首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Profiles of 210Pb and 239 + 240Pu from sediment cores collected throughout Massachusetts Bay (water depths of 36–192 m) are interpreted with the aid of a numerical sediment-mixing model to infer bioturbation depths, rates and processes. The nuclide data suggest extensive bioturbation to depths of 25–35 cm. Roughly half the cores have 210Pb and 239 + 240Pu profiles that decrease monotonically from the surface and are consistent with biodiffusive mixing. Bioturbation rates are reasonably well constrained by these profiles and vary from 0.7 to 40 cm2 yr−1. As a result of this extensive reworking, however, sediment ages cannot be accurately determined from these radionuclides and only upper limits on sedimentation rates (of 0.3 cm yr−1) can be inferred. The other half of the radionuclide profiles are characterized by subsurface maxima in each nuclide, which cannot be reproduced by biodiffusive mixing models. A numerical model is used to demonstrate that mixing caused by organisms that feed at the sediment surface and defecate below the surface can cause the subsurface maxima, as suggested by previous work. The deep penetration depths of excess 210Pb and 239 + 240Pu suggest either that the organisms release material over a range of >15 cm depth or that biodiffusive mixing mediated by other organisms is occurring at depth. Additional constraints from surficial sediment 234Th data suggest that in this half of the cores, the vast majority of the present-day flux of recent, nuclide-bearing material to these core sites is transported over a timescale of a month or more to a depth of a few centimeters below the sediment surface. As a consequence of the complex mixing processes, surface sediments include material spanning a range of ages and will not accurately record recent changes in contaminant deposition.  相似文献   

2.
Sulfate reduction in deep coastal marine sediments   总被引:1,自引:0,他引:1  
Sulfate reduction rates in sediments of four deep stations in the Saguenay Fjord and the Laurentian Trough, Gulf of St. Lawrence, are among the lowest reported for the coastal environment. Maximum rates were 0.4–7.0 nmol cm−3 day−1. The low rates are due to relatively low sedimentation rates and continuously low temperatures. Regional differences in both integrated and maximum sulfate reduction rates in the sediment correlate with sediment trap measurements of sedimentation rate and organic carbon flux.Sulfate reduction accounts for the degradation of 5–26% of the estimated downward flux of organic matter to these sediments. Unlike the absolute rate of sulfate reduction, the relative proportion of the carbon flux that is degraded via sulfate reduction is not directly correlated with the sedimentation rate but is a function of organic matter composition, intensity of bioturbation, and the abundance of sub-oxic electron acceptors. Thus, the lowest proportion of carbon degradation via sulfate reduction occurred at a Gulf site, where a combination of low sedimentation and bioturbation rates allowed a long residence time for organic matter near the sediment surface and, in consequence, a low flux of labile carbon into the sulfate reduction zone. The highest proportion was observed at a station with a similar organic carbon flux but with higher rates of sedimentation and bioturbation. At a third site, with the highest rates of sulfate reduction as well as the highest rates of sedimentation and bioturbation, the contribution of sulfate reduction to organic matter degradation was only intermediate. This is attributable to the exhaustion of the supply of porewater sulfate. In deep coastal environments the proportion of organic matter degraded via sulfate reduction can be highly variable both spatially and temporally.  相似文献   

3.
The behavior of radon in the sea-floor region provides a useful test of theories which describe mass transport in sediments. We have made measurements of Rn-222 and Ra-226 in near-bottom waters and near-surface sediments at the same location. The distribution of radon in sediments can be described by a simplified diagenetic equation when advection, adsorption, and bioturbation are ignored. Sediment measurements show a radon deficit relative to radium emanation. A reasonable balance is found between integrated radon deficit in sediment and radon surplus in the overlying water.In most cores radium increased with depth in the top 10 cm of sediment. This implies that bioturbation and other mixing processes do not homogenize the radium concentration in the zone of diffusive radon loss, and that radium is diffusing out of the sediments.Radon leakage is less than that predicted by previous authors. Radon leakage depends upon the physical distribution of radium in marine sediments. We present a model that predicts leakage of 30–40% for normal deep-sea sediments, in agreement with measured values.Radon surplus in near-bottom waters depends upon the radium distribution, radon leakage, and effective diffusion coefficients. These in turn depend on the properties of the sediment, such as composition, accumulation rate, and porosity. As we learn how these factors interact we may be able to infer sedimentary features from measurements of radon in overlying waters.  相似文献   

