首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 793 毫秒
1.
典型岩溶峰丛洼地坡面土壤水分空间变异性   总被引:2,自引:1,他引:2  
采用网格法测量典型坡面上旱季(12月)和雨季(5月)的表层(0~5 cm)土壤含水量,以地统计学方法分析其空间变异性,结果表明:(1)与单一土地利用坡面相比,人为扰动强、土地利用多样的岩溶峰丛坡地表层土壤含水量表现为坡上未被扰动的自然植被区明显高于坡下人为改造的区域;旱季时坡地林地表层土壤平均含水量(32.8%)明显高于位于坡下的梯田空闲地(24.2%)、梯田橘园(20.0%)、梯田菜园(22.0%)、坡地裸地(23.5%);雨季时,坡地裸地(30.2%)和梯田橘园(32.1%)有明显增大,梯田空闲地(17.8%)剧烈减小,坡地林地(32.2%)土壤含水量依然最高;(2)旱、雨季整个坡面上空间结构比分别为21.0%、8.7%,表现为雨季的空间相关性更好;旱、雨季表层土壤含水量变异系数分别为20.1%和31.7%,属中等程度变异;雨季表层土壤含水量的变程(77.5 m)显著高于旱季(8.0 m),雨季的土壤含水量具有较好的空间变异结构;(3)裸岩周围空间的土壤含水量随与裸岩的距离增大而减小,梯田石坎周围空间的土壤含水量随与梯田石坎的距离增大而递减。   相似文献   

2.
Soil hydraulic properties such as soil infiltration rate and hydraulic conductivity are closely linked to runoff generation and infiltration processes but little is known about them on karst hillslopes. The objectives of this paper were to investigate the change in soil stable infiltration rate (q s) and near-saturated hydraulic conductivity (K ns) in different slope positions and to understand their relationship with rock fragment content and soil texture within the topsoil in subtropical karst regions of southwest China. Tension infiltrometers (20 cm in diameter) were used to measure q s and K ns at pressure head of −20 mm on hillslopes 1 (a disintegrated landslide failure) and 2 (an avalanche slope). The change of q s and K ns was great and they mostly had a moderate variability with coefficient of variations (CV) between 0.1 and 1.0 in the different slope positions. On average, q s ranged from 0.43 to 4.25 mm/min and K ns varied from 0.75 to 11.00 mm/min. These rates exceed those of most natural rainfall events, confirming that overland flow is rare on karst hillslopes. From bottom to top, q s and K ns had a decrease–increase–decrease trend due to the presence of large rock outcrops (>2 m in height) on hillslope 1 but had an increasing trend on hillslope 2 with less complex landform. They tended to increase with increase in total rock fragment content (5–250 mm) within the topsoil as well as slope gradient on both hillslopes. Pearson correlation analysis suggested that higher coarse pebble (20–75 mm), cobble (75–250 mm), and sand (2–0.05 mm) contents as well as total rock fragment content could significantly facilitate water infiltration into soils, but higher clay (<0.002 mm) content could restrict water movement. This result indicated that rock fragment, sand, and clay contents may remarkably affect water flow in the topsoil layers, and should be considered in hydrological modeling on karst hillslopes in subtropical regions.  相似文献   

3.
The understanding of the temporal and spatial dynamics of soil moisture and hydraulic property is crucial to the study of several hydrological and ecological processes. Karst environments are extremely fragile because of thin soil and small soil water holding capacity. A marked intensification of agricultural land use and deforestation due to increase of population and thus expansion of agricultural areas has made the karst environment even more delicate. In this study, the soil moisture contents (SMC) and hydraulic conductivities (K) along four karst hillslopes were measured in situ by time domain reflectometry and the Guelph Permeameter, respectively, at test plots, each of which has a different vegetative cover, landform, land surface slope, soil property and content of rock fragment. The statistical results from the measurements show that land cover changes strongly affect the distribution of soil moisture and hydraulic properties. Compared with SMC in the bare soil areas, SMC values are 30.5, 20.1 and 10.2% greater in the forest, shrub and grass areas, respectively. Vegetation roots significantly increase permeability of low-layer silt soils. Measured K values were 0.8, 0.6 and 0.01 cm/min for the forest, agriculture and bare soil areas, respectively. When the forest was destroyed by fire or cut to become an agricultural area or bare soils, SMC would be reduced by 13.1 and 32.1%, respectively. If deforestation leads to strong rock desertification, SMC was reduced by 70%. Bedrock fractures significantly reduce the SMC in the overlying layer, but increase K values. SMC values of 30–45% would be reduced to 17–30% for the soil layer embedding rocks with and without fractures, respectively. K values could be increased from 1.0 to 8.5 cm/min. SMC are sensitive to terrain. A slope angle increase of 1° would reduce SMC about 0.82%. These changes resulting from land cover and land use alterations offer useful information to further investigate the response of ecosystem evolution to hydrodynamic processes.  相似文献   

4.
Land use patterns are changing and the environment has become more vulnerable in an agro-pastoral ecotone in Inner Mongolia. Modeling studies can be done through studying the relationships between the soil organic carbon density (SOCD) and the influencing factors in differing land uses such as cropland, forest and grassland. Such studies can provide the basis for predicting soil organic carbon (SOC) stocks and using land resources efficiently. Therefore, the relationships between the SOCD of surface soils and the influencing factors, such as soil type, slope and elevation, were selected for a study in differing land uses of Duolun County, Inner Mongolia. The results showed that: (1) The variation in SOCD among the soil types followed the same order in the three land uses: chernozems > meadow soils > bog soils > castanozems > gray-cinnamon soils > eolian soils. The sensitivity of SOCD to land use change was different for the six soil types. Both the degradation of grassland and the application of the government policy of returning forest from cropland induced the greatest variation in SOCD. (2) SOCD correlated significantly with soil type and elevation in each land use. There was a significant correlation between SOCD and slope in the forest. (3) Statistical models showing SOCD and the influencing factors were developed and provided the basis for predicting SOC stocks in Duolun County, Inner Mongolia.  相似文献   

5.
Temporal variation in rainfall created a germination window for seedling establishment in the upper intertidal marshes of southern California. In this highly variable climate, total annual rainfall was highly variable, as was the timing and size of rainfall during the wet season. Daily rainfalls>3.0 cm were rare in the long-term record but created germination opportunities that had two components: low salinity and high moisture. During the 1996–1997 wet season, only one-day rainfalls>3.0 cm resulted in large increases in soil moisture and decreases in soil salinity. