首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
With the rapid development of industrialization and urbanization, the enrichment of tropospheric ozone and carbon dioxide concentration at striking rates has caused effects on biosphere, especially on crops. It is generally accepted that the increase of CO2 concentration will have obverse effects on plant productivity while ozone is reported as the air pollutant most damaging to agricultural crops and other plants. The Model of Carbon and Nitrogen Biogeochemistry in Agroecosystems (DNDC) was adapted to evaluate simultaneously impacts of climate change on winter wheat. Growth development and yield formation of winter wheat under different O3 and CO2 concentration conditions are simulated with the improved DNDC model whose structure has been described in another paper. Through adjusting the DNDC model applicability, winter wheat growth and development in Gucheng Station were simulated well in 1993 and 1999, which is in favor of modifying the model further. The model was validated against experiment observation, including development stage data, leaf area index, each organ biomass, and total aboveground biomass. Sensitivity tests demonstrated that the simulated results in development stage and biomass were sensitive to temperature change. The main conclusions of the paper are the following: 1) The growth and yield of winter wheat under CO2 concentration of 500 ppmv, 700 ppmv and the current ozone concentration are simulated respectively by the model. The results are well fitted with the observed data of OTCs experiments. The results show that increase of CO2 concentration may improve the growth of winter wheat and elevate the yield. 2) The growth and yield of winter wheat under O3 concentration of 50 ppbv, 100 ppbv, 200 ppbv and the based concentration CO2 are simulated respectively by the model. The simulated curves of stem, leaf, and spike organs growth as well as leaf area index are well accounted with the observed data. The results reveal that ozone has negative effects on the growth and yield of winter wheat. Ozone accelerates the process of leaf senescence and causes yield loss. Under very high ozone concentration, crops are damaged dramatically and even dead. 3) At last, by the model possible effects of air temperature change and combined effects of O3 and CO2 are estimated respectively. The results show that doubled CO2 concentration may alleviate negative effect of O3 on biomass and yield of winter wheat when ozone concentration is about 70-80 ppbv. The obverse effects of CO2 are less than the adverse effects of O3 when the concentration of ozone is up to 100 ppbv. Future work should determine whether it can be applied to other species by adjusting the values of related parameters, and whether the model can be adapted to predict ozone effects on crops in farmland environment.  相似文献   

2.
Ozone is well documented as the air pollutant most damaging to agricultural crops and other plants. It is reported that tropospheric O3 concentration increases rapidly in recent 20 years. Evaluating and predicting impacts of ozone concentration changes on crops are drawing great attention in the scientific community. In China, main study method about this filed is controlled experiments, for example, Open Top Chambers. But numerical simulation study about impacts of ozone on crops with crop model was developed slowly, what is more, the study about combined impacts of ozone and carbon dioxide has not been reported. The improved agroecosystem model is presented to evaluate simultaneously impacts of tropospheric O3 and CO2 concentration changes on crops in the paper by integrating algorithms about impacts of ozone on photosynthesis with an existing agroecosystem biogeochemical model (named as DNDC). The main physiological processes of crop growth (phenology, leaf area index, photosynthesis, respiration, assimilated allocation and so on) in the former DNDC are kept. The algorithms about impacts of ozone on photosynthesis and winter wheat leaf are added in the modified DNDC model in order to reveal impacts of ozone and carbon dioxide on growth, development, and yield formation of winter wheat by coupling the simulation about impacts of carbon dioxide on photosynthesis of winter wheat which exists in the former DNDC. In the paper, firstly assimilate allocation algorithms and some genetic parameters (such as daily thermal time of every development stage) were modified in order that DNDC can be applicable in North China. Secondly impacts of ozone on crops were simulated with two different methods- one was impacts of ozone on light use efficiency, and the other was direct effects of ozone on leaves photosynthesis. The latter simulated results are closer to experiment measurements through comparing their simulating results. At last the method of direct impacts of ozone on leaf growth is adopted and the coefficients about impacts of ozone on leaf growth and death are ascertained. Effects of climate changes, increasing ozone, and carbon dioxide concentration on agroecosystem are tried to be simulated numerically in the study which is considered to be advanced and credible.  相似文献   

