首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of various types of objects in the northern sky were obtained at 44 GHz in the 70-61 A + methanol line on the 20-m Onsala radio telescope (Sweden), in order to search for Class I methanol maser emission in the interstellar medium: regions of formation of high-mass stars, dust rings around HII regions, and protostellar candidates associated with powerful molecular outflows and Galactic HII regions. Seven new Class Imethanolmasers have been discovered toward regions of formation of highmass stars, and the existence of two previously observed masers confirmed. The following conclusions are drawn: (1) neither the association of a bipolar outflow manifest in the wings of CO lines with a highmass protostellar object (HMPO) nor the presence of thermal emission in lines of complex molecules are sufficient conditions for the detection of Class I methanol emission; no association with HMPOs radiating at 44 GHz was found for EGOs (a new class of object tracing bipolar outflows); (2) the existence of H2O masers and Class II methanol masers in the region of aHMPOenhances the probability of detecting Class I methanol emission toward the HMPO; Class II methanol masers with stronger line fluxes are associated with Class I methanol masers.  相似文献   

2.
Results of systematic observations of a sample of bright H2O maser sources with fluxes, on average, exceeding 200 Jy in their main spectral feature during April–September 2017 (G25.65+1.05, G25.825?0.178, G27.184?0.082, G34.403+0.233, G35.20?0.74, G43.8?0.13, G107.30+5.64) are presented. These observations were carried out in preparation for Very Long Baseline Interferometry observations with an array including the Crimean Astrophysical Observatory 22-m radio telescope. All these sources display fairly strong variability during the time interval considered, encompassing fluxes from ~40 to ~2300 Jy. A flare reaching ~17 000 Jy was detected at a velocity of 42.8 km/s in G25.65+1.05 on September 7, 2017, which subsequently grew to 60 000 Jy at the end of September 2017. This suggests the presence of compact maser structures. The velocities covered by various spectral components range from 5 to 20 km/s. In three sources (G25.65+1.05,G25.825?0.178,G35.20?0.74), a general growth in the fluxes of all the spectral features is observed, which may indicate variations in the conditions for pumping by an external source, for example, variations in the infrared flux from a central source or the passage of a shock. Possible evidence for the presence of bipolar outflows or disk structures in G25.65+1.05 is discussed.  相似文献   

3.
Data on thermal radio emission and absorption in and near the directions towards supernova remnants are used to estimate the distribution of ionized gas surrounding remnants of type II supernovae. The amount of absorption and emission toward the supernova remnants are determined by two types of HII regions. The first are extended HII regions around the supernova remnants (Strömgren spheres), while the second are more compact and bright HII regions surrounding early-type stars. In the early stages of evolution of the supernova remnants (1000–3000 yrs), the amount of thermal absorption and emission is minimum, apparently indicating that only the supernova Strömgren zones contribute in these stages, while there is an absence of absorption or emission from the compact HII regions. Possible mechanisms for this scenario are discussed.  相似文献   

4.
Many-year measurements of the radio flux of the young supernova remnant Cassiopeia A relative to the radio galaxy Cygnus A were continued at 290 and 151.5 MHz. The new data are used together with previously published observations carried out at decameter, meter, centimeter, and millimeter wavelengths to derive the frequency dependence of the secular variation of the radio flux density of Cas A: $d_\nu [\% year^{ - 1} ] = - (0.63 \pm 0.02) + (0.04 \pm 0.01)\ln \nu [GHz] + (1.51 \pm 0.16) \times 10^{ - 5} (\nu [GHz])^{ - 2.1} $ . The observed slowing of the secular variations with decreasing frequency at decameter wavelengths can be explained by a decrease in the optical depth of a remnant HII zone around Cas A with time due to recombination of hydrogen atoms. The new derived frequency dependence for the rate of the secular decrease, absolute and relative measurements of the radio flux density of Cas A carried out over the last 25 years, and the absolute spectrum of Cyg A are used to construct the spectrum of Cas A in the range 5–250 000 MHz predicted for epoch 2015.5.  相似文献   

5.
A new method for determining the physical parameters, ionizing Lyman continua (Lyc) and chemical compositions of HII regions in blue compact dwarf galaxies is developed. We propose our modified NLEHII method, which is independent on the initial mass function (IMF) for the determination of the Lyc spectra of the ionizing nuclei of HII regions. This method is based on the assumptions of ionization-recombination and thermal equilibria in the HII regions. It is used to calculate the Lyc spectra for optimization photoionization models (OPhMs) of HII regions in an iterative way, since the Lyc spectrum depends on parameters that can be found from photoionization modeling. We apply this method to determine the chemical composition of an HII region in the blue compact dwarf galaxy SBS 0940+544 and, in particular, the helium mass fraction Y. Published in Russian in Astronomicheskiĭ Zhurnal. 2008, Vol. 85, No. 3, pp. 213–229. The article was translated by the authors.  相似文献   

