首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
对湘中桃江锰矿废矿堆的废石进行了主量元素、稀土元素、微量元素和重金属元素的地球化学分析。野外观察及分析结果表明:组成废矿堆的岩石主要是赋矿围岩中奥陶统黑色页岩和原生碳酸锰矿石。这些废石富含Cu、Pb、Zn、Cr、Tl、Sb、U等重金属元素。废石暴露地表而遭受风化分解,导致Sc、V、Cr、U、Cd、Th等重金属元素淋滤释出,在废石样品中均表现出不同程度的迁移特征,且以V、Cd、U的迁移性最为强烈。此外,黑色页岩中Ni、Cu、Zn、Pb、Tl、Sb也明显发生淋失。这些重金属元素如Cd、Tl等毒性极强,进入矿区周围不断积聚,便可能对环境造成严重的影响。故对区内分布的废矿堆作为重金属污染源应高度重视。  相似文献   

2.
湘中安化黑色页岩土壤玉米的元素地球化学分析   总被引:1,自引:0,他引:1  
利用等离子质谱(ICP-MS)等分析技术,对产于安化东坪、烟溪黑色页岩土壤上的玉米进行元素地球化学分析.结果.表明:尽管东坪、烟溪黑色页岩土壤重金属元素富集的程度及其元素组合特征明显不同,但生长在其上的玉米有相似的主量元素和重金属元素的富集特征.玉米中Cd、Cr、Sc、Tl、Zn等重金属相对富集,以Cd的富集尤为明显;而Ba、Co、Cu、Fe、Mo、Ni、Pb、Sb、U、V等重金属相对亏损.黑色页岩土壤重金属污染的环境地球化学效应表现为Sc、Cr、Cd、Tl等生物毒性重金属元素在玉米中富集,而Ba、V、Co、Ni、Mo、Rb、Sr等生物必需微量金属在玉米中亏损.  相似文献   

3.
Weathering of heavy metal enriched black shales may be one of the most important sources of environmental contamination in areas where black shales are distributed. Heavy metal release during weathering of the Lower Cambrian Black Shales (LCBS) in western Hunan, China, was investigated using traditional geochemical methods and the ICP-MS analytical technique. Concentrations of 16 heavy metals, 8 trace elements and P were measured for samples from selected weathering profiles at the Taiping vanadium ore mine (TP), the Matian phosphorous ore mine (MT), and Taojiang stone-coal mine (TJ). The results show that the bedrock at these three profiles is enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Pb, Th, U, Mo, Cd, Sb, Tl, and P. Based on mass-balance calculation, the percentages of heavy metals released (in % loss) relative to immobile element Nb were estimated. The results show significant rates of release during weathering of: V, Cr, Co, Ni, Cu, Zn, U, Mo, Cd, Sn, Sb, and Tl for the TP profile; Sc, Cr, Mn, Co, Ni, Cu, Zn, Pb, Th, Cd, and Sn for the MT profile; and Sc, Mn, Co, Ni, Zn, Th, Cd, Sn, and Tl for the TJ profile. Among these heavy metals, Co, Ni, Zn, Cd, and Sn show very similar features of release from each of the three weathering profiles. The heavy metals released during weathering may affect the environment (especially topsoil and surface waters) and are possibly related to an observed high incidence of endemic diseases in the area.  相似文献   

4.
The rare earth elements (REE) are a group of 17 metals that include the lanthanides, Sc and Y, which are critical for many modern technologies including consumer electronics, medicine and communication. One of the major controls on the concentrations of the REE in regolith material (including soils) is the abundance of these elements in the parent material. It is known that REE concentrations are largely inherited from the protolith rather than acquired during pedogenic processes but our understanding of how pedogenesis affects fractionation and accumulation of REE to produce potentially economic deposits of these critical metals is limited. This study provides a review of (1) the biogeochemical controls on REE distribution and mobility during pedogenesis and (2) the potential for REE extraction from regolith material. Factors that control mobilisation of REE during weathering include (1) the initial distribution of the REE in protolith minerals and the resistivity of these phases to weathering, (2) adsorption and absorption of REE to Fe- and Mn oxides, clay minerals and organic matter and (3) variations in pH and Eh conditions. We also discuss the relative importance of biogeochemical controls on REE mobility in soils in southern Australia, where REE concentrations are demonstrated to be largely a function of weathering of REE-enriched protoliths, the sorption of REE to weathering products and the accumulation of resistant minerals in soils.  相似文献   