3.
Ozone is well documented as the air pollutant most damaging to agricultural crops and other plants.It is reported that tropospheric O3 concentration increases rapidly in recent 20 years. Evaluating and predicting impacts of ozone concentration changes on crops are drawing great attention in the scientific community. In China, main study method about this filed is controlled experiments, for example, Open Top Chambers. But numerical simulation study about impacts of ozone on crops with crop model was developed slowly, what is more, the study about combined impacts of ozone and carbon dioxide has not been reported.The improved agroecosystem model is presented to evaluate simultaneously impacts of tropospheric O3 and CO2 concentration changes on crops in the paper by integrating algorithms about impacts of ozone on photosynthesis with an existing agroecosystem biogeochemical model (named as DNDC). The main physiological processes of crop growth (phenology, leaf area index, photosynthesis, respiration, assimilated allocation and so on) in the former DNDC are kept. The algorithms about impacts of ozone on photosynthesis and winter wheat leaf are added in the modified DNDC model in order to reveal impacts of ozone and carbon dioxide on growth, development, and yield formation of winter wheat by coupling the simulation about impacts of carbon dioxide on photosynthesis of winter wheat which exists in the former DNDC. In the paper, firstly assimilate allocation algorithms and some genetic parameters (such as daily thermal time of every development stage) were modified in order that DNDC can be applicable in North China. Secondly impacts of ozone on crops were simulated with two different methods-one was impacts of ozone on light use efficiency , and the other was direct effects of ozone on leaves photosynthesis. The latter simulated results are closer to experiment measurements through comparing their simulating results. At last the method of direct impacts of ozone on leaf growth is adopted and the coe cients about impacts of ozone on leaf growth and death are ascertained. Effects of climate changes, increasing ozone, and carbon dioxide concentration on agroecosystem are tried to be simulated numerically in the study which is considered to be advanced and credible.  相似文献   

4.
不同CO2浓度处理对冬小麦的影响   总被引:5,自引:0,他引:5  
白月明  王春乙  温民 《气象》1996,22(2):7-11
利用OCT-1型开顶式气室进行不同的CO2浓度处理对冬小麦生长发育影响的诊断试验。结果表明,不同CO2浓度处理对冬小麦的发育期、生物量、叶面积、产量、产品质量、种子发芽率以及粘虫等影响较为明显。  相似文献   

5.
二氧化碳浓度增加对冬小麦生长发育影响的数值模拟   总被引:3,自引:1,他引:3  
根据国内外小麦生长模拟研究成果,借鉴荷兰学者的模拟思路,从作物生长的主要生理过程人手,综合考虑气候变暖与大气中CO2浓度增加等因素对作物生长发育和产量形成的影响,修正了在一级生产水平下冬小麦生长模拟模式,使得模式能够对CO2浓度的变化做出相应的反应。经资料检验,在当前CO2浓度下,冬小麦总干重和穗干重的模拟平均相对误差小于10%,其它器官干重及叶面积指数的模拟也取得了较好的结果。运用改进后的模式模拟试验了未来气候变暖和CO2倍增对冬小麦生长发育的可能影响。  相似文献   

6.
CO2和O3浓度倍增对作物影响的研究进展   总被引:14,自引:0,他引:14  
文中利用自行设计的OTC - 1型开顶式气室进行了 9a的田间试验 ,取得了一批质量可靠的试验数据 ,分析了CO2 浓度倍增对大豆、冬小麦、棉花、玉米、春小麦和谷子的生物量、产量及品质的影响 ,结果表明CO2 浓度倍增对上述 6种作物的生物量及产量的影响均是正效应 ,对冬小麦、棉花和谷子品质的影响可能是有利的 ,对玉米品质的影响可能是不利的 ,对大豆的影响不大 ;分析了O3 浓度倍增对冬小麦、水稻、油菜和菠菜生物量、产量及品质的影响 ,结果表明O3 浓度倍增对上述 4种作物生物量的影响均是负效应 ,对冬小麦和水稻的产量影响是负效应 ,但是冬小麦和水稻籽粒中粗蛋白和 17种氨基酸含量都有所增加 ;分析了CO2 和O3 浓度复合倍增对大豆生物量、产量及品质的影响 ,结果是生物量和产量呈增加趋势 ,说明了CO2 的正效应大于O3 的负效应。采用作物模型数值模拟方法 ,分析了CO2 和O3 浓度倍增对冬小麦生物量及产量的影响。  相似文献   

