《New Astronomy Reviews》2008,51(10-12):819
An asymptotic treatment of thin accretion disks, introduced by Kluźniak and Kita [Kluźniak, W., Kita, D., 2000. Three-dimensional structure of an alpha accretion disk. Available from: <arXiv:astro-ph/0006266v1> (KK)] for a steady-state disk flow, is extended to a time-dependent problem. Transient growth of axisymmetric disturbances is analytically shown to occur on the global disk scale. The implications of this result on the theory of hydrodynamical thin accretion disks, as well as future prospects, are discussed.  相似文献   

3.
In spite of the large number of global three-dimensional (3-D) magnetohydrodynamic (MHD) simulations of accretion disks and astrophysical jets, which have been developed since 2000, the launching mechanisms of jets is somewhat controversial. Previous studies of jets have concentrated on the effect of the large-scale magnetic fields permeating accretion disks. However, the existence of such global magnetic fields is not evident in various astrophysical objects, and their origin is not well understood. Thus, we study the effect of small-scale magnetic fields confined within the accretion disk. We review our recent findings on the formation of jets in dynamo-active accretion disks by using 3-D MHD simulations. In our simulations, we found the emergence of accumulated azimuthal magnetic fields from the inner region of the disk (the so-called magnetic tower) and also the formation of a jet accelerated by the magnetic pressure of the tower. Our results indicate that the magnetic tower jet is one of the most promising mechanisms for launching jets from the magnetized accretion disk in various astrophysical objects. We will discuss the formation of cosmic jets in the context of the magnetic tower model.  相似文献   

4.
The problem of steady-state accretion to nonrotating black holes is examined. Advection is included and generalized formulas for the radiation pressure in both the optically thick and thin cases are used. Special attention is devoted to models with a high accretion rate. Global solutions for accretion disks are studied which describe a continuous transition between an optically thick outer region and an optically thin inner region. It is shown that there is a maximum disk temperature for the model with a viscosity parameter α = 0.5. For the model with α = 0.1, no optically thin regions are found to exist for any accretion rate.  相似文献   

5.
The global structure of accretion disks is investigated in a unified scheme. We use a general radiative cooling formula applicable to both optically thick and thin regimes and we include radial advection cooling. Within the -viscosity models, we found distinct families of global solutions. If the accretion rate is low, there are three non-intersecting solutions, corresponding to optically thick and thin, local cooling and optically thin advection cooling. If the accretion rate is high, and the viscosity coefficient is large, the two local cooling solutions coincide at radii R1 and R2 and exist independently below R1 and above R2 while the advection solution is stable at all radii. If the accretion is high and the viscosity is low, the two optically thin solutions will cross each other while the optically thick solution exists at all radii.  相似文献   

6.
The standard thin accretion disk model predicts that the inner regions of alpha model disks, where radiation pressure is dominant, are thermally and viscously unstable. However, observations show that the bright X-ray binaries and AGN accretion disks, corresponding to radiation-pressure thin disks, are stable. In this paper, we reconsider the linear and local instability of accretion disks in the presence of a toroidal magnetic field. In the basic equations, we consider physical quantities such as advection, thermal conduction, arbitrary viscosity, and an arbitrary cooling function also. A fifth order diffusion equation is obtained and is solved numerically. The solutions are compared to non-magnetic cases. The results show that the toroidal magnetic field can make the thermal instability in radiation pressure-dominated slim disks disappear if ? m ≥0.3. However, it causes a more thermal instability in radiation pressure alpha disks without advection. Also, we consider the thermal instability in accretion disks with other values of the viscosity and obtain a general criterion for thermal instability in the long-wavelength limit and in the presence of a toroidal magnetic field.  相似文献   

7.
本文采用微扰方法导出色散方程,并在四种情况下详细讨论了薄吸积盘的不稳定性。结果表明:在纯粘滞和纯磁场盘中都存在脉动不稳定性。而且在吸积盘内同时考虑粘滞和磁场时,存在两种不稳定性,一种是脉动不稳定性,另一种是单调不稳定性。同时数值计算还表明,脉动不稳定性更可能存在于盘的内区,而单调不稳定性则只在盘的外区,对短波扰动才有意义。这些结果为解释BLLac天体、Seyfert星系及类星体等活动星系核的光变现象进一步提供了理论依据。  相似文献   