6.
Observations of the C56α line—the first carbon radio recombination line in the millimeter waveband—in the directions of the Orion Bar, NGC 2024, and W3 are reported. The results are analyzed together with data for the IR fine-structure lines of CII and OI, enabling unambiguous determination of the temperature and density in the photodissociation regions separating the HII regions and parent molecular clouds.  相似文献   

7.
We present the results of our observations of compact extragalactic radio sources near the north celestial pole (+75° ≤ δ ≤ +88°) obtained on the RATAN-600 radio telescope. Our sample consists of 51 radio sources with spectra that are either flat or inverted (growing toward shorter wavelengths) and with flux densities at 1.4 GHz S ν ≥ 200 mJy. We observed the sources at 1–21.7 GHz. Multi-frequency instantaneous spectra are presented for 1999–2007. We observed 33 of our sample source daily for 30 days in August 2007. As a result, we revealed 15 objects exhibiting rapid variations on time scales of a day. The multi-frequency instantaneous spectra of these sources indicate that radio flux variations on one-day timescales are characteristic of objects of various spectral types. More than half the sources exhibiting rapid variations demonstrate a growth in the variability amplitude with increasing frequency. For some of the objects, the variability amplitude is virtually independent of frequency.  相似文献   

8.
Radio sources detected at 3.94 GHz in RATAN-600 observations made in 1980–1981 (the KHOLOD Survey) have been identified with objects from the NVSS catalog down to 5 mJy at 1.4 GHz, and their spectral indices have been estimated. Of the 1311 NVSS objects in the KHOLOD survey region, 836 are present in both catalogs. The average flux density of the common objects is 40 mJy, and the median flux density is 14 mJy. The average spectral indices of these objects for four flux-density intervals were calculated. The average spectral index grows with flux density. The fraction of objects with inverted spectra is 2–4%, and the average flux density of these sources is about 10 mJy. Optical identifications of the NVS S objects in the KHOLOD survey region have been carried out to R=20.5m using the Palomar plates. About 20% of the radio sources are identified with optical objects in all the radio flux-density intervals.  相似文献   

9.
The paper presents an analysis of catalogs of discrete radio sources and the results of deep surveys carried out with angular resolutions to 1.5″ and limiting flux densities to 9 μJy at frequencies from 80 MHz to 8.5 GHz using large radio telescopes around the world. We consider the influence on the sensitivity of a radio telescope of the nonthermal noise associated with variations in the total flux due to fluctuations in the number of unresolved sources with fluxes lower than the observed value that fall in the main lobe of the antenna beam when the direction in which the receiver is pointed is changed (the first component), and also due to sources with fluxes higher than the observed value that arrive in the scattering region of the telescope (the second component). With growth in the sensitivity and resolution of a telescope, the second component of this nonthermal noise determines to an appreciable extent the limiting capability of the telescope for carrying out deep surveys. We estimate the number of antenna beams per source that are required to reach a specified sensitivity in deep surveys. The results of our calculations are compared with data derived from catalogs and numerous surveys.  相似文献   

10.
Various quasi-periods for the long-term variability of the radio emission, optical emission, and structural position angle of the inner part of the parsec-scale jet in the blazar 0716+714 have been detected. The relationships between these quasi-periods are interpreted assuming that the variability arises due to helical structure of the jet, which is preserved from regions near the jet base to at least 1milliarcsecond from the core observed in radio interferometric observations. The radiating jet components should display radial motions with Lorentz factors of≈3, and decelerate with distance from the jet base. The best agreement with the data is given in the case of non-radial motions of these components with a constant physical speed. It is also shown that the helical shape of the jet strongly influences correlations both between fluxes observed in different spectral ranges and between the flux and position angle of the inner part of the parsec-scale jet.  相似文献   