7.
一个植物冠层物理传输和生理生长过程的多层模式   总被引:11,自引:1,他引:11  
通过提出一个多层的植物冠层和土壤的模式,对冠层中辐射、热量、水汽和二氧化碳的传输等过程,光合、呼吸等生理过程以及土壤中水、热传输等过程进行了详细描述,并把物理过程与生理过程联系起来,实现了植被与大气的双向反馈;应用此模式于小麦生长期各主要过程的模拟,给出了与观测值一致的结果  相似文献   

8.
The authors quantify the impacts of sulfate and nitrate aerosol formation on surface-layer 03 concentrations over China using the one-way nested-grid capa- bility of the global three-dimensional Goddard Earth Ob- serving System chemical transport model (GEOS-Chem). Chemical reactions associated with sulfate formation are simulated to generally increase 03 concentrations in China. Over the North China Plain (NCP) and the Si- chuan Basin (SCB), where simulated sulfate concentra- tions are the largest, ozone concentrations show maximum increases in spring by 1.8 ppbv (3.2%) in the NCP and by 2.6 ppbv (3.7%) in the SCB. On the contrary, nitrate formation is simulated to reduce 03 concentrations by up to 1.0 ppbv in eastern China, with the largest reduc- tions of 1.0 ppbv (1.4%) in summer over the NCE Ac- counting for the formation of both sulfate and nitrate, the surface-layer O3 concentrations over a large fraction of eastern China are simulated to increase in winter, spring, and autumn, dominated by the impact of sulfate forma- tion, but to decrease in summer because of the dominant contribution from nitrate formation.  相似文献   

9.
冬小麦生长模式及其在干旱影响评估中的应用   总被引:11,自引:3,他引:8       下载免费PDF全文
在前人理论研究和田间试验的基础上,考虑水分胁迫影响的后效性及作物不同发育阶段对水分胁迫的敏感性,研制出实际水分条件下的冬小麦生长模拟模式。经与不同水分处理的实测资料对比,模拟效果基本令人满意,平均误差为10%左右。利用生长模式得到实际水分条件下的干物重减少率,进行了干旱影响实时评估的尝试。并分别在返青后、拔节后和成熟前展望了干旱对最终生物量的可能影响。  相似文献   

10.
近地层大气臭氧对作物光合作用影响的数值模拟研究   总被引:6,自引:0,他引:6  
近地层O3浓度增加对作物光合产生不利影响,因此,利用TE-49C型臭氧自动观测仪对常熟农田上方O3浓度进行了逐时测定,同时利用OTC-1型农田开顶式气室,测定了不同O3浓度对冬小麦叶片光合作用的影响.在此基础上,首次建立了O3对冬小麦光合作用影响的数值机理模式,模式分辨率达到瞬时时间尺度,空间积分采用Ross方案,具有较高分辨率和准确度.对O3浓度观测表明:O3浓度逐时值变化在0~160×10-9之间,相比之下日平均值变化较小,仅在5×10-9~60×10-9之内;长江中下游地区农田上方O3存在三种典型日变化形式:高浓度单峰型、高浓度多峰型和低浓度平缓型.数值分析表明:全晴天状况下高浓度单峰型对光合作用日总量影响最大.数值敏感分析表明:O3浓度和辐射同步变化时,随着日总辐射量的加大,臭氧浓度增加对光合作用的影响程度逐渐加强.全生育期积分表明:水肥适宜时,由于O3影响冬小麦光合总损失量约为9.22%.  相似文献   

11.
采用EFAST方法和SCE-UA算法优化WheatSM模型参数,采用区域模拟和单站插值的方法对2013—2017年鹤壁市冬小麦各发育期日数和产量进行模拟修订,为WheatSM作物模型在豫北地区的业务应用提供参考。研究发现:区域模拟方法对鹤壁地区冬小麦生育期开始日期的模拟效果除出苗期、越冬期的外,其他均好于单点插值方法的。单点插值方法对越冬期的模拟效果明显好于区域模拟方法的。冬小麦产量的模拟效果区域模拟方法也比单点插值方法好,但两种结果的相对误差均较大。通过对WheatSM模型得到的冬小麦气象产量模拟结果进行修订,可以明显提高模型产量模拟结果。2013—2017年鹤壁地区模拟产量的误差为-17. 92%~-2. 98%,RMSE为1114. 9 kg/hm~2,NMSE为12. 59,模拟效果较好。利用区域模拟方法可以对区域内单个站点的冬小麦生长发育和产量进行模拟,但对越冬期开始时间的模拟需要参考单点插值方法的相应结果。  相似文献   