5.
黑色页岩与土壤重金属污染   总被引:6,自引:1,他引:5  
本文利用ICP—MS等技术分析了湘中地区黑色页岩及其相应土壤的重金属含量,在对分析结果进行统计分析的基础上,探讨了黑色页岩与土壤重金属污染的关系。研究表明,黑色页岩是富集多种重金属元素的特殊岩石。以黑色页岩岩系为母岩的土壤,不仅明显富集Cu、Cd、Cr、Co、Pb、Zn、Mo、Ni、V、U、Sn、Sb、T1、Th等多种重金属元素,而且受到Mo、Sb、Cd、U、Tl、Cu、V、Sn、Th等重金属的污染,其中以Mo、Cd、Sb、U、Tl等的污染尤为严重。黑色页岩土壤重金属污染在一些地方已产生明显的负面环境效应,值得关注。  相似文献   

6.
湘江入湖河段沉积物重金属污染及其Pb同位素地球化学示踪   总被引:12,自引:0,他引:12  
湘江是我国重金属污染最严重的河流之一.本次工作利用等离子质谱(ICP-MS)和多接收同位素质谱(MC-ICP-MS)等技术,对湘江入湖河段沉积物进行了系统的重金属微量元素和Pb同位素分析.结果表明,湘江河床沉积物明显富集Bi、Sc、V、Mn、Ni、Cu、Zn、Pb、Cd、Sn、Sb等多种重金属微量元素,而湖盆沉积物重金...  相似文献   

7.
The Ambassador U and multi-element deposit occurs on the SW margin of the Gunbarrel Basin, Western Australia. Low-grade, flat-lying U mineralization averaging about 2 m thick at 0.03% U occurs in lignites at the redox front at the base of the weathering profile within a laterally extensive palaeochannel network. Uranium is principally associated with organic matter within the lignitic matrix, although rare discrete U minerals, such as coffinite and uraninite, are also present. The lignite is also enriched in a suite of other elements, principally base metals and sulphur, with concentrations of 0.3 ≥ 1% Cu, Pb, Ni, Co, Zn and total rare earth elements (REE) in some samples. Other element enrichments include: Cr, Cs, Sc, Se, Ta, Ti, Th, V and Zr as detrital heavy minerals of Zr, Ti and REE (oxides and silicates) or authigenic minerals of Cu, Bi, Pb, Zn, Ni, Se, Hg, Ti, Cr, Tl, V, U and REE (sulphides, vanadates, selenides, oxides, chlorides and native metals) and diffuse lignite impregnations. The Ambassador deposit probably formed from the convergence of redox-active weathering processes to unique source/host rocks, constrained within the palaeochannel. A proximal source of U and trace elements of lamproite/carbonatite origin is probable, as constrained by U–Pb isotope and U–Th disequilibria studies. Uranium and other metals were precipitated syngenetically with organic matter as it was deposited during a humid phase in the Late Eocene. Remobilization subsequently concentrated the metals in the upper 2 m of the lignite. This may have occurred during one or more periods of weathering and associated diagenesis, with the latest episode in the last 300,000 years.  相似文献   

