首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-Al gabbro represents one of the latest phases of magmatism in the 1.43 Ga Laramie anorthosite complex (LAC) in southeastern Wyoming. This lithology, which is mineralogically and geochemically the most primitive in the LAC, forms dikes and small intrusions that cross cut monzonitic and anorthositic rocks. High-Al gabbro is characterized by high Al2O3 (15–19 wt%), REE patterns with positive europium anomalies (Eu/Eu*=1.2–3.8), and the lowest initial 87Sr/86Sr (as low as 0.7033) and highest initial Nd (up to +2) in the LAC. Their Sr and Nd isotopic characteristics indicate a mantle origin followed by crustal assimilation during ascent. Intermediate plagioclase (An50–60) and mafic silicate (Fo54–63) compositions suggest that they are not primary mantle melts and that they differentiated prior to final emplacement. High-Al gabbros of the LAC are similar compositionally to gabbros from several other Proterozoic anorthosite complexes, including rocks from the Harp Lake complex and the Hettasch intrusion in Labrador and the Adirondack Mountains of New York. These gabbros are considered to be parental to their associated anorthositic rocks, a theory that is supported by recent experimental work. We interpret LAC high-Al gabbros to represent mantle-derived melts produced by the differentiation of a basaltic magma in an upper mantle chamber. Continued evolution of this magma eventually resulted in the formation of plagioclase-rich diapirs which ascended to mid-crustal levels and formed the anorthositic rocks of the LAC. Because these gabbros intrude the anorthositic rocks, they do not represent directly the magma from which anorthosite crystallized and instead are younger samples of magma formed by identical processes.  相似文献   

2.
Geochemistry and origin of massif-type anorthosites   总被引:2,自引:0,他引:2  
Samples of Proterozoic anorthosite complexes from the Adirondack Mountains of New York, Burwash Area of Ontario, and the Nain Complex of Labrador, ranging in composition from anorthosite to anorthositic gabbro, have been analyzed for major elements, Rb, Sr, Ba and nine rare-earth elements (REE), in order to set limits on the compositions and origins of their parent magmas. Similar rock types from the different areas have similar major and trace element compositions. The anorthosites have high Sr/Ba ratios, low REE abundances (Ce about 10, Yb about 0.5–1.5 times chondrites) and large positive Eu anomalies. The associated anorthositic gabbros have lower Sr/Ba ratios, REE abundances nearly an order of magnitude higher than the anorthosites, and small to negligible positive Eu anomalies.Model calculations using the adcumulate rocks with the lowest REE abundances and published distribution coefficients yield parent liquids having REE abundances and patterns similar to those of the associated anorthositic gabbros with the highest REE abundances. Rocks with intermediate REE abundances are the result of incorporation of a liquid component by a plagioclase-rich cumulate similar to the adcumulate samples. The analytical data and model calculations both suggest parent liquids having compositions of 50–54% SiO2, greater than 20% Al2O3, about 1% K2O, atomic Mg/(Mg+Fe2+) ratios (Mg No.'s) of less than 0.4, 15–30 ppm Rb, 400–600 ppm Sr and 400–600 ppm Ba, 40–50 times chondrites for Ce and 8–10 times chondrites for Yb.The low atomic Mg/(Mg+Fe2+) values for these rocks combined with geophysical evidence suggesting there are not large quantities of ferromagnesian material at depth, indicate that the anorthositic masses are not products of fractional crystallization of mafic melt derived from melting of the mantle. Rather, it is suggested that they are a result of partial melting of tholeiitic compositions at depths shallower than the basalt-eclogite transformation, leaving a pyroxene-dominated residue.  相似文献   