12.
Climate changes induced by human activities have attracted a great amount of attention. With this, a coupling system of an atmospheric chemistry model and a climate model is greatly needed in China for better understanding the interaction between atmospheric chemical components and the climate. As the first step to realize this coupling goal, the three-dimensional global atmospheric chemistry transport model MOZART-2 (the global Model of Ozone and Related Chemical Tracers, version 2) coupled with CAM2 (the Community Atmosphere Model, version 2) is set up and the model results are compared against observations obtained in East Asia in order to evaluate the model performance. Comparison of simulated ozone mixing ratios with ground level observations at Minamitorishima and Ryori and with ozonesonde data at Naha and Tateno in Japan shows that the observed ozone concentrations can be reproduced reasonably well at Minamitorishima but they tend to be slightly overestimated in winter and autumn while underestimated a little in summer at Ryori. The model also captures the general features of surface CO seasonal variations quite well, while it underestimates CO levels at both Minamitorishima and Ryori. The underestimation is primarily associated with the emission inventory adopted in this study. Compared with the ozonesonde data, the simulated vertical gradient and magnitude of ozone can be reasonably well simulated with a little overestimation in winter, especially in the upper troposphere. The model also generally captures the seasonal, latitudinal and altitudinal variations in ozone concentration. Analysis indicates that the underestimation of tropopause height in February contributes to the overestimation of winter ozone in the upper and middle troposphere at Tateno.  相似文献   

13.
从土壤-作物-大气连续体(SPAC)的水分循环出发,以冬小麦为例,通过对土壤水分动态和有关作物生长过程的模拟,建立作物水分消耗与干物质积累和产量形成关系的动力-统计模式。经3年试验资料的验证,总干重、籽粒产量和根层土壤水分含量的平均模拟误差分别为6.39%,5.60%和5.45%。发育期、叶面积动态和干物质积累动态的模拟与实测情况吻合得也较好。  相似文献   

14.
A coupled chemical/dynamical model (SOCOL-SOlar Climate Ozone Links) is applied to study the impacts of future enhanced CO and NOx emissions over eastern China on regional chemistry and climate. The result shows that the increase of CO and NOx emissions has significant effects on regional chemistry, including NOx, CO, O3, and OH concentrations. During winter, the CO concentration is uniformly increased in the northern hemisphere by about 10 ppbv. During summer, the increase of CO has a regional distribution. The change in O3, concentrations near eastern China has both strong seasonal and spatial variations. During winter, the surface O3, concentrations decrease by about 2 ppbv, while during summer they increase by about 2 ppbv in eastern China. The changes of CO, NOx, and O3, induce important impacts on OH concentrations. The changes in chemistry, especially O3, induce important effects on regional climate. The analysis suggests that during winter, the surface temperature decreases and air pressure increases in central-eastern China. The changes of temperature and pressure produce decreases in vertical velocity. We should mention that the model resolution is coarse, and the calculated concentrations are generally underestimated when they are compared to measured results. However, because this model is a coupled dynamical/chemical model, it can provide some useful insights regarding the climate impacts due to changes in air pollutant emissions.  相似文献   

15.
The controlled simulation experiments revealed that ozone concentration increases cause various degrees of injury to leaves of crop and vegetable.The injury to vegetables is greater than that to crops.Ozone can dramatically affect stomatal conductance,photosynthetic rate and transpiration rate,and consequently the yield of crops.No matter how long exposure time was, stomatal conductance increased and photosynthetic and transpiration rates decreased with increases in ozone concentration.When ozone concentration was 100 nmol/mol,yields of rice and winter wheat declined by 27.1% and 60.5% respectively.When up to 200 nmol/mol,there was a significant reduction of yields:a decline up to 33.7% for rice and 81.3% for winter wheat.On the other hand,ozone benefits the improvement of grain quality such as amino acid and protein.  相似文献   