11.
We present the results of twenty-year observations of a complete sample of 68 flat-spectrum radio sources with flux densities S 3.9 GHz > 200 mJy carried out at centimeter wavelengths with the RATAN-600 radio telescope. Since 1995, we have observed simultaneously at six frequencies between 0.97 and 21.7 GHz. Of the 56 sources identified with optical objects, 41 are quasars with redshifts between 0.293 and 3.263. Based on our analysis of the spectral shapes, we divide the sources into four classes. Changes of spectral class for individual sources are fairly rare. Based on the light curves and spectra, in most cases, a flare’s evolution is in accordance with a model in which the variations result from the evolution of a shock in the radio jet. The main result of our study is that there is no redshift dependence for the true linear sizes of the radiating regions, the variability indices derived for all 20 years of data or for individual flares, or the peak frequencies of the spectra of the compact radio emission. We suggest that this testifies to an absence of cosmological evolution of the sample quasars, at least to z ≈ 3.  相似文献   

12.
We propose a model explaining the presence of vast regions of partially ionized gas in the interstellar medium. The circumstellar envelope of a hot star absorbs soft ionizing radiation, but transmits an appreciable fraction of the hard photons, which are absorbed much more weakly than photons with energies close to the ionization limit. For this reason, the radiation attenuated by the envelope becomes harder, and can penetrate to larger distances. For stars hotter than 50 000 K, the transition zone between the ionized and neutral gas can extend to tens or hundreds of parsecs. Thus, a region of partially ionized hydrogen, with a small gradient of the degree of ionization without a well-defined inner HII zone, can form in the interstellar medium.  相似文献   

13.
The generation of infrared (IR) radiation and the observed IR-intensity distribution at wavelengths of 8, 24, and 100 µm in the ionized hydrogen region around a young, massive star is investigated. The evolution of the HII region is treated using a self-consistent chemical-dynamical model in which three dust populations are included—large silicate grains, small graphite grains, and polycyclic, aromatic hydrocarbons (PAHs). A radiative transfer model taking into account stochastic heating of small grains and macromolecules is used to model the IR spectral energy distribution. The computational results are compared with Spitzer and Herschel observations of the RCW 120 nebula. The contributions of collisions with gas particles and the radiation field of the star to stochastic heating of small grains are investigated. It is shown that a model with a homogeneous PAH content cannot reproduce the ring-like IR-intensity distribution at 8 µm. A model in which PAHs are destroyed by ultraviolet radiation of the star, generating region HII, provides a means to explain this intensity distribution. This model is in agreement with observations for realistic characteristic destruction times for the PAHs.  相似文献   

14.
Smirnova  K. I.  Wiebe  D. S. 《Astronomy Reports》2019,63(6):445-459

The parameters of the radiation of interstellar matter in star-forming complexes in the high-metallicity galaxies NGC 628, NGC 2976, and NGC 3351, which have different morphological types, are analyzed. The relationship between the emission in Hα and in lines of CO and HI is considered, as well as the relationship between Hα and the emission of dust in the infrared range (IR). The fluxes and surface brightnesses in the UV and IR correlate well with the Hα emission. The HI emission also correlates well with Hα, while the correlation between the CO and Hα emission is much weaker. The ratio of the fluxes at 8 and 24 µm decreases with increasing Hα flux. This may be due to changes in the properties of the dust ensemble (a decrease in the mass fraction of polycyclic aromatic hydrocarbons) or to changing excitation conditions. Analysis of the kinematics of the CO lines shows that the CO flux grows with increasing velocity scatter ΔV when ΔV ? 70 km/s. Preliminary evidence for the existence of star-forming complexes with higher values of ΔV is provided, when the increase in the velocity scatter is accompanied by a decrease in the CO luminosity of the complex.

  相似文献   

15.
The results of observations of a complete sample of radio sources with spectral indices α>?0.5 (Sv α) are presented. The sample was selected from the Zelenchuk Survey at 3.9 GHz and contains all sources with declinations 4°–6°, Galactic latitudes |b|>10°, and 3.9-GHz fluxes >200 mJy. Spectra at 0.97–21.7 GHz were obtained for all 69 sample sources. The spectra were classified, and a correlation between variability amplitude and spectrum shape was found. The spectra were separated into extended and compact components. The distribution of spectral indices α for the extended components coincides with the distribution for sources with power-law spectra. The correlation between the luminosity and frequency of the peak flux density is confirmed. This correlation is due to the fact that the distribution of source linear dimensions does not depend on luminosity.  相似文献   