3.
The Archean Shawmere Anorthosite Complex, at the southern end of the Kapuskasing Structural Zone, consists dominantly of anorthosite (An65 –85) with minor gabbroic and ultramafic units, which are completely enclosed and cut by tonalites. Both the anorthosites and the tonalites are themselves cut by narrow dikes of gabbroic anorthosite. All of the rocks have undergone high grade metamorphism and are recrystallized so that few igneous textures remain.The anorthosites, gabbros and ultramafic rocks of this complex are cumulates which contain calcic plagioclase (An65–95) and have atomic Mg/(Mg + Fe2+) ratios (Mg#) greater than 0.6; less than 3 ppm Rb; 150–210 ppm Sr; and less than 60 ppm Ba. REE abundanees range from 0.2 to 10 times chondritic and exhibit both light-enriched and light-depleted REE patterns. The lower Mg# for the samples having more enriched light REE indicates substantial fractions of ferromagnesian minerals crystallized in addition to plagioclase during fractional crystallization, suggesting that the parent magma was basaltic, and not anorthositic. The ranges in Sr, Ba and REE abundances required for the magmas are typical of those for tholeiitic basalts from Archean greenstone belts. Thus the Shawmere Anorthosite Complex may represent cumulates of a crustal-level magma chamber which could have been the immediate source of basic Archean volcanics.One gabbroic anorthositic dike sample has a steeply fractionalted REE pattern with heavy REE abundances less than chondrites and a large positive Eu anomaly. The proposed interpretations is that this rock formed by partial melting of mafic cumulates, perhaps those of the Shawmere Anorthosite Complex itself.  相似文献   

4.
A critical study of 311 published WR chemical analyses, isotopic and mineral chemistry of anorthosites and associated rocks from eight Proterozoic massif anorthosite complexes of India, North America and Norway indicates marked similarities in mineralogy and chemistry among similar rock types. The anorthosite and mafic-leucomafic rocks (e.g., leuconorite, leucogabbro, leucotroctolite, anorthositic gabbro, gabbroic anorthosite, etc.) constituting the major part of the massifs are characterized by higher Na2O + K2O, Al2O3, SiO2, Mg# and Sr contents, low in plagioclase incompatible elements and REE with positive Eu anomalies. Their δ 18O‰ (5.7–7.5), initial 87Sr/86Sr (0.7034–0.7066) and ɛ Nd values (+1.14 to +5.5) suggest a depleted mantle origin. The Fe-rich dioritic rocks occurring at the margin of massifs have isotopic, chemical and mineral composition more close to anorthosite-mafic-leucomafic rocks. However, there is a gradual decrease in plagioclase content, An content of plagioclase and XMg of orthopyroxene, and an increase in mafic silicates, oxide minerals content, plagioclase incompatible elements and REE from anorthosite-mafic-leucomafic rocks to Fe-rich dioritic rocks. The Fe-rich dioritic rocks are interpreted as residual melt from mantle derived high-Al gabbro melt, which produced the anorthosite and mafic-leucomafic rocks. Mineralogically and chemically, the K-rich felsic rocks are distinct from anorthosite-mafic-leucomafic-Fe-rich dioritic suite. They have higher δ 18O values (6.8–10.8‰) and initial 87Sr/86Sr (0.7067–0.7104). By contrast, the K-rich felsic suites are products of melting of crustal precursors.  相似文献   

5.
http://www.sciencedirect.com/science/article/pii/S1674987113000078   总被引:1,自引:0,他引:1  
A sequence of gabbros showing isotropic,layered and fine-grained textures is exposed in the Nalaqing mine at the southern tip of the~260 Ma Panzhihua intrusion,SW China.The field relations,structure,texture and mineralogy of the rocks indicate that the sequence represents the transition between the Lower zone and Middle zone of the intrusion.Isotropic gabbros characteristic of the Lower zone pass upward to layered gabbros of the Middle zone through a~5 m-thick microgabbro sheet,within and close to which small-scaled, concordant Fe-Ti oxide ore horizons are identified.Strong fractionation between HFSE and REE in a subset of samples is ascribed to cumulus titanomagnetite into which HFSE are preferentially incorporated over REE,as reflected in the parallel relations between Nb/La,Hf/Sm and Ti/Ti*.Both the isotropic and layered gabbros display cumulate textures and have similar mineral compositions(Mg# of clinopyroxene =~76-79 and An59-61),isotopic compositions[(87Sr/86Sr)i = 0.7044-0.7045 andεNd(t) = +2.4 to +3.9]and trapped liquid contents inferred from Zr abundance(~17-34 ppm).However,there are substantial variations in elemental abundances(V,Cr and PGE) and ratios(Ti/V,La/Yb,Ba/Y and Cu/Pd) between the two types of gabbros,features that cannot be explained by cumulate formation from a common magma in a closed system.The microgabbros generally resemble high-Ti Emeishan basalts in major element compositions,but their low trace element abundances indicate some lost of residual liquid is inevitable despite rapid nucleation and cooling.Combined with available data and observations,we propose a model involving in-situ crystallization,followed by magma recharge and closed-system fractionation to explain the formation of texturally distinctive gabbros at Nalaqing and the evolution of the lower part of the Panzhihua intrusion.  相似文献   