8.
This paper reports a geochemical study of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan province (P. R. China). Trace metals Ba, Bi, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sn, Sb, Pb, Tl, Th, U, Zr, Hf, Nb and Ta were analyzed using ICP-MS, and Pb isotopes of the bulk sediments were measured by MC-ICP-MS. The results show that trace metals Cd, Bi, Sn, Sc, Cr, Mn, Co, Ni, Cu, Zn, Sb, Pb and Tl are enriched in the sediments. Among these metals, Cd, Bi and Sn are extremely highly enriched (EF values >40), metals Zn, Sn, Sb and Pb significantly highly (5 < EF < 20), and metals Sc, Cr, Mn, Co, Ni, Cu and Tl moderately highly (2 < EF < 5) enriched in the river sediments. All these metals, however, are moderately enriched in the lake sediments. Geochemical results of trace metals Th, Sc, Co, Cr, Zr, Hf and La, and Pb isotopes suggest that metals in the river sediments are of multi-sources, including both natural and anthropogenic sources. Metals of the natural sources might be contributed mostly from weathering of the Indosinian granites (GR) and Palaeozoic sandstones (PL), and metals of anthropogenic sources were contributed from Pb–Zn ore deposits distributed in upper river areas. Metals in the lake sediments consist of the anthropogenic proportions, which were contributed from automobile exhausts and coal dusts. Thus, heavy-metal contamination for the river sediments is attributed to the exploitation and utilization (e.g., mining, smelting, and refining) of Pb–Zn ore mineral resources in the upper river areas, and this for the lake sediments was caused by automobile exhausts and coal combustion. Metals Bi, Cd, Pb, Sn and Sb have anthropogenic proportion of higher than 90%, with natural contribution less than 10%. Metals Mn and Zn consist of anthropogenic proportion of 60–85%, with natural proportion higher than 15%. Metals Sc, Cr, Co, Cu, Tl, Th, U and Ta have anthropogenic proportion of 30–70%, with natural contribution higher than 30%. Metals Ba, V and Mo might be contributed mostly from natural process.  相似文献   

9.
Shales of the ∼2.7 Ga Zeederbergs Formation, Belingwe greenstone belt, Zimbabwe, form thin (0.2-2 m) horizons intercalated with submarine lava plain basalts. Shales of the overlying Cheshire Formation, a foreland basin sedimentary sequence, form 1-100 m thick units intercalated with shallow-water carbonates and deep-water, resedimented basalt pebble conglomerates. Zeederbergs shale is characterized by high contents of MgO and transition metals and low concentrations of K2O and LILE as compared to average Phanerozoic shale, indicative of an ultramafic to mafic source terrain. Cheshire shales have similar major and trace element contents, but MgO and transition metals are less enriched and the LILE are less depleted. Zeederbergs shales have smoothly fractionated REE patterns (LaN/YbN = 2.84-4.45) and no significant Eu anomaly (Eu/Eu* = 0.93-0.96). REE patterns are identical to those of the surrounding basaltic rocks, indicating local derivation from submarine reworking. Cheshire shales have rather flat REE patterns (LaN/YbN = 0.69-2.19) and a small, negative Eu anomaly (average Eu/Eu* = 0.85), indicative of a mafic provenance with minor contributions of felsic detritus. A systematic change in REE patterns and concentrations of transition metals and HFSE upwards in the sedimentary succession indicates erosion of progressively more LREE-depleted basalts and ultramafic volcanic rocks, followed by unroofing of granitoid crust. Weathering indices confirm the submarine nature of Zeederbergs shale, whereas Cheshire shale was derived from a source terrain subjected to intense chemical weathering.  相似文献   

