Results of a study of the influence of solar-type host stars superflares on the gas dynamics of the extended envelopes of giant exoplanets are presented. During flare events, the radiation intensity of the host star in the extreme ultraviolet and soft X-ray can increase by several orders of magnitude for a short time, leading to strong local heating of the exoplanet atmosphere on the side facing the star, with the formation of shocks in the atmosphere. Computations of the gas-dynamical response of the atmosphere of the hot Jupiter HD 209458b to characteristic superflares of solar-like stars were carried out earlier in [1] using a one-dimensional aeronomical model correctly taking into account heating and chemical processes in the atmosphere. To investigate the outflow of atmospheric gas, the results obtained with this onedimensional model were used as simple boundary conditions for computations of the three-dimensional flow structure after a flare. The results of these three-dimensional gas-dynamical computations show that the mass ejection of the flare increases the size of the envelope over several hours, which could be detected with existing observing facilities. It is shown that the mass-loss rates for the most powerful superflare considered could be enhanced by an order of magnitude over several tens of hours after the flare.
相似文献The scenario for the dynamical capture of a binary system in the neighborhood of a supermassive black hole used byHills in 1988 to predict the existence of hypervelocity stars (~1000 km/s) allows the existence of stars with relativistic velocities attaining (1/3?2/3)c, where c is the speed of light. The increase of the kinetic energy of these stars by more than a factor of 100 is due to the replacement of one component of the binary with a supermassive black hole. This scenario takes candidate of relativisti©velocity stars outside our Galaxy, into intergalactic space, where they could be ejected from merging galaxies populated by supermassive black holes. At present, this is a hypothetical class of stars with anomalous kinematics, but it is already posing a serious challenge for modern astrometry, which, like 300 years ago, is still concerned with the detection of proper motions. While this was related to stars in the solar neighborhood at the time of Halley, is now a problem for studies of the most remote and weakest stars in intergalactic space. Possibilities for detecting such stars must be based on estimates of their abundances, that is, on their statistics. This paper is based on a presentation made at the conference “Modern Astrometry 2017,” dedicated to the memory of K.V. Kuimov (Sternberg Astronomical Institute, Moscow State University, October 23–25, 2017).
相似文献Under certain conditions, stars close to intermediate-mass black holes (IMBHs) can form close binary systems with these objects, in which the Roche lobe can be filled by the star and intense accretion of the star’s matter onto the IMBH is possible. Recently, accreting IMBHs have been associated with hyperluminous X-ray sources (HLXs), whose X-ray luminosities can exceed 1041 erg/s. In this paper, the evolution of star—IMBH binary systems is investigated assuming that the IMBH mainly accretes the matter of its companion star, and that the presence of gas in the vicinity of the IMBH does not appreciably affect changes in the orbit of the star. The computations take into account all processes determining the evolution of ordinary binary systems, as well as the irradiation of a star by hard radiation during the accretion of its matter onto the IMBH. The absorption of external radiation in the stellar envelope was calculated applying the same formalism that is used to calculate the opacity of the stellar matter. The computations also assumed that, if the characteristic time for the mass transfer is less than the thermal time scale of the star, there is no exchange betwween the orbital angular momentum of the system and the angular momentum of the matter flowing onto the IMBH.
Numerical simulations have shown that, under these assumptions, three types of evolution are possible for such a binary system, depending on the mass of the IMBH and the star, as well as on the star’s initial distance from the IMBH. The first type ends with the destruction of the star. For low-mass main sequence (MS) stars, only this option is realized, even in the case of large initial distances from IMBH. For massive MS stars, the star is also destroyed if the mass of the IMBH is high and the initial distance of the star from the IMBH is sufficiently small.
The second type of evolution can occur for massive MS stars, which are initially located farther from the IMBH than in the first type of evolution. In this case, the massive star fills its Roche lobe during its evolutionary expansion, after which a stage of intense mass transfer begins. It is in this phase of the evolution that the star- IMBH system can manifest itself as a HLX, when its X-ray luminosity LX exceeds 1041 erg/s for a fairly long time. Numerical simulations show that the initial mass of the donor star in systems with MBH = (103?105)M⊙ must be close to ~10 M⊙ in this case. The characteristic duration of the HLX stage is 30 000–70 000 years. For smaller initial donor masses close to ~5M⊙, LX does not reach 1041 erg/s in the stage of intense mass transfer, but can exceed 1040 erg/s. The duration of this stage of evolution is 300 000–800 000 years. A characteristic feature of this second type of evolution is an increase in the orbital period of the system over time. As a result, after a period of intense mass loss, the star “retreats” inside the Roche lobe. A remnant of the star in the form of a white dwarf is left behind, and can end up fairly far from the IMBH.
The third type of evolution can occur for massive MS stars that are initially even farther from the IMBH, as well as for massive stars that are already evolved at the initial time. In this case, conservative mass exchange in the presence of intense stellar wind leads to the star moving away from the IMBH, without filling its Roche lobe at all. For massive stars with sufficiently strong stellar winds (for example, stars with masses ~50M⊙), the accretion rate of matter onto the IMBH in this case can reach values that are characteristic of HLXs. As in the case of the second type of evolution, the stellar remnant can remain at a fairly large distance from the IMBH.
相似文献An important area of investigation in astronomy is the relationship between fundamental and dynamical coordinate systems. Valuable material for such studies is provided by photoelectric occultation observations of stars by the Moon, which can provide high precision of detecting rapidly occurring processes and have been carried out over a long time interval. This latter feature is especially important for analyses of the stellar propermotions dynamics. A method has been developed to use photoelectric occultation observations to determine the orientation and rotational parameters of the axes of the coordinate system used for modern star catalogs relative to the coordinate axes of a highly accurate dynamical ephemeris of theMoon. A complete database of photoelectric occultation observations has been created for this purpose, containing data for 57 365 events. The combination of photoelectric occultation observations and other astronomical observations such as lunar laser-ranging data enables the highly accurate determination of parameters of the Moon’s dynamics, such as systematic errors in catalog coordinate systems, including various geodetic reference systems. The parameters of shifts and the rotation of the axes of the Hipparcos Celestial Reference Frame relative to the DE421 dynamical system are obtained. This paper is based on a talk given at the conference “Modern Astrometry 2017,” dedicated to the memory of K.V. Kuimov (Sternberg Astronomical Institute, Moscow State University, October 23–25, 2017).
相似文献The conditions for the formation of close binaries containing main-sequence stars, degenerate dwarfs of various types, neutron stars, and black holes of various masses are considered. The paper investigates the evolution of the closest binary systems under the influence of their gravitational-wave radiation. The conditions under which the binary components can merge on a time scale shorter than the Hubble time as a result of their emission of gravitational waves are estimated. A self-consistent scenario model is used to estimate the frequency of such events in the Galaxy, their observable manifestations, the nature of the merger products, and the role of these events in the evolution of stars and galaxies. The conditions for the formation and evolution of supermassive binary black holes during collisions andmergers of galaxies in their dense clusters are studied.
相似文献