6.
The Bad Vermilion Lake anorthosite complex (2,700 m.y.) is exposed over an area of about 100 km2 near Rainy Lake, Ontario. As is typical of other Archean anorthosites, it is composed of coarse (1–30 cm across), equidimensional, euhedral to subhedral, calcic (An80) plagioclase, in a finer grained mafic matrix. The amount of mafic matrix in individual samples ranges from none to about 70% by volume. The complex has been variably metamorphosed to greenschist facies. Zoisite, chlorite, and hornblende are abundant, but primary plagioclase is preserved in many places. The anorthosite complex is associated with gabbro and with mafic to felsic metavolcanic rocks, and is cut by tonalite plutons and by mafic dikes. Some gabbros contain local concentrations of Fe-Ti oxides and/or apatite, but no chromite. The mafic groundmass of the anorthositic rocks is similar in major and trace element chemistry, including rare earth elements, to the associated basaltic metavolcanics, suggesting that the anorthositic complex may have accumulated from a subvolcanic magma chamber which fed mafic lavas to the surface during its crystallization. Mafic flows and dikes chemically similar to the mafic metavolcanics contain plagioclase megacrysts akin to those of the anorthositic rocks, and thus may represent a link between the anorthosite complex and associated mafic lavas. Elongate pretectonic tonalite intrusions were comagmatic with the felsic metavolcanics, but not with the anorthosites or metabasalts. These silicic rocks may represent low-pressure partial melts of the mafic rocks. There is no direct or indirect evidence for significant volumes of ultramafic material at the present exposure level of the complex. An estimate of the bulk composition of all rocks presumed to be comagmatic with the anorthosites, including gabbros and mafic metavolcanics, is an aluminous basalt with about 20 wt.% Al2O3. This composition has REE abundances unlike those of typical Archean high-Al basalts and probably does not represent that of a primary or evolved melt. The possibility must be considered, therefore, that a substantial fraction of material comagmatic with the anorthosites has been separated from the complex, either by magmatic or tectonic processes.  相似文献   

7.
The Sept Iles layered intrusion (Quebec, Canada) is dominated by a basal Layered Series made up of troctolites and gabbros, and by anorthosites occurring (1) at the roof of the magma chamber (100-500 m-thick) and (2) as cm- to m-size blocks in gabbros of the Layered Series. Anorthosite rocks are made up of plagioclase, with minor clinopyroxene, olivine and Fe-Ti oxide minerals. Plagioclase displays a very restricted range of compositions for major elements (An68-An60), trace elements (Sr: 1023-1071 ppm; Ba: 132-172 ppm) and Sr isotopic ratios (87Sr/86Sri: 0.70356-0.70379). This compositional range is identical to that observed in troctolites, the most primitive cumulates of the Layered Series, whereas plagioclase in layered gabbros is more evolved (An60-An38). The origin of Sept Iles anorthosites has been investigated by calculating the density of plagioclase and that of the evolving melts. The density of the FeO-rich tholeiitic basalt parent magma first increased from 2.70 to 2.75 g/cm3 during early fractionation of troctolites and then decreased continuously to 2.16 g/cm3 with fractionation of Fe-Ti oxide-bearing gabbros. Plagioclase (An69-An60) was initially positively buoyant and partly accumulated at the top of the magma chamber to form the roof anorthosite. With further differentiation, plagioclase (<An60) became negatively buoyant and anorthosite stopped forming. Blocks of anorthosite (autoliths) even fell downward to the basal cumulate pile. The presence of positively buoyant plagioclase in basal troctolites is explained by the low efficiency of plagioclase flotation due to crystallization at the floor and/or minor plagioclase nucleation within the main magma body. Dense mafic minerals of the roof anorthosite are shown to have crystallized from the interstitial liquid.The processes related to floating and sinking of plagioclase in a large and shallow layered intrusion serve as a proxy to refine the crystallization model of the lunar magma ocean and explain the vertically stratified structure of the lunar crust, with (gabbro-)noritic rocks at the base and anorthositic rocks at the top. We propose that the lunar crust mainly crystallized bottom-up. This basal crystallization formed a mafic lower crust that might have a geochemical signature similar to the magnesian-suite without KREEP contamination, while flotation of some plagioclase grains produced ferroan anorthosites in the upper crust.  相似文献   