10.
The mineralogical and geochemical characteristics of the Upper Triassic Baluti shale from the Northern Thrust Zone (Sararu section) and High Folded Zone (Sarki section) Kurdistan Region, Iraq, have been investigated to constrain their paleoweathering, provenance, tectonic setting, and depositional redox conditions. The clay mineral assemblages are dominated by kaolinite, illite, mixed layers illite/smectite at Sararu section, and illite > smectite with traces of kaolinite at Sarki. Illite, to be noted, is within the zone of diagenesis. The non-clay minerals are dominated by calcite with minor amounts of quartz and muscovite in Sararu shale; and are dominated by dolomite with amounts of calcite and quartz in Sarki shale. Baluti shale is classified as Al-rich based on major and minor elements. The chemical index of alteration (CIA) is significantly higher in the Sararu than the Sarki shales, suggesting more intense weathering of the Sararu than the Sarki shales. The index of compositional variability (ICV) of the Sararu shale is less than 1 (suggesting it is compositionally mature and was deposited in a tectonically quiescent setting). More than 1 for Sarki shales (suggest it is less mature and deposited in a tectonically active setting). Most shale of the Baluti plot parallel and along the A-K line in A-CN-K plots suggest intense chemical weathering (high CIA) without any clear-cut evidence of K-metasomatism. Clay mineral data, Al enrichment, CIA values, and A-CN-K plot suggest that the source area experienced high degree of chemical weathering under warm and humid conditions, especially in Sararu. Elemental ratios critical of provenance (La/Sc, Th/Sc, Th/Cr, Th/Co, Ce/Ce*PN, Eu/Eu*PN, and Eu/Eu*CN) shows slight difference between the Sararu and Sarki shales; and the ratios are similar to fine fractions derived from the weathering of mostly felsic rocks. The Eu/Eu* CN, Th/Sc, and low K2O/Al2O3 ratios of most shales suggest weathering from mostly a granodiorite source rather than a granite source, consistent with a source from old upper continental crust. Discrimination diagrams based on major and trace element content point to a role of the felsic-intermediate sources for the deposition of Baluti Formation, and probably mixed with mafic source rocks at Sararu section. The chondrite-normalized rare earth elements (REE) patterns are similar to those of PAAS, with light REE enrichment, a negative Eu anomaly, and almost flat heavy REE pattern similar to those of a source rock with felsic components. The source of sediments for the Baluti Formation was likely the Rutba Uplift and/or the plutonic-metamorphic complexes of the Arabian Shield located to the southwest of the basin; whereas the Sararu shale was affected by the mafic rocks of the Bitlis-Avroman-Bisitoun Ridge to the northeast of Arabian Plate. The tectonic discrimination diagrams, as well as critical trace and REE characteristic parameters imply rift and active setting for the depositional basin of the shale of Baluti Formation. The geochemical parameters such as U/Th, V/Cr, V/Sc, and Cu/Zn ratios indicate that these shales were deposited under oxic environment and also show that Sarki shale was deposited under more oxic environment than Sararu.  相似文献   

11.
In this study, the mobilization, redistribution, and fractionation of trace and rare earth elements (REE) during chemical weathering in mid-ridge (A), near mountaintop (B), and valley (C) profiles (weak, weak to moderate, and moderate to intense chemical weathering stage, respectively), are characterized. Among the trace elements, U and V were depleted in the regolith in all three profiles, Sr, Nb, Ta, Zr, and Hf displayed slight gains or losses, and Th, Rb, Cs, and Sc remained immobile. Mn, Ba, Zn, Cu, and Cr were enriched at the regolith in profiles A and B, but depleted in profile C. Mn, Pb, and Co were also depleted in the saprock and fractured shale zones in profiles A and B and enriched in profile C. REEs were enriched in the regolith and depleted at the saprock zone in profiles A and B and depleted along profile C. Mobility of trace and REEs increased with increasing weathering intensity. Normalized REE patterns based on the parent shale revealed light REE (LREE) enrichment, middle REE (MREE), and heavy REE (HREE) depletion patterns. LREEs were less mobile compared with MREEs and HREEs, and this differentiation increased with increasing weathering degree. Positive Ce anomalies were higher in profile C than in profiles A and B. The Ce fractionated from other REE showed that Ce changed from trivalent to tetravalent (as CeO2) under oxidizing conditions. Minimal REE fractionation was observed in the saprock zone in profiles A and B. In contrast, more intense weathering in profile C resulted in preferential retention of LREE (especially Ce), leading to considerable LREE/MREE and LREE/HREE fractionation. (La/Yb)N and (La/Sm)N ratios displayed maximum values in the saprock zone within low pH values. Findings demonstrate that acidic solutions can mobilize REEs and result in leaching of REEs out of the highly acidic portions of the saprock material and transport downward into fractured shale. The overall behavior of elements in the three profiles suggests that solution pH, as well as the presence of primary and secondary minerals, play important roles in the mobilization and redistribution of trace elements and REEs during black shale chemical weathering.  相似文献   

