首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of previous deviatoric strain histories on the undrained behaviour of very loose and saturated Hostun RF clean sand are investigated in this paper. From an initial isotropic stress state in the triaxial plane, strain histories are generated by isotropic consolidation followed by standard drained triaxial preshear or presheared cycle, either in compression or in extension, up to a desired value of axial strain or mobilized stress ratio. Deviatoric strain histories are achieved by having nearly the same void ratio at the beginning of the undrained shearing for all tested samples. Subsequent undrained behaviour in triaxial compression and extension is analyzed in detail. Previous deviatoric strain histories can progressively transform the compressive and unstable behaviour of loose sand into a dilative and stable behaviour of dense-like sand, while being loose. Experiments show a common response induced by recent strain histories in terms of effective stress paths, independently of the axial strain attained during the drained presheared cycle, a unique initial gradient of the effective stress paths, a progressive appearance of dilatancy, an evolution the undrained behaviour and a systematic partial static liquefaction associated with softer behaviour when sheared in the opposite direction of the initial presheared direction. This paper offers a comprehensive understanding of the mechanisms of a specialized induced anisotropy created by simple linear stress paths in the classical triaxial plane.  相似文献   

2.
On the undrained strain-induced anisotropy of loose sand   总被引:1,自引:1,他引:0  
An experimental study was carried out to investigate the effects of previous deviatoric strain histories on the undrained behaviour of loose and saturated Toyoura sand and compared with known results of Hostun RF sand. From an initial isotropic stress state, recent deviatoric strain histories in the compression side of the triaxial plane were generated by a standard drained presheared cycle up to a specified mobilized stress ratio. Mainly, the fully liquefied, contractive, unstable and softening behaviour of loose sand was progressively transformed into the non-liquefied, dilative, fully stable and hardening behaviour of dense-like sand, while remaining within a narrow range of loose density. The paper validates and extends the current understanding of strain-induced anisotropy of loose sand. New experimental data support the directional dependency of the instability cone on the stress increment direction, suggest the bifurcation characteristics of loose sand and evidence the important role of past deviatoric strain histories.  相似文献   

3.
Stress history is recognised to play a major role in determining stress–strain behaviour of soil in undrained shearing. Most experimental studies on the effects of stress history on undrained behaviour are mainly limited to clean sand. In this paper, an experimental study carried out to investigate the effect of stress history on the undrained behaviour of loose sand with a small amount of fines is presented. Four series of triaxial compression tests, with different types of drained stress histories to near-failure prior to commencement of undrained shearing, were conducted. The experimental results indicate that drained pre-shearing to near-failure affects significantly the undrained behaviour of loose sand. In general, the drained pre-shearing improves the subsequent undrained behaviour of loose sand to the extent that liquefaction may not occur. It is shown that the effect of drained pre-shearing cannot be explained by the reduction in void ratio induced by drained pre-shearing. However, for specimens subjected to drained pre-shearing, $ p_{{{\text{d}}0}}^{\prime } $ / $ p_{{{\text{u}}0}}^{\prime } $ can be used as a parameter for analysing the effects of preloading history. It is also shown that for different preloading histories that brought the same change in void ratio or state parameter, drained pre-shearing to near-failure is the most effective, whereas pre-compression alone is the least effective in improving subsequent undrained behaviour of loose sand.  相似文献   

4.
The results of an experimental study of the undrained behaviour of Changi sand under axisymmetric and plane-strain conditions are presented. K0 consolidated undrained plane-strain tests and K0 or isotropically consolidated triaxial tests on very loose and medium dense specimens were conducted. The undrained behaviour of sand at very loose and medium dense states under plane-strain conditions was characterised and compared with that under axisymmetric conditions. It was observed that the undrained behaviour of very loose and medium dense sand under plane strain is similar to that under axisymmetric conditions. However, because of the formation of shear bands in plane-strain tests, the post-peak behaviour of medium dense sand in plane strain is different from that in triaxial tests. It was also established that an instability line for plane-strain conditions can be defined in a way similar to that for axisymmetric conditions. Using the state parameter, a unified relationship between the normalised slope of instability line and the state parameters can be established for both axisymmetric and plane-strain conditions. Using this relationship, the instability conditions established under axisymmetric conditions can be used for plane-strain conditions.  相似文献   