8.
In this contribution, we first review the theory of self-collimated jets launched from magnetized accretion disks (disk-winds originating from the first AUs). We show why it is crucial to solve in a self-consistent way the interplay between the resistive accretion disk and the ideal MHD jets. Indeed, this is the only way to get exact values for the disk ejection efficiency ξ (the jet mass load issue). Then, we show self-similar calculations of such accretion-ejection structures: first cold jets, then warm jets obtained in the presence of a hot disk chromosphere. Finally, we present for the first time an accretion-ejection flow crossing all three critical points.  相似文献   

9.
We present synthetic images of accretion disks around young stars computed from a model where the disk's vertical structure is solved assuming hydrostatic equilibrium. The disk's brightness results from three emission processes: (1) the reprocessing of stellar photons in the optically thick disk's regions; (2) the scattering of stellar photons in the optically thin parts of the disk; and (3) the thermal emission of the disk due to viscous energy dissipation during the accretion process.We discuss the relative importance of these emission processes at wavelengths ranging from 1.2 to 20m.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

10.
An accretion disk is an inevitable part of the star forming process. Recent years have witnessed dramatic progress in our understanding of how turbulence arises and transports angular momentum in astrophysical accretion disks. The key conceptual point is that the combination of a subthermal magnetic field and outwardly decreasing differential rotation is subject to the magnetorotational instability. This rapidly generates magnetohydrodynamical (MHD) turbulence, leading to greatly enhanced angular momentum transport. Purely hydrodynamic disks, on the other hand, are stable. Disks that are too cool to couple effectively to the magnetic field will not be turbulent. Fully global three dimensional MHD simulations are now beginning to probe the properties of accretion disks from first principles.  相似文献   

11.
We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain the global transonic accretion solutions and show that centrifugal barrier in the rotating magnetized accretion flow causes a discontinuous transition of the flow variables in the form of shock waves. The shock properties and the dynamics of the post-shock corona are affected by the flow parameters such as viscosity, cooling rate and strength of the magnetic fields. The shock properties are investigated against these flow parameters. We further show that for a given set of boundary parameters at the outer edge of the disc, accretion flow around a black hole admits shock when the flow parameters are tuned for a considerable range.  相似文献   

12.
The standard thin accretion disk model can explain the soft X-ray spectra of Galactic black hole systems and AGN successfully. However, there are still a few observational documents for Radiation pressure theory in X-ray novae in black hole binary systems and AGN. The luminosity in accretion onto black holes is corresponds to L>0.01L E . According to standard thin disk model, when the accretion rate is over a small fraction of the Eddington rate, L>0.01L E , the inner region of the disk is radiation-pressure-dominated and thermally unstable. However, observations of the high/soft state of black hole X-ray binaries with luminosity within (0.01L E <L<0.5L E ) show that the disk is quite stable. Thus, this contradiction shows the objection of this model and maybe it is essential to change the standard viscosity law or one of the other basic assumptions in order to get a stable disk models. In this paper, we revisit and recalculate the thermal instability with a different models of viscosity and cooling functions and show that the choosing of an arbitrary cooling and viscosity functions can affect on the stability of a general disk model and hence maybe answer to a this problem in accretion disk theory. We choose an arbitrary functions of surface density Σ and half thickness of disk H for cooling and viscosity. Also, we discuss a general disk with thermal conduction, radial force and advection. Then, we solve the equations numerically. We obtain a fourth degree dispersions relation and discuss solutions and instability modes. This analysis shows the great sensitivity of stability of disk to the form of viscosity, so there are various effective factors to stabilize the disk. For example the exist of advection and thermal conduction can effect to stability of disks also.  相似文献   

13.
The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully electromagnetic, particle-in-cell (PIC) simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.  相似文献   

14.
We present a 2.5D magnetohydrodynamic (MHD) simulation of the acceleration of a collimated jet from a magnetized accretion disk. We employ a MHD Adaptive Mesh Refinement (AMR) code (FLASH—University of Chicago). Thanks to this tool we can follow the evolution of the system for many dynamical timescales with a high-spatial resolution. Assuming an initial condition in which a Keplerian disk, thus with no accretion motions, is threaded by a uniform poloidal magnetic field, we show how both the accretion flow and the acceleration of the outflow occur, and we present in detail which are the forces responsible for the jet launching and collimation. Our simulation also shows how the collimating forces due to the self-generated toroidal magnetic field can produce some peculiar knotty features.  相似文献   