12.
《Applied Geochemistry》2005,20(7):1258-1267
Distributions of 21 major and trace elements in HNO3 extracts of different horizons were studied in 13 podzol profiles from the boreal forest in different parts of Norway using ICP–MS. On the basis of ratios between the HNO3-extractable fractions in the various horizons some general trends were elucidated. Two different groups of elements concentrated in the humus layer relative to the mineral horizons were identified, one mainly associated with contributions from air pollution (As, Cd, Sb, Pb), another one with plant nutrient circulation (K, Ca, Mn and to a lesser extent Mg, Co, Ni, Rb) and some with both mechanisms (Cu, Zn, Tl). The elements most clearly enriched along with Fe in the B horizon were V, Pb, Al, and Cr in that order, Pb partly because of leaching from the polluted organic surface soil. Four soils in the far south showed a behaviour distinctly different from the rest and were treated as a separate group. Relative to the more northerly sites the surface horizons of these soils were strongly depleted in lithogenic elements (Mg, Al, K, Ca, Sc, V, Cr, Mn, Fe, Co, La) and enriched in elements typical of long-range transport of pollutants (As, Cd, Sb, Tl, Pb). Also the B horizon in the southern soils was strongly depleted in the lithogenic group elements, including Fe and the associated metals. The main reason for this difference is assumed to be the greater influence of transboundary air pollution and associated metals and stronger soil acidification in the far south of the country.  相似文献   

13.
Rock samples and the C-, B- and O-horizons of soils developed on these rocks were collected in forested areas along a 120-km south–north transect in southern Norway, passing through the city of Oslo. Forty samples (1 site/3 km) were analysed for 37 chemical elements (Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sr, Te, Th, Ti, Tl, U, V, W and Zn) following an aqua regia digestion; pH (water extract) and loss on ignition were also determined. The O-horizon soils were additionally analysed for Pt. Gold is the only element that shows a clear anthropogenic peak in the O-horizon soils collected from the city of Oslo. Silver, Au, Bi, Cd, Hg, Pb, S, Sb, Se and Sr all show a strong enrichment in the O-horizon when compared to the underlying C-horizon or the bedrock along the full length of the transect. Neither geology nor anthropogenic input of elements dominate the observed patterns. The most important factors for the observed element concentrations in the O-horizon are weathering, uptake (or rejection) of elements by plants and the kinetics of decay of the organic material in the O-horizon. Climate, especially temperature and precipitation, has an important influence on the formation and decay rates of the organic soil layer. Acid precipitation will delay the decomposition of the organic layer and lead to a natural enrichment of several metals in the O-horizon. Land use change, deforestation and liming can all increase the decay kinetics of organic matter and thus result in a release of the stored element pool.  相似文献   

14.
This study analyzed the concentrations and chemical forms of Zn,Cu,Pb,Sb,Cd and Mn in airborne particles,road dusts and soils collected along three expressways in Jiangxi Province,China,with different traffic densities,and identified the levels and sources of heavy metal contamination.The concentrations of Zn,Cu,Pb,Sb,and Cd except Mn in airborne particles,road dusts and soils were all in direct proportion to traffic volume.Cd concentrations were low compared with other metals.For instance,the concentrations of Zn,Cu,Pb,Sb,Mn and Cd were 6.6,0.7,2.2,0.1,0.1 and 0.1μg·m-3in PM10along the Changjiu Expressway,792.8,241.4,248.3,9.6,340.5and 8.0 mg·kg-1in road dusts,and 201.1,143.2,59.5,9.5,338.9 and 2.3 mg·kg-1in soils,respectively,but in the case of the ratio of concentration to the environmental background value,most serious contamination was caused by Cd.The sources of the heavy metals were judged by comparisons of the chemical forms of the heavy metals in different environmental media.Pb and Mn in airborne particles were both derived from traffic;Pb in road dusts and soils resulted mainly from the use of leaded gasoline in the past;and Mn in road dusts and soils was derived from parent rocks.Zn,Cu,Sb and Cd in airborne particles,road dusts and soils were derived primarily from traffic,and differences in chemical forms of the heavy metals in different media were due to the interaction between heavy metals in airborne particles and organic matter and other surfaces in road dusts and soils.We also discussed the change of chemical forms of heavy metals in particles of different sizes and under different weather conditions.Bioavailability of heavy metals in airborne particles was much higher than that in road dusts and soils,especially Pb(0.676 in airborne particles,0.159 in road dusts and 0.095 in soils).  相似文献   

