首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一种V/S和LSTM结合的滑坡变形分析方法   总被引:1,自引:0,他引:1       下载免费PDF全文
滑坡变形的产生是坡体自身地质条件和外部诱发条件共同作用的结果,滑坡变形定量预测是滑坡监测预警的关键。传统的基于滑坡累计位移-时间曲线分析滑坡变形的方法,忽略了滑坡变形演化的影响因素,难以对滑坡变形进行准确预测。三峡库区滑坡研究多集中在滑坡时空分布特征和滑坡整体稳定性分析方面,亟需开展单体滑坡综合变形分析。以三峡库区白水河滑坡为例,基于滑坡宏观变形和位移监测数据,利用重标方差(rescaled variance statistic,V/S)分析法对滑坡整体和局部变形趋势进行分析,进而构建考虑库水位波动和降雨滞后性影响因素的可有效利用长期依赖信息的长短记忆(long short-term memory,LSTM)神经网络模型,定量预测滑坡位移。研究结果表明,滑坡体属牵引式滑坡,北东部稳定性较差,西部和后缘相对稳定,预测值的均方根误差为8.95 mm,证明该模型是一种高性能的滑坡变形分析方法。  相似文献   

2.
Landslide hazard assessment at the Mu Cang Chai district; Yen Bai province (Viet Nam) has been done using Random SubSpace fuzzy rules based Classifier Ensemble (RSSCE) method and probability analysis of rainfall data. RSSCE which is a novel classifier ensemble method has been applied to predict spatially landslide occurrences in the area. Prediction of temporally landslide occurrences in the present study has been done using rainfall data for the period 2008–2013. A total of fifteen landslide influencing factors namely slope, aspect, curvature, plan curvature, profile curvature, elevation, land use, lithology, rainfall, distance to faults, fault density, distance to roads, road density, distance to rivers, and river density have been utilized. The result of the analysis shows that RSSCE and probability analysis of rainfall data are promising methods for landslide hazard assessment. Finally, landslide hazard map has been generated by integrating spatial prediction and temporal probability analysis of landslides for the land use planning and landslide hazard management.  相似文献   

3.
Rainfall-triggered shallow landslide is very common in Korean mountains and the socioeconomic impact is much higher than in the past due to population pressure in hazardous zones. Present study is an attempt toward the development of a methodology for the integration of shallow landslide susceptibility zones and runout zones that could be reached by mobilized mass. Landslide occurrence areas in Yongin were determined based on the interpretation of aerial photographs and extensive field surveys. Nineteen landslide-related factors maps were collected and analysed in geographic information system environment. Among 109 identified landslides, about 85% randomly selected training landslide data from inventory map was used to generate an evidential belief function model and remaining 15% landslides were used to validate the shallow landslide susceptibility map. The resulting susceptibility map had a success rate of 89.2% and a predictive accuracy of 92.1%. A runout propagation from high susceptible area was obtained from the modified multiple-flow direction algorithm. A matrix was used to integrate the shallow landslide susceptibility classes and the runout probable zone. Thus, each pixel had a susceptibility class in relation to its failure probability and runout susceptibility class. The study of landslide potential and its propagation can be used to obtain a spatial prediction for landslides, which could contribute to landslide risk mitigation.  相似文献   

4.
A comprehensive Landslide Susceptibility Zonation (LSZ) map is sought for adopting any landslide preventive and mitigation measures. In the present study, LSZ map of landslide prone Ganeshganga watershed (known for Patalganga Landslide) has been generated using a binary logistic regression (BLR) model. Relevant thematic layers pertaining to the causative factors for landslide occurrences, such as slope, aspect, relative relief, lithology, tectonic structures, lineaments, land use and land cover, distance to drainage, drainage density and anthropogenic factors like distance to road, have been generated using remote sensing images, field survey, ancillary data and GIS techniques. The coefficients of the causative factors retained by the BLR model along with the constant have been used to construct the landslide susceptibility map of the study area, which has further been categorized into four landslide susceptibility zones from high to very low. The resultant landslide susceptibility map was validated using receiver operator characteristic (ROC) curve analysis showing an accuracy of 95.2 % for an independent set of test samples. The result also showed a strong agreement between distribution of existing landslides and predicted landslide susceptibility zones.  相似文献   