15.
Accretion disks around magnetized, compact stars are expected to be tilted near their inner edges, due to the stresses exerted by the corotating magnetosphere of the inclined central rotator. We reassess numerically the results obtained analytically by Lipunovet al. (1981). Four qualitatively different situations occur, depending on the relative orientations of the outer accretion disk, the spin of the central rotator, and its magnetic dipole axis. In at least two of them, the inner part of the disk is expected to be decomposed into massive, magnetically confined clumps.  相似文献   

16.
粘滞性问题一直是吸积盘理论中十分重要而又难以解决的一个基本理论问题.最近,Balbus和Hawley建议在磁化吸积盘中存在一种局域的磁流体剪切不稳定性机制,它能导致磁化吸积盘中有效的角动量转移,从而可以部分地解决磁化吸积盘中的粘滞性问题.但是Balbus-Hawley机制对非磁化吸积盘仍然是无效的.在本文中,我们研究了一种非磁化吸积盘模型,其中粘滞性机制起源于等离子体朗缪尔波湍动应力,并与标准a吸积盘模型中起源于流体或磁流体湍流的雷诺应力的粘滞性机制进行了比较.结果表明等离子体朗缪尔波湍动应力不仅对非磁化吸积盘中粘滞性的起源有重要的贡献,而且有可能是比流体湍流或磁流体湍流的雷诺应力更加有效的粘滞性起源的物理机制.  相似文献   

17.
Under the assumption that the accretion disk around a Kerr (spinning) black hole is geometrically thin and optically thick, the trajectories of photons in Kerr metric are calculated by using the photon tracing method. And by numerical calculations, we have made a study on the relativistic iron line profiles and images of thin accretion disks. The result shows that viewing at large inclination angles, because of the contribution of the photons from the lower surface of the accretion disk, the line profile becomes double-peaked and the flux image is also significantly modified.  相似文献   

18.
假设位于黑洞赤道面上做圆形轨道运动的吸积盘是几何薄、光学厚的.利用光子追踪法计算在Kerr度规下的光子运动轨迹,通过数值计算研究薄吸积盘的相对论谱线轮廓及成像.在大角度观测时,吸积盘下表面的光子对谱线轮廓及成像的影响是显著的.  相似文献   

19.
A suitable model for the macroscopic behavior of accretion disk-jet systems is provided by the equations of MagnetoHydroDynamics (MHD). These equations allow us to perform scale-encompassing numerical simulations of multidimensional nonlinear magnetized plasma flows. For that purpose, we continue the development and exploitation of the Versatile Advection Code (VAC) along with its recent extension which employs dynamically controlled grid adaptation. In the adaptive mesh refinement AMRVAC code, modules for simulating any-dimensional special relativistic hydro- and magnetohydrodynamic problems are currently operational. Here, we review recent 3D MHD simulations of fundamental plasma instabilities, relevant when dealing with cospatial shear flow and twisted magnetic fields. Such magnetized jet flows can be susceptible to a wide variety of hydro (e.g. Kelvin-Helmholtz) or magnetohydrodynamic (e.g. current driven kink) instabilities. Recent MHD computations of 3D jet flows have revealed how such mutually interacting instabilities can in fact aid in maintaining jet coherency. Another breakthrough from computational magnetofluid modeling is the demonstration of continuous, collimated, transmagnetosonic jet launching from magnetized accretion disks. Summarizing, MHD simulations are rapidly gaining realism and significantly advance our understanding of nonlinear astrophysical magnetofluid dynamics.  相似文献   

20.
The combination of accretion disks and supersonic jets is used to model many active astrophysical objects, viz., young stars, relativistic stars, and active galactic nuclei. However, existing theories on the physical processes by which these structures transfer angular momentum and energy from disks to jets through viscous or magnetic torques are still relatively approximate. Global stationary solutions do not permit understanding the formation and stability of these structures; and global numerical simulations that include both the disk and jet physics are often limited to relatively short time scales and astrophysically out-of-range values of viscosity and resistivity parameters that are instead crucial to defining the coupling of the inflow/outflow dynamics. Along these lines we discuss self-consistent time-dependent simulations of the launching of supersonic jets by magnetized accretion disks, using high resolution numerical techniques. We shall concentrate on the effects of the disk physical parameters, and discuss under which conditions steady state solutions of the type proposed in the self-similar models of Blandford and Payne can be reached and maintained in a self-consistent nonlinear stationary state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号