8.
New major and trace element data on the Proterozoic Chimalpahad layered anorthositic Complex and associated basaltic amphibolites of the Nellore Schist Belt of South India provide new constraints on their petrogenesis and geodynamic setting. The Complex consists of layered anorthosites, leucogabbros, gabbros, ultramafic rocks and is spatially associated with basaltic amphibolites. Despite deformation and metamorphism, primary cumulate textures and igneous layering are locally well preserved throughout the Complex. Whereas the amphibolites display diverse REE systematics, the Chimalpahad anorthositic–gabbroic rocks are characterized by moderately depleted to strongly enriched LREE patterns and by flat to depleted HREE patterns. The field relations, major and trace element compositions of the basaltic amphibolites suggest that they are petrogenetically related to the anorthositic–gabbroic rocks by fractional crystallization. The anorthositic rocks and the basaltic amphibolites share the depletion of Nb relative to Th and La on primitive mantle-normalized diagrams. They exhibit signatures of arc magmatic rocks, such as high LILE and LREE relative to the HFSE and HREE, as well as high Ba/Nb, Ba/Zr, Sr/Y, La/Yb ratios that mimic chondrite-normalized REE and primitive mantle-normalized trace element patterns of arc magmas. Similarly, on log-transformed tectonic discrimination diagrams, the Chimalpahad rocks plot within the field of Phanerozoic magmatic arcs, consistent with a subduction zone origin. On the basis of field relations and geochemical characteristics, the Chimalpahad Complex is interpreted as a fragment of a magma chamber of an island arc, which is tectonically juxtaposed against its original volcanic cover. A new preliminary Sm–Nd date of anorthosite from the Chimalpahad Complex indicates a model age of 1170 Ma.  相似文献   

9.
From Casper Mountain; at its northern end, to the northwestern margin of the Laramie anorthosite—syenite complex, in its central parts, the Laramie Range is underlain by granite and granitic gneiss that has a minimum age of 2.54 ± 0.04 Ga (Rb/Sr whole-rock isochron) and by metasedimentary rocks, including marble and quartzite, that appear to overlie the granitic gneiss nonconformably (minimum age: 1.7 Ga based on several horn-blende K/Ar dates). Southward from the anorthosite—syenite complex into Colorado, the Range is underlain chiefly by the Sherman Granite (1.41 Ga; Peterman and Hedge, 1968) and scattered patches of gneiss that are not dated, but are tentatively correlated wit similar gneiss in the southern Medicine Bow Mountains and in the Colorado Front Range, where they are dated as ? 1.7 Ga (Peterman and Hedge, 1968).The Laramie anorthosite—syenite complex (minimum age: ? 1.42 Ga or ? 1.51 Ga if a hornblende K/Ar date is accepted) apparently intruded the suture separating the old (? 2.5 Ga) continental edge from younger (? 1.7 Ga) geosynclinal rocks. The suture, which manifests itself as the Mullen Creek—Nash Fork shear zone in the Medicine Bow Mountains, also is the boundary between ensialic and ensimatic geosynclinal deposition that occurred during the interval 1.7–2.5 Ga ago.K/Ar dates on biotite and muscovite from rocks north of the anorthosite—syenite complex grade from 2.5 Ga on Casper Mountain down to 1.38 Ga near the complex. Near its northern tip, the Laramie Range is crossed by a geochronologic front, separating 2.5 Ga old gneiss whose K/Ar dates were not lowered by subsequent metamorphism from 2.5 Ga old gneiss whose mica dates were reset between 1.4 and 1.6 Ga ago.  相似文献   