5.
Integration of satellite remote sensing data and GIS techniques is an applicable approach for landslide mapping and assessment in highly vegetated regions with a tropical climate. In recent years, there have been many severe flooding and landslide events with significant damage to livestock, agricultural crop, homes, and businesses in the Kelantan river basin, Peninsular Malaysia. In this investigation, Landsat-8 and phased array type L-band synthetic aperture radar-2 (PALSAR-2) datasets and analytical hierarchy process (AHP) approach were used to map landslide in Kelantan river basin, Peninsular Malaysia. Landslides were determined by tracking changes in vegetation pixel data using Landsat-8 images that acquired before and after flooding. The PALSAR-2 data were used for comprehensive analysis of major geological structures and detailed characterizations of lineaments in the state of Kelantan. AHP approach was used for landslide susceptibility mapping. Several factors such as slope, aspect, soil, lithology, normalized difference vegetation index, land cover, distance to drainage, precipitation, distance to fault, and distance to the road were extracted from remotely sensed data and fieldwork to apply AHP approach. The excessive rainfall during the flood episode is a paramount factor for numerous landslide occurrences at various magnitudes, therefore, rainfall analysis was carried out based on daily precipitation before and during flood episode in the Kelantan state. The main triggering factors for landslides are mainly due to the extreme precipitation rate during the flooding period, apart from the favorable environmental factors such as removal of vegetation within slope areas, and also landscape development near slopes. Two main outputs of this study were landslide inventory occurrences map during 2014 flooding episode and landslide susceptibility map for entire Kelantan state. Modeled/predicted landslides with a susceptible map generated prior and post-flood episode, confirmed that intense rainfall throughout Kelantan has contributed to produce numerous landslides with various sizes. It is concluded that precipitation is the most influential factor for landslide event. According to the landslide susceptibility map, 65% of the river basin of Kelantan is found to be under the category of low landslide susceptibility zone, while 35% class in a high-altitude segment of the south and south-western part of the Kelantan state located within high susceptibility zone. Further actions and caution need to be remarked by the local related authority of the Kelantan state in very high susceptibility zone to avoid further wealth and people loss in the future. Geo-hazard mitigation programs must be conducted in the landslide recurrence regions for reducing natural catastrophes leading to loss of financial investments and death in the Kelantan river basin. This investigation indicates that integration of Landsat-8 and PALSAR-2 remotely sensed data and GIS techniques is an applicable tool for Landslide mapping and assessment in tropical environments.  相似文献   

6.
滑坡敏感性评价是地质灾害预测预报的关键环节。针对BP神经网络易陷入局部最小值、收敛速度慢等问题,该文以三峡库区秭归县境内为研究区,采用粒子群优化(PSO)算法对BP神经网络的初始权值和阈值进行优化,构建PSO-BP神经网络滑坡敏感性预测模型,实现研究区滑坡敏感性评价。采用受试者工作特征曲线分析模型预测精度,得到PSO-BP神经网络预测精度为0.931,预测结果与实际滑坡总体空间分布具有良好的一致性,且预测能力优于BP神经网络。实验结果表明,PSO-BP神经网络耦合模型在实现滑坡敏感性评价上具有理想的预测精度和良好的适用性。  相似文献   

7.
In this study, the spatial prediction of rainfall-induced landslides at the Pauri Gahwal area, Uttarakhand, India has been done using Aggregating One-Dependence Estimators (AODE) classifier which has not been applied earlier for landslide problems. Historical landslide locations have been collated with a set of influencing factors for landslide spatial analysis. The performance of the AODE model has been assessed using statistical analyzing methods and receiver operating characteristic curve technique. The predictive capability of the AODE model has also been compared with other popular landslide models namely Support Vector Machines (SVM), Radial Basis Function Neural Network (ANN-RBF), Logistic Regression (LR), and Naïve Bayes (NB). The result of analysis illustrates that the AODE model has highest predictability, followed by the SVM model, the ANN-RBF model, the LR model, and the NB model, respectively. Thus AODE is a promising method for the development of better landslide susceptibility map for proper landslide hazard management.  相似文献   