15.
With a few exceptions, shales from the Archean Witwatersrand Supergroup (~2800 Ma) in South Africa are depleted in Na, Ca, LILE, REE and HFSE compared to Phanerozoic shales. Cr, Co and Ni are enriched in all Witwatersrand shales and Fe and Mg are high in shales from the West Rand Groups (WRG) and lower Central Rand Group (CRG). Shales from the CRG and uppermost WRG are enriched in Na, Al, LILE, REE, HFSE and transition metals relative to shales from the lower WRG. Chondrite-normalized REE patterns for all Witwatersrand shales are enriched in light-REE and exhibit small to moderate negative Eu anomalies. A positive correlation of REE and Al2O3 contents in the shales suggests that REE are contained principally in clay minerals.Relative to shales from the CRG, shales from the WRG exhibit depletions of Na, Ca and Sr, a feature probably reflecting intense chemical weathering of their source rocks. CIA indices in Witwatersrand shales are variable (chiefly 70–98), even within the same shale unit. Such variations reflect chiefly variable climatic zones or rates of tectonic uplift in source areas with perhaps some contribution from provenance and element remobilization during metamorphism.Compared to present-day upper continental crust, all but the Orange Grove, Roodepoort, and K8 shales appear to have been derived from continental sources depleted in LILE, REE, and HFSE and enriched in transition metals. Computer mixing models based on six relatively immobile elements (Th, Hf, Yb, La, Sc, Co) and four source rocks indicate that the relative proportions of granite, basalt and komatiite increased with time in sediment source areas at the expense of tonalite. The contributions of basalt and komatiite appear to reach a maximum during deposition of the Booysens shale, and granite during deposition of the K8 shales and possibly during deposition of the Orange Grove shales.  相似文献   

16.
M. Frei  U. Bielert  H. Heinrichs   《Chemical Geology》2000,170(1-4):221-242
Thirty-four springs were sampled on five different source rocks in the upper Ecker watershed of the Northern Harz Mountains (Germany) four times during the course of 1995. The analyses included 41 cations and the major anions. Approximately 90% of the rocks in the upper Ecker watershed are low in basic cations, which inhibit the neutralisation of hydrogen-ion loading. As a consequence, the concentrations of Al, Fe, Mn, Zn, Pb, Y, Ce, As, La, Nd, Cd, Be, Co, Sb, Pr, Gd, Dy, Yb, Er, Sm, U, Tl, Ho and Tb of the Ecker dam water (pH=5.1) exceed those of the nearby Söse Dam water (pH=6.5) by almost one order of magnitude or more. With the exception of the spring waters on gabbro (pH up to 7.7) all waters on the highly siliceous rocks (quartzite, granite and gneiss) are dominated by sulfate anions with a pH range of 4–6. The concentrations of major conservative ions show a progressive increase with decreasing catchment elevation and decreasing average precipitation. Trace elements such as Sr, Be, Zn, Cd, Ba, Y, La, lanthanides, U, Li, Ni, Al, Mn, Co, Cu, Pb, As, Sb and Tl are increased in the low acid neutralizing capacity (ANC(aq)) spring waters. The behaviours of Sr, Be, Zn, Cd, Ba, Y, La, lanthanides and U resemble that of the major cations. The highest concentrations of Li and Ni are found on quartzite. Al, Mn, Co and Cu exhibit no clear correlation with catchment elevation and one particular bedrock. The concentrations of V and Cr show a distinct increase in high ANC(aq) spring waters on gabbro. Pb, As, Sb and Tl are characterized by being found in relatively high concentrations on granite at higher altitudes. Pb, As and Sb are affected by contaminated soils. The extreme variability of trace element concentrations of low ANC(aq) spring waters cannot be explained by the rock data. It is mainly controlled by the topography-dependent weathering rates of the different rock-types and the decreasing dilution with decreasing catchment elevation.  相似文献   