5.
This paper presents an elasto‐plastic model for unsaturated compacted soils and experimental results obtained from a series of suction‐controlled triaxial tests on unsaturated compacted clay with different initial densities. The initial density dependency of the compacted soil behaviour is modelled by establishing experimental relationships between the initial density and the corresponding yield stress and thereby between the initial density and the location and slope of normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure surface and the yield surface in the deviatoric plane are given by the extended SMP criterion. A considerable number of the isotropic compression, triaxial compression and extension tests on unsaturated compacted clay with different initial densities were performed using a suction‐controllable triaxial apparatus, to measure the stress–strain–volume change in different stress paths and wetting paths. The model has well‐predicting capabilities to reproduce the mechanical behaviour of specimens compacted under different conditions not only in isotropic compression but also in triaxial compression and triaxial extension. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The undrained shear behaviour of sands has been a key topic after the devastating geo-disasters during the 1964 Niigata Earthquake in Japan. Extensive geo-technical soil tests, especially undrained triaxial compression tests, have revealed that the liquefaction phenomenon was the major cause for the disaster expansions. To numerically reproduce the liquefaction phenomenon, the pore-water pressure was coupled with a distinct element method. In this model, the dynamic changes in pore-water pressure were taken into consideration by the changes in volumetric strain and modulus of compressibility of water in the respective measurement spheres. Fluid-flows among the measurement spheres were controlled by Darcy’s law. The effective stress paths and steady state strengths in undrained triaxial compression tests associated with the wide ranges of initial void ratio were investigated. The effective mean stresses of medium-dense to dense numerical specimens at the steady state were negatively proportional to the initial void ratio. Loose numerical specimens reproduced quasi-liquefaction with the effective mean stresses that were less than 25% of the initial value. The medium-dense numerical specimens reproduced the phase transformation that was a typical characteristic of granular materials. The rolling restraints did not much influence of the effective angle of internal friction but strongly affected pore-water pressure behaviour within a certain range of initial void ratio.  相似文献   

7.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such a model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. The purpose of these two companion papers was to provide such database collected for a fine sand. The database consists of numerous undrained cyclic triaxial tests with stress or strain cycles applied to samples consolidated isotropically or anisotropically. Monotonic triaxial tests with drained or undrained conditions have also been performed. Furthermore, drained triaxial, oedometric or isotropic compression tests with several un- and reloading cycles are presented. Part I concentrates on the triaxial tests with monotonic loading or stress cycles. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   

8.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. It is the purpose of these two companion papers to provide such database collected for a fine sand. Part II concentrates on the undrained triaxial tests with strain cycles, where a large range of strain amplitudes has been studied. Furthermore, oedometric and isotropic compression tests as well as drained triaxial tests with un- and reloading cycles are discussed. A combined monotonic and cyclic loading has been also studied in undrained triaxial tests. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   

9.
The paper presents a simple constitutive model for normally consolidated clay. A mathematical formulation, using a single tensor-valued function to define the incrementally nonlinear stress–strain relation, is proposed based on the basic concept of hypoplasticity. The structure of the tensor-valued function is determined in the light of the response envelope. Particular attention is paid towards incorporating the critical state and to the capability for capturing undrained behaviour of clayey soils. With five material parameters that can be determined easily from isotropic consolidation and triaxial compression tests, the model is shown to provide good predictions for the response of normally consolidated clay along various stress paths, including drained true triaxial tests and undrained shear tests.  相似文献   

10.
中主应力对饱和松砂不排水单调剪切特性的影响   总被引:7,自引:0,他引:7  
利用土工静力-动力液压-三轴扭转多功能剪切仪,针对相对密度为30 %的福建标准砂,在不排水条件下控制主应力方向、中主应力系数、平均主应力保持不变,进行了单调剪切试验。以此着重探讨了中主应力系数对相变有效内摩擦角、峰值有效内摩擦角及有效应力路径的影响。研究表明,中主应力系数对在不排水单调剪切条件下饱和松砂的强度参数具有显著的影响,而对有效应力路径及应力-应变关系发展模式影响较小。基于广义双剪强度准则,从理论上探讨了土的强度参数对于中主应力的依赖性,并与试验结果进行了对比。  相似文献   

11.
Tests on specimens of reconstituted illitic clay have examined the influence of temperature on the mechanical behaviour of clay soils. The program involved consolidation to effective confining pressures up to 1.5 MPa, heating to 100°C, and tests on normally consolidated and overconsolidated specimens with OCR = 2. The tests included isotropic consolidation, undrained triaxial compression with pore water pressure measurement, drained tests along controlled stress paths to investigate yielding behaviour, and undrained tests which involved heating and measurement of the resulting induced pore water pressures. The large strain strength envelope is independent of temperature. However, peak undrained strengths increase with temperature because smaller pore water pressures are generated during shearing. An important contribution from the study is a series of results for the yielding of illitic clay at three different temperatures. For the first time, there is clear evidence of yield loci decreasing in size with increasing temperature. An associated flow rule can be assumed without serious error. The results contribute to the confirmation of a thermal elastic-plastic soil model developed by the authors from cam clay following the addition of a small number of extra assumptions. Depending on the initial stress state, heating under undrained conditions may produce shear failure.  相似文献   