10.
Trace elements, including rare earth elements (REE), exhibit systematic variations in plutonic rocks from the Captains Bay pluton which is zoned from a narrow gabbroic rim to a core of quartz monzodiorite and granodiorite. The chemical variations parallel those in the associated Aleutian calcalkaline volcanic suite. Concentrations of Rb, Y, Zr and Ba increase as Sr and Ti decrease with progressive differentiation. Intermediate plutonic rocks are slightly enriched in light REE (La/Yb=3.45–9.22), and show increasing light REE fractionation and negative Eu anomalies (Eu/Eu*=1.03–0.584). Two border-zone gabbros have similar REE patterns but are relatively depleted in total REE and have positive Eu anomalies; indicative of their cumulate nature. Initial 87Sr/86Sr ratios in 8 samples (0.70299 to 0.70377) are comparable to those of volcanic rocks throughout the arc and suggest a mantle source for the magmas. Oxygen isotopic ratios indicate that many of the intermediate plutonic rocks have undergone oxygen isotopic exchange with large volumes of meteoric water during the late stages of crystallization; however no trace element or Sr isotopic alteration is evident.Major and trace element variations are consistent with a model of inward fractional crystallization of a parental high-alumina basaltic magma at low pressures (6 kb). Least-squares approximations and trace element fractionation calculations suggest that differentiation in the plutonic suite was initially controlled by the removal of calcic plagioclase, lesser pyroxene, olivine and Fe-Ti oxides but that with increasing differentiation and water fugacity the removal of sub-equal amounts of sodic plagioclase and hornblende with lesser Fe-Ti oxides effectively drove residual liquids toward dacitic compositions. Major and trace element compositions of aplites which intrude the pluton are not adequately explained by fractional crystallization. They may represent partial melts derived from the island arc crust. Similarities in Sr isotopes, chemical compositions and differentiation trends between the plutonic series and some Aleutian volcanic suites indicates that shallow-level fractional crystallization is a viable mechanism for generating the Aleutian calcalkaline rock series.LDGO Contribution no. 2964  相似文献   

11.
The Early Devonian Gumeshevo deposit is one of the largest ore objects pertaining to the dioritic model of the porphyry copper system paragenetically related to the low-K quartz diorite island-arc complex. The (87Sr/86Sr)t and (ɛNd)t of quartz diorite calculated for t = 390 Ma are 0.7038–0.7045 and 5.0–5.1, respectively, testifying to a large contribution of the mantle component to the composition of this rock. The contents of typomorphic trace elements (ppm) are as follows: 30–48 REE sum, 5–10 Rb, 9–15 Y, and 1–2 Nb. The REE pattern is devoid of Eu anomaly. Endoskarn of low-temperature and highly oxidized amphibole-epidote-garnet facies is surrounded by the outer epidosite zone. Widespread retrograde metasomatism is expressed in replacement of exoskarn and marble with silicate (chlorite, talc, tremolite)-magnetite-quartz-carbonate mineral assemblage. The 87Sr/86Sr ratios of epidote in endoskarn and carbonate in retrograde metasomatic rocks (0.7054–0.7058 and 0.7053–0.7065, respectively) are intermediate between the Sr isotope ratios of quartz dioritic rocks and marble (87Sr/86Sr = 0.70784 ± 2). Isotopic parameters of the fluid equilibrated with silicates of skarn and retrograde metasomatic rocks replacing exoskarn at 400°C are δ18O = +7.4 to +8.5‰ and δD = −49 to −61‰ (relative to SMOW). The δ13C and δ18O of carbonates in retrograde metasomatic rocks after marble are −5.3 to +0.6 (relative to PDB) and +13.0 to +20.2% (relative to SMOW), respectively. Sulfidation completes metasomatism, nonuniformly superimposed on all metasomatic rocks and marbles with formation of orebodies, including massive sulfide ore. The δ34S of sulfides is 0 to 2‰ (relative to CDT);87Sr/86Sr of calcite from the late calcite-pyrite assemblage replacing marble is 0.704134 ± 6. The δ13C and 87Sr/86Sr of postore veined carbonates correlate positively (r = 0.98; n = 6). The regression line extends to the marble field. Its opposite end corresponds to magmatic (in terms of Bowman, 1998b) calcite with minimal δ13C, δ18O, and 87Sr/86Sr values (−6.9 ‰, +6.7‰, and 0.70378 ± 4, respectively). The aforementioned isotopic data show that magmatic fluid was supplied during all stages of mineral formation and interacted with marble and other rocks, changing its Sr, C, and O isotopic compositions. This confirms the earlier established redistribution of major elements and REE in the process of metasomatism. A contribution of meteoric and metamorphic water is often established in quartz from postore veins.  相似文献   