8.
Landslide hazards are a major natural disaster that affects most of the hilly regions around the world. In India, significant damages due to earthquake induced landslides have been reported in the Himalayan region and also in the Western Ghat region. Thus there is a requirement of a quantitative macro-level landslide hazard assessment within the Indian subcontinent in order to identify the regions with high hazard. In the present study, the seismic landslide hazard for the entire state of Karnataka, India was assessed using topographic slope map, derived from the Digital Elevation Model (DEM) data. The available ASTER DEM data, resampled to 50 m resolution, was used for deriving the slope map of the entire state. Considering linear source model, deterministic seismic hazard analysis was carried out to estimate peak horizontal acceleration (PHA) at bedrock, for each of the grid points having terrain angle 10° and above. The surface level PHA was estimated using nonlinear site amplification technique, considering B-type NEHRP site class. Based on the surface level PHA and slope angle, the seismic landslide hazard for each grid point was estimated in terms of the static factor of safety required to resist landslide, using Newmark’s analysis. The analysis was carried out at the district level and the landslide hazard map for all the districts in the Karnataka state was developed first. These were then merged together to obtain a quantitative seismic landslide hazard map of the entire state of Karnataka. Spatial variations in the landslide hazard for all districts as well as for the entire state Karnataka is presented in this paper. The present study shows that the Western Ghat region of the Karnataka state is found to have high landslide hazard where the static factor of safety required to resist landslide is very high.  相似文献   

9.
A GIS-based statistical methodology for landslide susceptibility zonation is described and its application to a study area in the Western Ghats of Kerala (India) is presented. The study area was approximately 218.44 km2 and 129 landslides were identified in this area. The environmental attributes used for the landslide susceptibility analysis include geomorphology, slope, aspect, slope length, plan curvature, profile curvature, elevation, drainage density, distance from drainages, lineament density, distance from lineaments and land use. The quantitative relationship between landslides and factors affecting landslides are established by the data driven-Information Value (InfoVal) — method. By applying and integrating the InfoVal weights using ArcGIS software, a continuous scale of numerical indices (susceptibility index) is obtained with which the study area is divided into five classes of landslide susceptibility. In order to validate the results of the susceptibility analysis, a success rate curve was prepared. The map obtained shows that a great majority of the landslides (74.42%) identified in the field were located in susceptible and highly susceptible zones (27.29%). The area ratio calculated by the area under curve (AUC) method shows a prediction accuracy of 80.45%. The area having a high scale of susceptibility lies on side slope plateaus and denudational hills with high slopes where drainage density is relatively low and terrain modification is relatively intense.  相似文献   

10.
滑坡遥感调查、监测与评估   总被引:17,自引:2,他引:17  
滑坡遥感调查包括滑坡识别、基本信息获取和滑坡空间分析等,本文以天台乡滑坡遥感调查中用特征点法确定滑坡边界、影响带及滑坡运动特征及规模为例说明。滑坡遥感监测可分为直接监测和间接监测。由于突发的高速超高速崩塌、滑坡及泥石流活动时间难以预测,滑坡运动的规模相对于遥感地面分辨率较小,获取遥感数据的不连续性及价格昂贵等原因,目前较少应用遥感技术直接监测滑坡活动; 遥感监测滑坡运动引起的环境变化,称为间接滑坡监测,以遥感监测易贡大滑坡引起的易贡湖水面变化及溃坝造成的下游灾害为例说明。滑坡遥感评估指在获取滑坡及其发育环境基本信息的基础上,评估滑坡的稳定性,预测其未来活动性,评估区域滑坡的影响因子和进行区域滑坡危险性评价,文中以天台乡滑坡、千将坪滑坡稳定性评估及三峡库区中前段区域滑坡危险性评价为例说明。  相似文献   

11.
中国滑坡遥感及新进展   总被引:1,自引:2,他引:1  
自本世纪初起,由于采用了“数字滑坡技术”和高分辨率遥感数据,滑坡遥感成为能更准确的定性、定位、定量的滑坡调查 手段,可进行区域的和大型个体滑坡的详细调查和监测研究。“数字滑坡”技术的实现基于滑坡地学原理并依赖遥感技术、数字摄 影测量及图像处理技术、GIS技术和计算机技术的支持。该项技术大致可分为4大部分:滑坡识别、滑坡基本信息获取、信息存贮和 管理及空间分析。20世纪末期以来,数字滑坡技术在应用中不断完善和获得新进展。  相似文献   

12.
Abstract

The main objective of this study is to assess the relative contribution of the state-of-the-art topo-hydrological factor, known as height above the nearest drainage (HAND), to landslide susceptibility modellling using three novel statistical models: weights-of-evidence (WofE), index of entropy and certainty factor. In total, 12 landslide conditioning factors that affect the landslide incidence were used as input to the models in the Ziarat Watershed, Golestan Province, Iran. Landslide inventory was randomly divided into a ratio of 70:30 for training and validating the results of the models. The optimum combination of conditioning factors was identified using the principal components analysis (PCA) method. The results demonstrated that HAND is the defining factor among hydrological and topographical factors in the study area. Additionally, the WofE model had the highest prediction capability (AUPRC = 74.31%). Therefore, HAND was found to be a promising factor for landslide susceptibility mapping.  相似文献   