4.
中国多金属结核开辟区沉积物地球化学特征   总被引:8,自引:2,他引:8  
对中国多金属结核开辟区沉积物的详细研究表明,研究区内沉积物处于氧化至弱氧化环境,两种色调的沉积物在粒度分布特征以及化学组成上都存在着显著的差异,它们是不同沉积环境的反应.不同色调之间的界面为一沉积间断面.沉积物中的铁和锰具有不同的来源,铁可能以岩源碎屑为主,而锰则更可能是自生成因.钙和镁以生物成因为主.  相似文献   

5.
This study was designed to relate fauna characteristics and sediment accumulation processes in the James River, VA and was conducted during June 1981. Physical sedimentary and benthic biological parameters, as well as sediment structure and radionuclide profiles, were evaluated for 11 stations. Faunal distribution patterns reflected species' response to salinity changes along the estuarine gradient, but not to differences in sediment accumulation rates. Levels of bioturbation could not be predicted easily on the basis of faunal characteristics alone. Results suggest that the physical processes of erosion and deposition strongly influence the ability of macrobenthos to bioturbate sediments in this estuary. Areas of rapid deposition (>3 cm y−1) exhibit little evidence of bioturbation, as do areas where erosion, or relatively constant physical reworking of sediments, dominate. Areas with low sediment accumulation rates (0·5-3 cm y−1) exhibit the highest levels of mixing as evidenced in X-radiographs. Estuarine organisms inhabiting soft bottoms are typically ‘opportunistic’, shallow-living and short-lived species, and the composition of their communities is not strongly influenced by rates of deposition. Physical reworking of sediments is most likely to occur near to the sediment-water interface where reworking by shallow-living organisms is most intense. Sediment-mixing processes should be characterized using a range of approaches. The phasing of interactions among erosion, physical transport, deposition and biological mixing must be resolved on the appropriate time scales if the mechanics of processes governing the formation of the sedimentary record are to be elucidated.  相似文献   

6.

A preliminary study was conducted to determine the potential for cement deep soil mixing (CDSM) technology as a method for in-situ solidification of contaminated river and estuarine sediments. The study was conducted in Newark Bay, near the mouth of the Passaic River, New Jersey. The primary objective of the study was to evaluate the viability of CDSM for the in-situ S/S with a focus on: 1) determining the correct mix of the cement slurry, which provides rapid stabilization of the sediment matrix, 2) potential resuspension of solids during CSDM operations, 3) the effects of high organic content on the solidification process, and 4) the feasibility of using conventional dredging/extraction methods once the sediments have been stabilized and allowed to cure. The results of the study show CDSM slurry mixtures, as low as 7% in cement content, result in significant solidification and strength gain of in-situ sediments under ambient conditions. In sediments with very high organic contents (> 20%), the slurry mix would need to be adjusted to account for retardation effects of organics on cement hydration. Sediment resuspension during application was shown to be minimal at a distance of as little as 75 feet from the mixing head. Strength gains were considerable, effectively consolidating the sediment particles in a secure matrix, but not so high as to preclude extraction of solidified sediments with conventional dredging equipment. Dredged solidified sediment exhibited characteristics of a stiff glacial clay, and as such was easier to handle and transport than untreated dredged sediments. This technique has high potential to be used as an interim remedial measure prior to either extraction and decontamination/disposal or proper capping.  相似文献   

7.
Evidence from over 200 sediment cores, numerous submersible dives, and bottom photographs prove that bioturbation and bioerosion are ongoing processes affecting northeastern U.S. continental slope and rise sedimentation. Evidence of biological activity was found in greater than 95% of the cores examined. Submersible dive observations reveal that the results of biological activity often dominate sea-floor microtopography. Bioturbation can disturb sediments several centimeters deep in a matter of seconds and is in some areas the primary sediment transport mechanism. Many cores with sandy intervals were profoundly disturbed by bioturbation. Biologically camouflaged sand-rich intervals can easily be missed by visual observation.  相似文献   