16.
During late austral summer and winter 1998, black carbon (BC) aerosols were monitored with an Aethalometer at 2 sites of La Réunion Island (Indian Ocean): Saint‐Denis, the main city and Sainte‐Rose, a quite uninhabited region situated at the east coast. BC concentration data at Saint‐Denis show a marked diurnal cycle, which may be primarily attributed to traffic. The background data found at night‐time display average BC concentrations, ranging from about 80 to 250 ng/m3 whereas during the day, BC concentrations increase by a factor of at least 4. In comparison, BC concentrations vary in the range of 10 to 60 ng/m3 at Sainte‐Rose. Ozone concentration was also measured at Saint‐Denis using a Dasibi photometer and found to be at significant levels (means: 16.5–23 ppbv in April and 28.5–34 ppbv in September). A noticeable increase of ozone concentrations during the day points out the build‐up of pollutants enhancing photochemical transformations. However, during traffic pollution peaks, ozone concentration displays systematic depletion. The comparison of ozone and BC measurements at both seasons points to some possible effects of heterogeneous interaction of ozone and its precursors with BC particles. These interactions were also simulated with a 0D time‐dependent chemistry model using conditions of a polluted site. The measured ozone concentration characteristics (mean concentration and range of variation) are well simulated in the presence of BC. Our model results show that at La Réunion Island adsorption of ozone and its precursors onto BC aerosol particles could be one of the important steps determining ozone concentration characteristics, especially in absence of photochemistry during night‐time.  相似文献   

17.
O3浓度增加对冬小麦影响的试验研究   总被引:11,自引:2,他引:11  
利用OTC 1型开顶式气室对冬小麦进行不同O3 浓度处理的试验研究。结果表明 ,O3 浓度增加 ,冬小麦发育期表现为开花前期有所延迟 ,开花后期的各发育期明显提前 ,生育期缩短 ,植株矮化 ,干物质累积量明显下降。无论是长时期通气处理还是阶段性通气处理 ,产量均明显降低  相似文献   

18.
河南省稻麦类作物对气候变化的响应   总被引:4,自引:1,他引:3  
小麦和水稻是世界最重要的粮食作物。利用河南省小麦和水稻的历史观测资料,结合DSSAT-CERES小麦和ORYZA2000水稻模拟模型,分析和模拟河南省稻麦类作物在历史气候变化条件下生育期和产量的变化。结果表明:冬小麦全生育期长度呈缩短趋势,但播种-越冬天数平均每10 a增加1.7 d,开花到乳熟天数平均每10 a增加2-4 d,返青后各生育期均表现出不同程度的提前;水稻各生育期均有不同程度的提前,尤其是拔节期以前,分蘖前的生育期间隔天数以缩短为主,拔节后以延长为主。雨养小麦模拟产量和水氮增产潜力均呈减少趋势;随着播种期的提前,水稻减产趋势逐渐减弱。  相似文献   

19.
小麦和水稻是世界最重要的粮食作物。利用河南省小麦和水稻的历史观测资料,结合DSSAT-CERES 小麦和ORYZA2000水稻模拟模型,分析和模拟河南省稻麦类作物在历史气候变化条件下发育期和产量的变化。结果表明:冬小麦全育期长度呈缩短趋势,但播种-越冬天数平均每10年增加1.7天,开花到乳熟天数平均每10年增加2-4天,返青后各发育期均表现出不同程度的提前;水稻各发育期均有不同程度的提前,尤其是拔节期以前,分蘖前的发育期间隔天数以缩短为主,拔节后以延长为主。雨养小麦模拟产量和水氮增产潜力均呈减少趋势;随着播种期的提前,水稻减产趋势逐渐减弱。  相似文献   

20.
土壤水分对冬小麦叶片光合速率影响模型构建   总被引:1,自引:0,他引:1       下载免费PDF全文
植物叶片光合速率是表征植物光合能力的重要参数,对土壤水分反应敏感,建立不同土壤水分对冬小麦叶片光合速率影响模型,有助于准确理解冬小麦的光合作用和产量形成。该文收集整理了1996—2017年我国冬小麦主产区11个试验地点、17个冬小麦品种的干旱和渍水试验数据共64组310个样本,分别构建干旱和渍水对冬小麦叶片光合速率影响的分段式和指数型模型,形成土壤水分对冬小麦叶片光合速率影响模型(the model for Soil Moisture Effects on leaf Photosynthesis rate of winter wheat,SMEP)。结果表明:随着土壤相对湿度增加,冬小麦叶片光合速率系数呈稳定低值-线性增加-稳定高值-缓慢下降的特点;随着渍水时间延长,冬小麦叶片光合速率系数呈缓慢下降-快速下降的特点。对SMEP模型进行回代检验、外推检验、单点验证、单发育期验证发现,模型模拟结果与文献数据有较好的一致性,回归系数在1.0附近,且均达到0.01显著性水平。SMEP模型将嵌入中国农业气象模式(CAMM1.0),为CAMM不断完善提供科技支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号