17.
The acid mine drainage (AMD) discharged from the Hejiacun uranium mine in central Hunan (China) was sampled and analyzed using ICP-MS techniques. The analyzing results show that the AMD is characterized by the major ions FeTotal, Mn, Al and Si, and is concentrated with heavy metals and metalloids including Cd, Co, Ni, Zn, U, Cu, Pb, Tl, V, Cr, Se, As and Sb. During the AMD flowing downstream, the dissolved heavy metals were removed from the AMD waters through adsorption onto and co-precipitation with metal-oxhydroxides coated on the streambed. Among these metals, Cd, Co, Ni, Zn, U, Cu, Pb and Tl are negatively correlated to pH values, and positively correlated to major ions Fe, Al, Si, Mn, Mg, Ca and K. The metals/metalloids V, Cr, Se, As and Sb are conservative in the AMD solution, and negatively-correlated to major ions Na, Ca and Mg. Due to the above different behaviors of these chemical elements, the pH-negatively related metals (PM) and the conservative metals (CM) are identified; the PM metals include Cd, Co, Ni, Zn, U, Cu, Pb and Tl, and the CM metals V, Cr, Se, As and Sb. Based on understanding the geochemistry of PM and CM metals in the AMD waters, a new equation: EXT = (Acidity + PM)/pH + CM × pH, is proposed to estimate and evaluate extent of heavy-metal pollution (EXT) of AMD. The evaluation results show that the AMD and surface waters of the mine area have high EXT values, and they could be the potential source of heavy-metal contamination of the surrounding environment. Therefore, it is suggested that both the AMD and surface waters should be treated before they are drained out of the mine district, for which the traditional dilution and neutralization methods can be applied to remove the PM metals from the AMD waters, and new techniques through reducing the pH value of the downstream AMD waters should be developed for removal of the CM metals.  相似文献   

18.
Shuiyindong is one of the largest and highest grade stratabound Carlin-type gold deposits in China. This paper reports on the results of petrographic studies, electron microprobe analyses (EMPA) of arsenian pyrite, and the mass transfer during mineralization and alteration, and it presents the deposit-scale distributions of Au, As, Sb, Hg, Tl, and trace elements in a representative cross section across the Shuiyindong Carlin-type gold deposit, Guizhou Province. The main objectives were to identify the precipitation mechanisms of minerals, or elements from fluids, and the migration paths of ore-forming fluids.Petrographic and EMPA studies indicate that gold in the primary ores is mainly hosted by arsenian pyrite. Mass transfer associated with alteration and mineralization shows that Au, As, Sb, Hg, Tl, and S were significantly added to all mineralized rocks, Fe2O3 and SiO2 were immobile in the main orebodies that are hosted in bioclastic limestone, and CaO, Na2O, Sr, and Li were removed from country rocks. The relations between Fe and S indicate that the sedimentary rocks at the Shuiyindong deposit contain more iron than is needed to combine with all of their contained sulfur to form pyrite. This suggests that sulfidation and decarbonation were the principal mechanism of gold precipitation at the Shuiyindong deposit. Hg, Sb, and As commonly formed sulfide minerals, such as stibnite, realgar, and orpiment, in late-stage quartz–calcite veins, or absorbed by organic matter in argillite. Fluid cooling presumably led to depositions of stibnite, realgar, and orpiment in late-stage quartz–calcite veins. Organic matter likely served as a reductant in argillite for the ore fluids, causing the precipitation of As, Sb, Hg, and S, as well as Au.Deposit-scale distributions of gold and other relevant elements reflect the passage of fluids through the rocks. Rock strata and structures allowed the ore-forming fluids to migrate horizontally along the unconformity surface of the Middle–Upper Permian, converge on the high position of an anticline, and then ascend into the overlying strata along the anticlinal axis. The distributions of the major and trace elements show that elements that accompanied the ore-forming fluids include Au, As, Sb, Hg, Tl, and S, and that Na2O and Li were exhausted in the Longtan Formation at the anticlinal core during gold mineralization. The enrichment of Co, Cr, and Ni in the Longtan Formation at the anticlinal core might be associated with deformation that formed the anticline, or with gold mineralization. Different host rocks were preferentially mineralized by different elements. The bioclastic limestone is commonly enriched in Au, whereas the argillite is preferentially enriched in As, Hg, Sb, and Tl. The zonation of ore-forming elements in the deposit appears to be Sb–Tl–As–Hg–Au–Hg–As (from bottom to top). Enrichment of Au, As, Sb, Hg, and Tl provides useful guidance for the exploration for Carlin-type gold deposits in Guizhou. Anomalies of As and Hg in soil or stream sediment might be an important clue and these elements can be used as indicator elements. Ore-forming fluids migrated along the unconformity surface of the Middle–Upper Permian and the anticlinal axis, so these are favorable sites for exploration for Carlin-type gold deposits in Guizhou.  相似文献   