8.
In April 1997 and 1998 the significance of sedimentation as a sink for epipelagic dimethylsulphoniopropionate (DMSP) production and as a source for marine sediments was reassessed using a newly designed sediment trap. The behaviour of the traps in immersion was monitored continuously and the collection efficiency was evaluated with 234Th measurements. Net DMS(P) fluxes were corrected for some physical and biological losses during the whole sedimentation process providing reliable estimates of gross DMSP fluxes. It is shown that daily losses by sedimentation account for between 0.1% and 16% of seawater particulate DMSP (DMSPp) standing stocks, and between 3% and 75% of daily DMSPp production. In the Malangen fjord we observed temporal increases of DMSP production and standing stocks which resulted also in increases of DMSP vertical fluxes and DMS(P) concentrations at the sediment surface. This result illustrates how tight the coupling can be between pelagos and benthos, and confirms that DMS(P) concentration in the sediment was a reliable diagnostic indicator of vertical export from overlying waters in Malangen fjord. In Ullsfjord, however, DMS(P) concentrations in the sediment were poorly indicators of Phaeocystis pouchetii export during the early stage of growth of a bloom. The high load of DMS(P) in Balsfjord's sediments could neither be attributed to local vertical sedimentation nor to short-term lateral advection of fresh DMSP-containing phytoplanktonic material, and provides indication that this tracer sometimes also can be misleading. The highest loads of DMS(P) in sediments and the fastest rates of sedimentation occurred in the Southern Bight of the North Sea.  相似文献   

9.
Radionuclide activities of 210Pb and 226Ra were measured to determine bioturbation coefficients (Db) in seven sediment cores from the Korean licensed block for polymetallic nodules in the Clarion–Clipperton Fracture Zone. Variability in Db is considered in the context of the sedimentological, geochemical, and geotechnical properties of the sediments. Db values in the studied cores were estimated using a steady-state diffusion model and varied over a wide range from 1.1 to 293 cm2/yr with corresponding mixing depths (L) of 26 to 144 cm. When excepting for spurious results obtained from cores where diffusive mixing does not apply, Db values range from 1.1 to 9.0 cm2/yr with corresponding mixing depths (L) of 26 to 63 cm. Such wide variability in Db and L values is exceptional in sites with water depths of ~5000 m and is attributed in this study to an uneven distribution of sediment layers with different shear strengths and total organic carbon (TOC) contents, caused by erosion events. The studied cores can be grouped into two categories based on lithologic associations: layers with high maximum shear strength (MSS) and low TOC content, showing a narrow range of Db values (1.1–9.0 cm2/yr); and layers with low MSS and high TOC content, yielding much higher Db values of over 30 cm2/yr. The distribution of different lithologies, and the resultant spatial variability in MSS and labile organic matter content, controls the presence and maximum burrowing depth of infauna by affecting their mobility and the availability of food. This study provides a unique case showing that shear strength, which relates to the degree of sediment consolidation, might be an important factor in controlling rates of bioturbation and sediment mixing depths.  相似文献   

10.
The distribution of trace metals in sediments and their exchange between sediments and overlying water is governed by multiple processes including molecular diffusion, bioturbation (porewater advection, porewater mixing, and particle mixing), chemical reactions and adsorption–desorption. To understand these processes and their relative contributions, a one-dimensional model was built, which includes bioturbation and adsorption–desorption processes, to describe the transport of 224Ra. Because 224Ra is adsorbed on MnO2, 224Ra may serve as a proxy for trace metal transport. Three sites were sampled and both dissolved and adsorbed 224Ra were analyzed and modeled to understand the transport and exchange processes. It was found that particle transport of adsorbed 224Ra followed by desorption at the sediment/water interface typically represents the dominant flux. We have further been able to define conditions where the porewater transport for adsorption reactive metals like 224Ra (and other metals) may be out of the sediments whereas the active scavenging of 224Ra from the water column at the sediment water interface via adsorption reactions can result in a flux of 224Ra into the sediment. These processes are both predicted by the model and observed in sediment samples.  相似文献   

11.
《Marine Chemistry》2001,74(4):227-243
The distribution of trace metals in sediments and their exchange between sediments and overlying water is governed by multiple processes including molecular diffusion, bioturbation (porewater advection, porewater mixing, and particle mixing), chemical reactions and adsorption–desorption. To understand these processes and their relative contributions, a one-dimensional model was built, which includes bioturbation and adsorption–desorption processes, to describe the transport of 224Ra. Because 224Ra is adsorbed on MnO2, 224Ra may serve as a proxy for trace metal transport. Three sites were sampled and both dissolved and adsorbed 224Ra were analyzed and modeled to understand the transport and exchange processes. It was found that particle transport of adsorbed 224Ra followed by desorption at the sediment/water interface typically represents the dominant flux. We have further been able to define conditions where the porewater transport for adsorption reactive metals like 224Ra (and other metals) may be out of the sediments whereas the active scavenging of 224Ra from the water column at the sediment water interface via adsorption reactions can result in a flux of 224Ra into the sediment. These processes are both predicted by the model and observed in sediment samples.  相似文献   