12.
Dacitic lavas and ignimbrites were examined from seven localities that span the entire 700 km width of the mid- to late Cenozoic magmatic arc of northwestern Mexico and adjacent west Texas. These rocks have remarkably similar REE patterns that are parallel in the heavy REE and have modest negative Eu anomalies. Samples from three localities including Baja California, the Sierra Madre Occidental, and the Chihuahuan Basin and Range have initial 87Sr/86Sr between 0.7044 and 0.7050 and Nd near 0.0±1.0. These dacites are isotopically similar to associated basalts, and they show no systematic isotopic variation that is correlated with age or composition of the basement. There is no evidence that magmas parental to these dacites interacted significantly with continental crust. Samples form three other localites in the Basin and Range vary in initial 87Sr/86Sr from 0.7051 to 0.7070 and Nd from about -1 to –2. The composition of these rocks reflects contamination of the parental magmas by relatively small amounts of Precambrian crust. Collectively, the dacites of this study show much less isotopic variation than do Mesozoic granitoids (Farmer and DePaolo 1983) and late Cenozoic olivine tholeiites (Hart 1985) from similar transects of the western United States. The distinctive source region for the magmas parental to the Mexican dacites was relatively uniform isotopically, but it was enriched in LIL and HFS elements beneath the eastern Basin and Range.  相似文献   

13.
The Sharang porphyry Mo deposit is the first discovered Mo porphyry‐type deposit in the Gangdese Metallogenic Belt. The orebody is hosted by the Eocene multi‐stage composite intrusive complex which is emplaced in the Upper Permian Mengla Formation and cut by the Miocene dykes. Granite porphyry is recognized as the ore‐bearing porphyry in the complex, which consists of quartz diorite, quartz monzonite, granite, prophyritic granite and post‐mineral lamprophyre. Granodiorite porphyry and dacite porphyry intrude the granite porphyry. Geochemical data indicate that Sharang complex has a High‐K calc‐alkalinc to shoshonitic, metaluminous to slightly peraluminous composition. The Sharang complex rocks are enriched in large ion lithophile elements, depleted in high‐field strength elements, Nb, Sr, P and Ti. REE patterns show slight enrichments in light REE relative to heavy REE and weak negative Eu anomalies. All rocks in this complex have a wide range of initial 87Sr/86Sr ratios (0.705605~0.712496) and lower εNd(t) values (?0.61~?7.80). The geochemical data suggest highly oxidized‐evolved magma and old continental materials may have been the magma source for the Sharang intrusive complex that host porphyry Mo mineralization. Eocene pre‐ore and ore‐forming rocks at Sharang may have formed by partial melting of mantle wedge and by mixing with old continental crust at the lower crust level. In contrast the post‐ore rocks may have formed by partial melting of enriched lithospheric mantle.  相似文献   

14.
The northern Noorabad area in western Iran contains several gabbro and basalt bodies which were emplaced along the Zagros suture zone. The basalts show pillow and flow structures with amygdaloidal textures, and the gabbroic rocks show massive and foliated structures with coarse to fine-grained textures. The SiO2 contents of the gabbros and basalts are similar and range from 46.1–51.0 wt.%, and the Al2O3 contents vary from 12.3–18.8 wt.%, with TiO2 contents of 0.4–3.0 wt.%. The Nb concentrations of some gabbros and basalts are high and can be classified as Nb-enriched arc basalts. The positive εNd(t) values (+3.7 to +9.8) and low 87Sr/86Sr(initial) ratios (0.7031–0.7071) of both bodies strongly indicate a depleted mantle source and indicate that the rocks were formed by partial melting of a depleted lithospheric mantle and interaction with slab fluids/melts. The chemical composition of trace elements, REE pattern and initial 87Sr/86Sr-143Nd/144Nd ratios show that the rocks have affinities to tholeiitic magmatic series and suggest an extensional tectonic regime over the subduction zone for the evolution of these rocks. We propose an extensional tectonic regime due to the upwelling of metasomatized mantle after the late Cretaceous collision in the Harsin-Noorabad area. These rocks can be also considered as Eocene back arc magmatic activity along the Zagros suture zone in this area.  相似文献   