12.
The effects of induced anisotropy on the undrained behaviour of very loose and saturated sands have been a subject of intensive investigation, both experimentally and theoretically, by several authors in the past few years. This paper proposes an original constitutive model well‐adapted to simulate the behaviour of sands subject to complex stress histories, in particular, the preloading cycle along the classical drained stress path in compression. The developed model belongs to the family of critical state models. Its construction is based on a few theoretical concepts taken from the theory of ‘Bounding Surface Plasticity’ developed among others by Y. Dafalias and Popov (1975), the ‘Clay And Sand Model’ (CASM) of H. Yu (2006), the CJS model (B. Cambou and K. Jafari (1988)) and the hyperelastic isotropic model of P. Lade (1987). To accurately simulate volume changes, which represent a key element in soil behaviour, a state‐dependent dilatancy rule is proposed, which can account for the influences of stress and void ratio. The current void ratio depends implicitly on the irreversible strains already accumulated hence the strain history. A kinematic hardening is combined with an isotropic hardening, involving rotation and distortion of the bounding surface, in order to capture correctly the experimental observations. Comparisons of experimental results to numerical simulations show that the model is able to simulate with a good precision the major trends of undrained responses of loose and presheared sands. It predicts correctly rapid static liquefaction at small or null drained preloading, as well as the progressive transition to a completely stable behaviour typical of dense sands, while the sample is loose in reality. At intermediate to large amplitudes of preloadings, the model also predicts correctly the temporary stage of instability when the deviatoric stress decreases slightly before rising up again. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A unified constitutive model for unsaturated soils is presented in a critical state framework using the concepts of effective stress and bounding surface plasticity theory. Consideration is given to the effects of unsaturation and particle crushing in the definition of the critical state. A simple isotropic elastic rule is adopted. A loading surface and a bounding surface of the same shape are defined using simple and versatile functions. The bounding surface and elastic rules lead to the existence of a limiting isotropic compression line, towards which the stress trajectories of all isotropic compression load paths approach. A non‐associated flow rule of the same general form is assumed for all soil types. Isotropic hardening/softening occurs due to changes in plastic volumetric strains as well as suction for some unsaturated soils, enabling the phenomenon of volumetric collapse upon wetting to be accounted for. The model is used to simulate the stress–strain behaviour observed in unsaturated speswhite kaolin subjected to three triaxial test load paths. The fit between simulation and experiment is improved compared to that of other constitutive models developed using conventional Cam‐Clay‐based plasticity theory and calibrated using the same set of data. Also, the model is used to simulate to a high degree of accuracy the stress–strain behaviour observed in unsaturated Kurnell sand subjected to two triaxial test load paths and the oedometric compression load path. For oedometric compression theoretical simulations indicate that the suction was not sufficiently large to cause samples to separate from the confining ring. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Liu  Zhiyong  Xue  Jianfeng  Ye  Jianzhong 《Acta Geotechnica》2021,16(9):2791-2804

New excavation or tunnelling affects the stress state of soils in ground. The change of stress state due to excavation may affect the cyclic behaviour of soils. Cyclic loading, such as traffic and earthquake loading, induced ground deformation may be greater than expected if such effect is not considered. A series of cyclic triaxial tests were performed on Sydney sand with different relative densities. The effect of unloading sequence on deformation of the sand under cyclic loading was simulated by reducing lateral stress in steps between loading cycles. The dependence of strain accumulation on the magnitude of confining pressure reduction and on unloading stress paths was studied. The results indicate that the sand has a memory of stress history and the stress history of such unloading enlarges the strain accumulation during the subsequent cycles, and the greater the reduction of lateral stress, the greater the accumulated strain. Under cyclic loading, the accumulated axial strain could increase nonlinearly or linearly with the ratio of unloading magnitude to initial mean effective stress, depending on the stress state before cyclic loading. The unloading stress paths have limited effects on the final accumulated strain if the initial and final stress states are the same. The variation of strain accumulation direction attributes to the change of average stress ratio resulting from lateral stress reduction, but hardly depends on relative density and unloading stress paths. The strain accumulation direction after unloading roughly agrees with the modified Cam Clay flow rule.