12.
In May and September 1999 11 stations were sampled in the southern and central North Sea, located in the German Bight, eastern Oyster Ground and Dogger Bank. The study focused on the influence of particle mixing on transport of chlorophyll a to deeper sediment layers and vertical bacterial distribution (max. DEPTH=10 cm). The sampling stations were chosen to reflect a gradient in environmental conditions in the North Sea. The sampling stations differed in respect to redox potential (eH up to −243 mV in the German Bight and up to 274 mV in the offshore regions), silt content (up to 54% in the German Bight and 0·34% at the northern Dogger Bank) and different proportion of fresh organic material on total organic matter content (C/N ratios ranging from 9·27 in the German Bight up to 1·72 in the offshore sediments). Although bacterial densities (8·55×109 g−1in the German Bight up to 0·35×109 g−1in offshore sediments) were significantly correlated to chlorophyll a content in the sediment (P<0·01), inconsistencies in the temporal pattern of both variables in the surficial sediment layer suggested, that the dynamics of bacterial densities is generally controlled by food supply but also by other variables. The chlorophyll a content in the surficial sediments of the German Bight (up to 1·84 μg g−1) was significantly higher than in the Oyster Ground (up to 0·58 μg g−1) and the Dogger Bank area (up to 0·68 μg g−1). With increasing chlorophyll a input to the benthic realm a subsequent enhanced burial of this compound into deeper sediment layers was expected either by biological (bioturbation) or by physical sediment mixing. However, the vertical profile of chlorophyll a decreased steeply in the sediments of the German Bight. Contrary, subsurface peaks were measured in the offshore areas. It was concluded from these results, that the vertical distribution of organic matter in sediments is less limited by the quantitative input from the water column but concomitant with particle mixing itself. The extent and possible mechanisms of particle mixing in the different study areas in relation to specific environmental factors is discussed.  相似文献   

13.
Fluids discharged from subaerial springs along faults on a sediment diapir near the mouth of the Mississippi River are derived from buried marine pore waters which have been extensively altered chemically by processes of bacterial respiration, mineral precipitation and, possibly, by fractionation due to the presence of clays of high exchange capacity. Vertical mass transport of dissolved components in many shallow marine sediments is controlled by long-term compaction, diffusion and bioturbation. In areas of rapid sediment deposition, however, these processes can be overwhelmed by catastrophic episodes of sediment failure, vertical mixing and upward discharge of water, gas and dissolved species.  相似文献   

14.
This study investigated the organic carbon accumulation rates (OCARs) and sulfate reduction rates (SRRs) in slope and basin sediments of the Ulleung Basin, East/Japan Sea. These sediments have high organic contents at depths greater than 2,000 m; this is rare for deep-sea sediments, except for those of the Black Sea and Chilean upwelling regions. The mean organic carbon to total nitrogen molar ratio was estimated to be 6.98 in the Ulleung Basin sediments, indicating that the organic matter is predominantly of marine origin. Strong organic carbon enrichment in the Ulleung Basin appears to result from high export production, and low dilution by inputs of terrestrial materials and calcium carbonate. Apparent sedimentation rates, calculated primarily from excess 210Pb distribution below the zone of sediment mixing, varied from 0.033 to 0.116 cm year−1, agreeing well with previous results for the basin. OCARs fluctuated strongly in the range of 2.06–12.5 g C m−2 year−1, these rates being four times higher at the slope sites than at the basin sites. Within the top 15 cm of the sediment, the integrated SRRs ranged from 0.72 to 1.89 mmol m−2 day−1, with rates approximately twice as high in the slope areas as in the basin areas. SRR values were consistently higher in areas of high sedimentation and of high organic carbon accumulation, correlating well with apparent sedimentation rates and OCARs. The sulfate reduction rates recorded in the basin and slope sediments of the Ulleung Basin are higher than those reported for other parts of the world, with the exception of the Peruvian and Chilean upwelling regions. This is consistent with the high organic carbon contents of surface sediments of the Ulleung Basin, suggesting enhanced organic matter fluxes.  相似文献   