15.
Magmato-hydrothermal cassiterite-topaz ore at the Carboniferous East Kemptville (EK) greisenhosted tin deposit (Nova Scotia, Canada) is cross-cut by veins containing apatite, triplite, vivianite and fluorite. Initial 87Sr/86Sr ratios of these minerals have an extreme range (0.7135 to 0.8284). The initial ratios of the host rocks, EK quartz-topaz rock and Davis Lake biotite monzogranite (0.729±0.001, 0.727±0.004), are also high. The adjacent Meguma Group metasedimentary rocks are more typical of crustal material (0.712–0.719 at 330 Ma). Rb and Sr contents of EK fluorite (max.: 13.0, 1420 ppm) and apatite (max.: 88.1, 6660 ppm) are unusually high and variable. Unexpectedly, high Sr contents correlate positively with the high initial 87Sr/86Sr ratios. Fluorite and phosphate minerals from the first set of post-greisen veins at East Kemptville reflect the unusual chemistry of a high 87Sr/86Sr fluid present in the deposit after ore formation. The most extreme composition of this fluid was characterized by 87Sr/86Sr>0.8284, high Rb/Sr, high P, Rb, Cu, Zn and Fe contents, but low abundances of Ca, Pb and Sn with respect to the Davis Lake monzogranite. Such a fluid could have been derived from the greisen fluid and modified by reaction with the overlying Meguma metawacke. A second alternative, which cannot be well constrained at present, is that an extremely radiogenic fluid entered the deposit after ore formation and mixed with the postore fluid. In either case, the modified fluid subsequently mixed with meteoric water and precipitated the minerals with much lower 87Sr/86Sr ratios and Rb and Sr contents.  相似文献   

16.
Spectra of the REE distribution in the Quaternary–Recent peat bog ore of southern Karelia and Leningrad region are characterized by LaN/YbN < 1.0, presence of positive Eu and negative Ce anomalies, and higher Y enrichment (relative to Ho and Dy) because of the REE sorption by Fe-bearing minerals in acid boggy waters. The 87Sr/86Sr ratio is 0.7175 in iron oxyhydroxides of the Somino deposit (Leningrad region) and 0.7283 in the Polovinkino ore (southern Karelia). The 143Nd/144Nd ratio in them is 0.511844 and 0.511617, respectively.  相似文献   

17.
斜长岩呈长条带出露于朝鲜半岛南部,侵入到年代约为2.0Ga的Yeongnam前寒武纪基底岩石中,虽然岩石类型简单(斜长岩和辉长岩质斜长岩),但可以同世界已知块状类型斜长岩相对比。这些斜长岩具有几个重要的差别,例如呈层状构造,镁铁相成分是角闪石而不是辉石,并且不具斜方辉石巨晶。应用Rb-Sr和Sm-Nd同位素系统研究这些岩石的年龄和成因,测定出一种页理化辉长岩质斜长岩矿物的Sm-Nd等时线年龄为1678±90Ma,推断其为侵位年龄,因为中生代绿岩相变质期间这些岩石的Sm-Nd同位素体系呈封闭状态。这一年龄和过去曾报道的元古宙块状斜长岩的年龄范围(1.1~1.7Ga)相吻合。认为斜长岩成因可以用所谓元古宙斜长岩事件来解释。斜长岩的岩浆活动对朝鲜半岛南部前寒武纪基底岩石的构造历史有重要意义。全岩εNd(t)值范围-1.6~-5.2,而87Sr/86Sr初始值变化于0.704~0.706之间,据此可解释地幔成因的斜长岩岩浆是在其结晶作用期间吸收了地壳物质的结果。然而不能排除是下地壳源的可能性。  相似文献   

18.
This paper reports chemical, geochronological, and Hf–Nd–Sr isotopic-geochemical data on granite, leucogabbro, and microgabbro porphyrite vein bodies in the gabbro of the Volkovsky massif. It was proved that the vein granite and leucogabbro are genetically related to the leucogabbro–anorthosite–plagiogranite (anorthosite–granite) series of the Urals Platinum Belt. The granite was dated by U-Pb laser ablation inductively coupled plasma mass spectrometric method at 409.0 ± 2.3 Ma. The rock has 87Sr/86Sr(409 Ма) = 0.70358, high εNd(409 Ма) = 6.4–6.5, and εHf(409 Ма) ≥ 10.8. Similar values of 87Sr/86Sr(409 Ма) = 0.70370 and εNd(409 Ма) = 5.9 were obtained for the vein leucogabbro. The isotopic-geochemical data are consistent with existing concept of the formation of the leucogabbro–anorthosite–plagiogranite (anorthosite–granite) series through partial melting of the olivine gabbro. The measured 143Nd/144Nd = 0.512939 value obtained for the microgabbro porphyrite reflects their more radiogenic composition and likely a mantle source. The granite, associated leucogabbro, and microgabbro porphyrite were emplaced at the final magmatic stage in the massif evolution. This event marks the upper age boundary of the Au–Pd mineralization related to the gabbroic rocks. The vein rocks lack any signs of the mineralization. However, it is highly probable that they were sources of energy and fluid for reworking of the earlier olivine gabbro and redeposition of ore components in this rock.  相似文献   