19.
There is an increasing interest in the distribution of rare earth elements (REEs) within soils, primarily as these elements can be used to identify pedogenetic processes and because soils may be future sources for REE extraction, despite much attention should be paid to the protection and preservation of present soils. Here, we evaluate the processes that control the distribution of REEs in subsoil horizons developed over differing lithologies in an area of low anthropogenic contamination, allowing estimates of the importance of source rocks and weathering. Specifically, this study presents new data on the distribution of REEs and other trace elements, including transition and high-field-strength elements, in subsoils developed on both Quaternary silica-undersaturated volcanic rocks and Pliocene siliciclastic sedimentary rocks within the Mt. Vulture area of the southern Apennines in Italy. The subsoils in the Mt. Vulture area formed during moderate weathering (as classified using the chemical index of alteration) and contain an assemblage of secondary minerals that is dominated by trioctahedral illite with minor vermiculite. The REEs, high-field-strength elements, and transition metals have higher abundances in subsoils that developed from volcanic rocks, and pedogenesis caused the Mt. Vulture subsoils to have REE concentrations that are an order of magnitude higher than typical values for the upper continental crust. This result indicates that the distribution of REEs in soils is a valuable tool for mineral exploration. A statistical analysis of inter-elemental relationships indicates that REEs are concentrated in clay-rich fractions that also contain significant amounts of low-solubility elements such as Zr and Th, regardless of the parent rock. This suggests that low-solubility refractory minerals, such as zircon, play a significant role in controlling the distribution of REEs in soils. The values of (La/Yb)N and (Gd/Yb)N fractionation indices are dependent on the intensity of pedogenesis; soils in the study area have values that are higher than typical upper continental crust ratios, suggesting that soils, especially those that formed during interaction with near neutral to acidic organic-rich surface waters, may represent an important source of both light REEs and medium REEs (MREEs). In comparison, MREE/heavy REE fractionation in soils that form during moderate weathering may be affected by variations in parent rock lithologies, primarily as MREE-hosting minerals, such as pyroxenes, may control (La/Sm)N index values. Eu anomalies are thought to be the most effective provenance index for sediments, although the anomalies within the soils studied here are not related to the alteration of primary minerals, including feldspars, to clay phases. In some cases, Eu/Eu* values may have a weak correlation with elements hosted by heavy minerals, such as Zr; this indicates that the influence of mechanical sorting of clastic particles during sedimentary transport on the Eu/Eu* values of siliciclastic sediments needs to be considered carefully.  相似文献   

20.
Gossans associated with the Dugald River zinc-lead lode contain anomalous concentrations of Zn, Pb, Ag, As, Cd, Cu, Sb, Se, Tl and Ba and differ from those on the more pyritic Western Lode (Zn, Pb, Cu, As, Tl) and those associated with copper mineralization in the hanging wall (As, Bi, Co, Cu, Mo, Ni, Sb). Mineralogical and geochemical variations in gossans along strike reflect changes in primary ore and gangue mineralogy, particularly towards the north, where the Dugald River lode and hanging wall copper mineralization merge. Leaching of more soluble elements from the surface and re-precipitation below have resulted in large geochemical variations in the top metre of the profile.Dispersion into wall rocks has occurred over two distinct periods: hydromorphic dispersion, before erosion removed much of the gossan and surrounding Corella Formation, has resulted in very high Zn contents (up to 9%) in the footwall, whereas a more even dispersion of target and pathfinder elements into hanging and footwall rocks is from recent weathering of the slightly elevated gossan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号