13.
The aims of this study were to apply, verify and compare a frequency ratio model for landslide hazards, considering future climate change and using a geographic information system in Inje, Korea. Data for the future climate change scenario (A1B), topography, soil, forest, land cover and geology were collected, processed and compiled in a spatial database. The probability of landslides in the study area in target years in the future was then calculated assuming that landslides are triggered by a daily rainfall threshold. Landslide hazard maps were developed for the two study areas, and the frequency ratio for one area was applied to the other area as a cross-check of methodological validity. Verification results for the target years in the future were 82.32–84.69%. The study results, showing landslide hazards in future years, can be used to help develop landslide management plans.  相似文献   

14.
In this paper, GIS-based ordered weighted averaging (OWA) is applied to landslide susceptibility mapping (LSM) for the Urmia Lake Basin in northwest Iran. Nine landslide causal factors were used, whereby the respective parameters were extracted from an associated spatial database. These factors were evaluated, and then the respective factor weight and class weight were assigned to each of the associated factors using analytic hierarchy process (AHP). A landslide susceptibility map was produced based on OWA multicriteria decision analysis. In order to validate the result, the outcome of the OWA method was qualitatively evaluated based on an existing inventory of known landslides. Correspondingly, an uncertainty analysis was carried out using the Dempster–Shafer theory. Based on the results, very strong support was determined for the high susceptibility category of the landslide susceptibility map, while strong support was received for the areas with moderate susceptibility. In this paper, we discuss in which respect these results are useful for an improved understanding of the effectiveness of OWA in LSM, and how the landslide prediction map can be used for spatial planning tasks and for the mitigation of future hazards in the study area.  相似文献   

15.
In this study, landslide susceptibility assessments were achieved using logistic regression, in a 523 km2 area around the Eastern Mediterranean region of Southern Turkey. In reliable landslide susceptibility modeling, among others, an appropriate landslide sampling technique is always essential. In susceptibility assessments, two different random selection methods, ranging 78–83% for the train and 17–22% validation set in landslide affected areas, were applied. For the first, the landslides were selected based on their identity numbers considering the whole polygon while in the second, random grid cells of equal size of the former one was selected in any part of the landslides. Three random selections for the landslide free grid cells of equal proportion were also applied for each of the landslide affected data set. Among the landslide preparatory factors; geology, landform classification, land use, elevation, slope, plan curvature, profile curvature, slope length factor, solar radiation, stream power index, slope second derivate, topographic wetness index, heat load index, mean slope, slope position, roughness, dissection, surface relief ratio, linear aspect, slope/aspect ratio have been considered. The results showed that the susceptibility maps produced using the random selections considering the entire landslide polygons have higher performances by means of success and prediction rates.  相似文献   

16.
自2003年蓄水以来,三峡库区已查明的滑坡或潜在滑坡高达5000余处,这些灾害对三峡水库的持续运营、大坝、航道及库区居民的安全造成了严重的威胁。通过研究滑坡的变形特征、诱发因素及失稳机制,有助于开展滑坡的稳定性评价,并构建预警预报模型。以三峡库区八字门滑坡为研究对象,综合分析降雨、库水位、人工和自动GNSS监测等数据,结合勘查资料及野外宏观巡查,研究了滑坡的变形特征及失稳机理,并确定合理的预警判据及阈值。研究表明:①八字门滑坡整体变形明显,处于蠕动变形阶段,滑坡变形主要集中于每年5—9月,滑坡累积曲线呈现典型的“阶跃”状变形特性。②滑坡的变形受斜坡结构、岩性等因素的控制,水库水位下降是滑坡变形的主要驱动因素,并与库水下降速率正相关。另外,特大暴雨和持续降雨在水位下降阶段、水库低水位运行期及水位上升期会促进滑坡变形,是滑坡的次要驱动因素。③通过精细化数据分析以及改进切线角法获取的八字门滑坡出现“阶跃”变形的位移速率阈值为4.6 mm/d,7 d累积降雨量阈值为60 mm,库水位阈值为159 m,库水位下降速率阈值0.4 m/d。  相似文献   