16.
唐恬  王磊  文小航 《冰川冻土》2013,35(6):1462-1473
利用2010年6-7月鄂陵湖野外试验的近地层观测数据,分析了在不同天气条件下黄河源鄂陵湖地区辐射分量、地表能量分量、土壤温度和反照率的变化特征. 结果表明:不同天气条件下,辐射和地表能量各分量日变化差异较大,晴天、阴天和雨天的地表反照率依次递减,平均反照率约为0.21;观测期内,平均辐射贡献从大到小依次为向上长波、向下长波、向下短波、向上短波,日积分值分别为31.4 MJ·m-2、25.6 MJ·m-2、22.4 MJ·m-2、4.2 MJ·m-2,净辐射(12.5 MJ·m-2)占向下短波辐射的55.7%;平均地表能量和土壤温度的变化幅度较晴天小,感热、潜热、0 cm土壤热通量的平均日积分值分别占净辐射的21.2%、43.1%、8.2%;平均土壤温度变化幅度随深度增加逐渐减小,浅层土壤温度峰值较晴天低2 ℃,深层土壤温度相差不大. 云和降水的扰动削弱了向下短波辐射,导致平均感热通量和0 cm土壤热通量的峰值比晴天小,而平均潜热通量的峰值大于晴天. 由于湖泊水体巨大的热容量和水分供应,鄂陵湖地区的气温日较差较小,地表温度变化幅度变小,附近地表温度升高缓慢. 鄂陵湖区的地表能量平衡中,潜热通量占主导,感热和地表土壤热通量次之. 研究结果有助于理解气候变化背景下黄河源区湖泊的能量水分循环过程,为促进该地区光热资源的合理利用和畜牧业的可持续发展提供数据支持.  相似文献   

17.
The radial profile of the star-formation rate (SFR) in the galaxy NGC 628 is shown to be modulated by a spiral-density wave. The radial profile of the velocity of gas inflow into the spiral arm is similar to the radial distribution of the surface density of the SFR. The position of the corotation resonance is determined along with other parameters of the spiral-density wave via a Fourier analysis of the azimuthal distribution of the observed radial velocities in annular zones of the disk of NGC 628. The radial profile of the surface density of the SFR is determined using the empirical SFR—linear size relation for star-formation complexes (giant HII regions) and measurements of the coordinates, Hα fluxes, and the sizes of HII regions in NGC 628.  相似文献   

18.
涡动相关仪观测数据的处理与质量评价研究   总被引:14,自引:1,他引:13  
涡动相关仪能够较准确地直接测量地表—大气间的湍流交换,在世界范围内得到了广泛的应用。但它的使用是有条件限制的,如果不进行必要的修正,得到的通量就可能有较大的误差。以密云观测站一年的涡动相关仪观测数据为例进行分析。结果表明:野点值剔除、坐标旋转以及超声温度订正对地表感热、潜热等通量的测量结果影响均在±1%之内,但坐标旋转对动量通量影响较大,必须对潜热和CO2通量进行空气密度效应订正;湍流谱在惯性副区基本满足-2/3次方定律,协谱基本满足-4/3次方定律。经过对观测数据的筛选和处理后,约75%的观测数据质量较好,2%的数据需要剔除。通量贡献源区分析表明,全天和白天均有超过70%的通量源区落在感兴趣区域内,超过90%的通量贡献最大点落在感兴趣区域内。  相似文献   

19.
《Comptes Rendus Geoscience》2005,337(1-2):97-106
This paper reports on glacier variations in two mountainous regions of the world, the Alps and the tropical Andes. Available records of snout position and glacier mass balance are compared and interpreted on a climatological basis. In both regions, there is a long-term decreasing trend over the 20th century. The yield of this trend is different from one glacier to the other, depending on geographic and geometric characteristics. Analysing the surface energy balance, net all wave radiation is the main energy flux at the glacier surface. The turbulent fluxes represent an important term with strong positive sensible heat flux in the Alps and strong negative latent heat flux (sublimation) in the Andes. Tropical glaciers are sensitive to inter-annual variations in solid precipitation that affects the albedo, whereas Alpine glaciers are strongly influenced by air temperature changes in the Alps. To cite this article: C. Vincent et al., C. R. Geoscience 337 (2005).  相似文献   

20.
Strong flares of the H2O maser emission in sources associated with active star-forming regions are analyzed. The main characteristics of 13 flares in nine sources selected using special criteria are presented. The observed phenomena are explained as flares in double emission features. The approach of two emission features in the spectrum with increasing flux and their recession with decreasing flux is explained using a model with two physically related clumps of material that are partially superposed in the line of sight. Calculations have shown that, in this type of model, exponential amplification (unsaturated maser emission) in the overlapping parts of the clumps can produce the observed line narrowing with increasing flux. In most cases, the maser spots are inhomogeneous. During the evolution of some flares, the maser condensations may split into separate fragments. A less catastrophic evolutionary path may be an initial stage of formation of chainlike structures, which are fairly widespread in envelopes around ultracompact HII regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号