15.
The role of deep sediment in supporting nutrient budget in the Gulf of Aqaba has been investigated by estimating the flux of inorganic nitrogen, phosphate and silicate. Fluxes were calculated directly by pore water profiles and indirectly by chamber incubations carried out onboard the RV Meteor cruise. The results showed that maximum potential fluxes calculated by chamber incubations were higher than those calculated by porewater profiles for all nutrients (6.4–28.5 fold). This has been attributed to the additional flux due to bioturbation and flux from advective porewater exchange in the case of chamber incubation, while porewater fluxes represent diffusive ones. Using a rough estimation considering flux results in addition to the sediment area and water mass of the Gulf of Aqaba, we estimate that 3.3 × 105, 6.4 × 104 and 6.5 × 106 kg year−1 of inorganic nitrogen, phosphate and silicate respectively are effused from deep sediments to the water column. This quanitity would certainly support the primary productivity in the oligotrophic water in the Gulf of Aqaba.  相似文献   

16.
In the sedimentary column, a combined quantification of burrows and macrobenthic community provides evidence of bioturbation features in the submarine canyon of Cap-Ferret between 2000 and 3000 m depth. An image-processing technique allows accurate quantification of burrow volumes with depth in the sedimentary column. The major bioturbation mode seems to be different in the channel compared to the interfluve. Macrobenthic activity is more inclined to mix the sediment in the channel in response to increased organic matter supplies. Sediment mixing leads to burrow destruction in the upper mixed layer of sediment in the canyon. Burrows are better preserved on the interfluve where mixing is slower. Under the mixed zone, the volume of recorded burrows is higher when sedimentation rate increases, as in the upper canyon. In this transition layer, the burrow volume is estimated to be between 3 and 64% of the total sediment volume depending on the sediment depth. The fill-down of numerous burrows with surface sediment by bioregeneration suggests that anaerobic degradation of fresh organic matter is dominant in this canyon. In the sedimentary column, the negative relationship between carbonate content and macrobenthic abundance confirms that carbonate dissolution is largely influenced by bioturbation.  相似文献   

17.
The ages of fossil planktonic foraminifera,Pulleniatina obliquiloculata, in sediments (core 3bPC) from the western North Pacific were determined by aspartic acid chronology, which uses the racemization reaction rate constant of aspartic acid (kAsp). Aspartic acid racemization-based ages (Asp ages) ranged from 7,600 yrBP at the surface, to 307,000 yrBP at a depth of 352.9 cm in the sediments. This sediment core was also dated by the glacial-interglacial fluctuation of δ18O chronology, and the ages determined by both chronologies were compared. The ages derived from aspartic acid chronology and δ18O stratigraphy were more or less consistent, but there appeared to be some differences in age estimates between these two dating methods at some depths within the core. In the core top sediments, the likely cause for the age discrepancy could be the loss of the surface sediment during sampling of the core. At depths of 66.3 and 139 cm within the core, Asp ages indicated reduced sedimentation rates duringca. 60,000-80,000 yrBP andca. 140,000–190,000 yrBP. The maximum age differences in both chronologies are 33,000 yr and 46,600 yr during each of these periods. These anomalous reductions in sedimentation rates occurring during these periods could possibly be related to some geological events, such as an increased dissolution effect of the calcium carbonate in the western North Pacific. Another possible reason for these age differences could be the unreliability in δ18O ages of core 3bPC as they were estimated by δ18O ages of another core, 3aPC.  相似文献   

18.
长江水下三角洲浅表沉积层中的生物扰动构造   总被引:2,自引:0,他引:2  
为查明长江水下三角洲生物扰动类型、特征和分布规律,探讨生物扰动构造的可能影响因素,使用箱式采样器获取包括三角洲前缘、前三角洲、过渡带以及正常浅海的无扰动沉积岩心,利用高分辨X-ray成像技术对浅表沉积层中的生物扰动构造进行了研究。结果表明,长江水下三角洲发育虫孔构造和挖掘构造,虫孔构造直径0.5-2mm,长度数厘米至数十厘米,多数虫孔垂直于层理发育,挖掘构造形态呈漏斗状,其内沉积物混合强烈;生物扰动构造具有明显的分带性,三角洲前缘生物扰动指数〈1,前三角洲及过渡带扰动指数为2-3级,最高达4级,而紧靠前三角洲的正常浅海生物扰动指数为2级。生物扰动构造的发育主要受上覆水体盐度、悬浮体含量制约,在盐度接近正常浅海水体盐度、悬浮体含量中等的前三角洲、过渡带是生物扰动构造发育的有利环境。研究未发现底质沉积物类型、底质环境因子对生物扰动构造的明显制约作用。  相似文献   