17.
黄河上游干流地区由于特殊的地形地貌和地质构造使得滑坡灾害频发,对其开展滑坡灾害监测、分析研究,具有十分重要的意义。本文利用2015年间Google Earth遥感数据,提取并分析了该地区的滑坡灾害分布信息,取得了如下成果及认识:1)研究区的空间展布形态主要有7种,滑体性质类型有6种,岩质滑坡数量最多。2)从空间分布特征看,共发现研究区有各类滑坡162处,滑坡主要集中分布在群科-尖扎盆地;从滑坡类型看,研究区滑坡主要为大型滑坡和巨型滑坡。3)滑坡体长、宽主要集中在0~1 500 m和500~1 500 m之间,且长、宽呈两极化方向延伸,滑坡体面积分布不均,滑坡数量随着方量的增大呈现减少的趋势,发生的滑坡主要是滑坡体厚度在25~50 m的深层滑坡。4)滑坡数量在0°~90°之间有峰值出现,然后向两端逐渐减少。  相似文献   

18.
On 3 August 2014, an earthquake struck Ludian County, Yunnan Province, China, which has caused a large number of coseismic landslides. Visual interpretation permitted 284 and 1053 landslides before and after the event to be mapped, respectively. This work attempted to analyse these two kinds of landslides. Conditioning factors, such as slope angle, aspect, curvature, elevation, distance from drainages, intensity and lithology, and the index of Landslide Number Density (LND) were used to describe the spatial distribution of these landslides. Then, the pre-earthquake and coseismic landslide susceptibility maps were produced using the information value model. The areas under curve are 84.73 and 77.05%, for the pre-earthquake and coseismic landslides, respectively. The results show that the LND values as well as the information values of coseismic landslides are larger than those of the pre-earthquake case. This also indicates that this Ludian earthquake has a relatively larger ability to trigger landslides.  相似文献   

19.
Natural hazards constitute a diverse category and are unevenly distributed in time and space. This hinders predictive efforts, leading to significant impacts on human life and economies. Multi-hazard prediction is vital for any natural hazard risk management plan. The main objective of this study was the development of a multi-hazard susceptibility mapping framework, by combining two natural hazards—flooding and landslides—in the North Central region of Vietnam. This was accomplished using support vector machines, random forest, and AdaBoost. The input data consisted of 4591 flood points, 1315 landslide points, and 13 conditioning factors, split into training (70%), and testing (30%) datasets. The accuracy of the models' predictions was evaluated using the statistical indices root mean square error, area under curve (AUC), mean absolute error, and coefficient of determination. All proposed models were good at predicting multi-hazard susceptibility, with AUC values over 0.95. Among them, the AUC value for the support vector machine model was 0.98 and 0.99 for landslide and flood, respectively. For the random forest model, these values were 0.98 and 0.98, and for AdaBoost, they were 0.99 and 0.99. The multi-hazard maps were built by combining the landslide and flood susceptibility maps. The results showed that approximately 60% of the study area was affected by landslides, 30% by flood, and 8% by both hazards. These results illustrate how North Central is one of the regions of Vietnam that is most severely affected by natural hazards, particularly flooding, and landslides. The proposed models adapt to evaluate multi-hazard susceptibility at different scales, although expert intervention is also required, to optimize the algorithms. Multi-hazard maps can provide a valuable point of reference for decision makers in sustainable land-use planning and infrastructure development in regions faced with multiple hazards, and to prevent and reduce more effectively the frequency of floods and landslides and their damage to human life and property.  相似文献   

20.
Geospatial database creation for landslide susceptibility mapping is often an almost inhibitive activity. This has been the reason that for quite some time landslide susceptibility analysis was modelled on the basis of spatially related factors. This paper presents the use of frequency ratio, fuzzy logic and multivariate regression models for landslide susceptibility mapping on Cameron catchment area, Malaysia, using a Geographic Information System (GIS) and remote sensing data. Landslide locations were identified in the study area from the interpretation of aerial photographs, high resolution satellite images, inventory reports and field surveys. Topographical, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing tools. There were nine factors considered for landslide susceptibility mapping and the frequency ratio coefficient for each factor was computed. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land cover from TM satellite image; the vegetation index value from Landsat satellite images; and precipitation distribution from meteorological data. Using these factors the fuzzy membership values were calculated. Then fuzzy operators were applied to the fuzzy membership values for landslide susceptibility mapping. Further, multivariate logistic regression model was applied for the landslide susceptibility. Finally, the results of the analyses were verified using the landslide location data and compared with the frequency ratio, fuzzy logic and multivariate logistic regression models. The validation results showed that the frequency ratio model (accuracy is 89%) is better in prediction than fuzzy logic (accuracy is 84%) and logistic regression (accuracy is 85%) models. Results show that, among the fuzzy operators, in the case with “gamma” operator (λ = 0.9) showed the best accuracy (84%) while the case with “or” operator showed the worst accuracy (69%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号