19.
Trace element evidence indicates that at the Buell Park diatreme, Navajo volcanic field, the felsic minette can be best explained by crystal fractionation from a potassic magma similar in composition to the mafic minettes. Compatible trace element (Cr, Ni, Sc) abundances decrease while concentrations of most incompatible elements (Ce, Yb, Rb, Ba, Sr) remain constant or increase from mafic to felsic minette. In particular, the nearly constant Ce/Yb ratio of the minettes combined with the decrease in Cr, Ni, and Sc abundances from mafic to felsic minette is inconsistent with a model of varying amounts of partial melting as the process to explain minette compositions. The uniformity of rare earth element (REE) abundances in all the minettes requires that an accessory mineral, apatite, dominated the geochemistry of the REE during fractionation. A decrease in P2O5 from mafic to felsic minette and the presence of apatite in cognate inclusions are also consistent with apatite fractionation. Higher initial87Sr/86Sr ratios in the felsic minettes relative to the proposed parental mafic minettes, however, is inconsistent with a simple fractionation model. Also, a separated phlogopite has a higher initial87Sr/86Sr ratio than host minette. These anomalous isotopic features probably reflect interaction of minette magma with crust.The associated ultramafic breccia at Buell Park is one of the Navajo kimberlites, but REE concentrations of the matrix do not support the kimberlite classification. Although the matrix of the breccia is enriched in the light REE relative to chondrites, and has high La, Rb, Ba, and Sr concentrations relative to peridotites, the concentrations of these elements are significantly lower than in South African kimberlites. A high initial87Sr/86Sr ratio combined with petrographic evidence of ubiquitous crustal xenoliths in the Navajo kimberlites suggests that the relatively high incompatible element concentrations are due to a crustal component. Apparently, Navajo kimberlites are most likely a mixture of comminuted mantle wall rock and crustal material; there is no evidence for an incompatible element-rich magma which is characteristic of South African kimberlites.If the mafic minettes are primary magmas derived from a garnet peridotite source with chondritic REE abundances, then REE geochemistry requires very small (less than 1%) degrees of melting to explain the minettes. Alternatively, the minettes could have formed by a larger degree of melting of a metasomatized, relatively light REE-enriched garnet peridotite. The important role of phlogopite and apatite in the differentiation of the minettes supports this latter hypothesis.  相似文献   

20.
The Chilka Lake igneous complex of Orissa, the largest known anortosite massif of the Indian Shield, occurs in a catazonal environment of high-grade metamorphics of the Eastern Ghats Precambrian Orogenic Province. The syntectonic massif consists of the anorthositic Balugaon dome, leuconoritic Rambha lobe and quartz-mangeritic Kallikota cover. A completely gradational suite comprising anorthosite-leuconorite-norite-minor jotunite (the anorthositic suite) constitutes most of the complex. The subordinate of suite of acid rocks spatially associated with this is of a broad quartz-mangeritic lithology with minor granitic rocks (the acidic suite). Geochemical evolution of the complex in the sequence anorthosite-leuconorite-norite-jotunite-acidic rocks shows moderate iron enrichment in the noritic-jotunitic stage and is marked by an overall decrease in Al2O3, CaO, MgO, Ni/Co, Sr/Ba, K/Rb and increase in SiO2, K2O, V/Ni, K/Ba and Rb/Sr. Such progressive variation in geochemical parameters appears (i) essentially gradual and frequently overlapping in rock members of the intergradational anorthositic suite and (ii) rather abrupt across transition zones between the anorthositic suite and the acidic suite due to near absence of intervening intermediate lithologies. RbSr whole rock isochron studies indicate that the complex was emplaced ca. 1400 Ma ago. The initial 87Sr/68Sr (0.70661) implies limited hybridisation of the parent magma prior to emplacement. A critical appraisal of all the available evidence suggests that (i) the anorthositic suite of rocks form a perfectly consanguinous and comagmatic assemblage and (ii) the spatially associated acidic suite emerged through a convergence of magmatic and metasomatic processes (the latter brought about by contact anatexis of the host rocks). The complex as well as the host metamorphics are intruded by an atectonic suite of noritic dykes emplaced ca 850 Ma ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号