19.
The hydrodynamic properties and the capability to measure sediment-water solute fluxes, at assumed steady state conditions, were compared for three radically different benthic chamber designs: the “Microcosm”, the “Mississippi” and the “Göteborg” chambers. The hydrodynamic properties were characterized by mounting a PVC bottom in each chamber and measuring mixing time, diffusive boundary layer thickness (DBL thickness) shear velocity (u∗), and total pressure created by the water mixing. The Microcosm had the most even distribution of DBL thickness and u∗, but the highest differential pressure at high water mixing rates. The Mississippi chamber had low differential pressures at high u∗. The Göteborg chamber was in between the two others regarding these properties. DBL thickness and u∗ were found to correlate according to the following empirical formula: DBL=76.18(u∗)−0.933. Multiple flux incubations with replicates of each of the chamber types were carried out on homogenized, macrofauna-free sediments in four tanks. The degree of homogeneity was determined by calculating solute fluxes (of oxygen, silicate, phosphate and ammonium) from porewater profiles and by sampling for porosity, organic carbon and meiofauna. All these results, except meiofauna, indicated that there were no significant horizontal variations within the sediment in any of the parallel incubation experiments. The statistical evaluations also suggested that the occasional variations in meiofauna abundance did not have any influence on the measured solute fluxes. Forty-three microelectrode profiles of oxygen in the DBL and porewater were evaluated with four different procedures to calculate diffusive fluxes. The procedure presented by Berg, Risgaard-Petersen and Rysgaard, 1989 [Limnol. Oceanogr. 43, 1500] was found to be superior because of its ability to fit measured profiles accurately, and because it takes into consideration vertical zonation with different oxygen consumption rates in the sediment. During the flux incubations, the mixing in the chambers was replicated ranging from slow mixing to just noticeable sediment resuspension. In the “hydrodynamic characterizations” these mixing rates corresponded to average DBL thickness from 120 to 550 μm, to u∗ from 0.12 to 0.68 cm/s, and to differential pressures from 0-3 Pa. Although not directly transferable, since the incubations were done on a “real” sediment with a rougher surface while in the characterizations a PVC plate simulated the sediments surface, these data give ideas about the prevailing hydrodynamic condition in the chambers during the incubations. The variations in water mixing did not generate statistically significant differences between the chamber types for any of the measured fluxes of oxygen or nutrients. Consequently it can be concluded that, for these non-permeable sediments and so long as appropriate water mixing (within the ranges given above) is maintained, the type of stirring mechanism and chamber design used were not critical for the magnitude of the measured fluxes. The average measured oxygen flux was 11.2 ± 2.7 (from 40 incubations), while the diffusive flux calculated (from 43 profiles using the Berg et al., 1989 [Limnol. Oceanogr. 43, 1500] procedure) was 11.1 ± 3.0 mmol m−2 day−1. This strongly suggests that accurate oxygen flux measurements were obtained with the three types of benthic chambers used and that the oxygen uptake is diffusive.  相似文献   

20.
An unditched salt marsh-creek drainage basin (Holland Glade Marsh, Lewes, Delaware) has a sedimentation rate of 0·5 cm year?1. During normal, storm-free conditions, the creek carries negligible amounts of sand and coarse silt. Of the material in the waters flooding the marsh surface, over 80% disappears from the floodwaters within 12 m of the creek. About one-half of the lost material is theoretically too fine to settle, even if flow were not turbulent; however, sediment found on Spartina stems can account for the loss.The quantity of suspended sediment that does reach the back marsh during these normal tides is inadequate to maintain the marsh surface against local sea level rise. This suspended sediment is also much finer than the deposited sediments. Additionally, remote sections of low marsh, sections flooded by only the highest spring tides, have 15–30 cm of highly inorganic marsh muds.This evidence indicates that normal tidal flooding does not produce sedimentation in Holland Glade. Study of the effects of two severe storms, of a frequency of once per year, suggests that such storms can deposit sufficient sediment to maintain the marsh.The actual deposition of fine-grained sediments (fine silt and clay) appears to result primarily from biological trapping rather than from settling. In addition, this study proposes that the total sedimentation on mature marshes results from a balance between tidal and storm sedimentation. Storms will control sediment supply and movement on micro- and meso-tidal marshes, and will have less influence on macro-tidal marshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号