  相似文献   

15.
16.
This paper evaluates the performance of a generalized effective stress soil model for predicting the rate independent behaviour of freshly deposited sands, while a companion paper describes model capabilities for clays and silts. Most material parameters can be obtained from standard laboratory data, including hydrostatic or one‐dimensional compression, drained and undrained triaxial shear testing. A compilation of data on compression behaviour allows for estimation of compression parameters when this type of data is not available. Extensive comparisons of model predictions with measured data from undrained triaxial shear tests shows that the model gives excellent predictions of the transition from dilative to contractive shear response as the confining pressure and/or the initial formation void ratio increases. A parametric study of drained response shows that the model describes realistically the variation of peak friction angle and dilation rate as a function of confining pressure and density when compared with an empirical correlation valid for many sands. The proposed formulation predicts a unique critical state locus for both drained and undrained triaxial testing which is non‐linear over the entire range of stresses and is in excellent agreement with recent experimental data. Overall, the model provides excellent predictions of the stress–strain–strength relationships over a wide range of confining pressures and formation densities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
不同应力路径下剪切带的数值模拟   总被引:4,自引:1,他引:3  
孙德安  甄文战 《岩土力学》2010,31(7):2253-2258
采用回映应力更新算法,编写了基于伏斯列夫面的超固结黏土本构关系模型子程序,嵌入非线性有限元软件ABAQUS。通过对单元试验进行三轴压缩、三轴伸长及平面应变等问题的模型预测,再现了超固结黏土在不同初始超固结比和应力路径时的变形和强度特性,从而验证了子程序的正确性。借助该本构模型,对三轴压缩、三轴伸长及平面应变应力路径下超固结黏土体变形局部化问题,进行了三维数值模拟。分析结果表明:超固结黏土在三轴压缩及伸长状态时,土体变形局部化在应力-应变关系软化时出现,而平面应变状态时,在应力-应变关系硬化阶段出现,其超固结黏土的剪胀特性在剪切带的形成过程中起重要作用。  相似文献   

18.
饱和粉砂不稳定性的试验研究   总被引:3,自引:0,他引:3  
符新军  赵仲辉 《岩土力学》2008,29(2):381-385
通过对净砂和级配良好粉砂(含10 %粉土)进行一系列三轴固结不排水试验(CU),研究了粉土、孔隙比和围压对饱和粉砂不稳定性的影响。试验结果表明,净砂与粉砂在不排水剪切条件下均会出现应变软化现象(即不稳定性)。同一围压下脆性指数(IB)随孔隙比增加,但不稳定线的应力比随孔隙比增加而减小。引用等效粒间孔隙比(ege)后,净砂和粉砂在ege-ln p?平面上拥有基本相同的临界状态线。在临界状态理论及等效粒间孔隙比的基础上,提出在同一修正状态参数(?ge)下净砂和级配良好粉砂有相似的不稳定性。  相似文献   

19.
为了研究非饱和黄土在有效应力空间的屈服特性,利用真三轴仪对非饱和原状黄土进行了不排水等向净应力压缩固结和不同中主应力参数b值的剪切试验,研究了真三轴压缩条件下非饱和黄土的有效应力屈服变化规律。研究结果表明:有效应力比随着中主应力或净围压的增大而减小,中主应力的增大作用对有效球应力的影响大于广义剪应力;由有效应力比?体应变关系曲线确定的剪缩屈服曲线在有效应力空间具有良好的规律性,屈服点的有效屈服应力随着中主应力和初始吸力的增大而增大;π平面上的有效应力屈服强度面和强度破坏面与SMP强度准则稳合较好,有效球应力和初始吸力越大,屈服强度面和强度破坏面越大。提出了真三轴条件下弹性剪应变和塑性剪应变的计算公式,通过分析有效应力与塑性应变关系得出有效应力空间中不同子午平面内的塑性势面呈椭圆形,且随着中主应力的增大,椭圆屈服面增大。  相似文献   

20.
常剪应力路径下含气砂土的三轴试验   总被引:1,自引:0,他引:1  
孔亮  刘文卓  袁庆盟  董彤 《岩土力学》2019,40(9):3319-3326
天然气水合物完全分解时,产生的气体使得能源土孔隙压力急速增加,有效应力减小,进而引起土体液化破坏。此时深海能源土斜坡的应力状态与静力液化失稳过程可简化为含气土在常剪应力排水(或不排水)应力路径下的破坏问题。以此为背景,提出了制备含气砂土试样的改进充气管法,并开展了含气砂土的常剪应力路径三轴试验。22组试验结果表明:同一孔隙比的含气密砂在不同围压与常剪应力下具有相同的失稳线;含气砂土试样失稳时的应力比和体变均随初始相对密实度的增大而增大;含气密砂在常剪应力路径下饱和度对失稳特征影响的规律性在排水与不排水条件下均不明显,但在不排水条件下含气砂土的孔压(或体变)对变形的敏感性降低;含气密砂在常剪应力路径到达失稳点之后,排水条件下是瞬变的液化鼓胀破坏,不排水条件下是渐变的剪切破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号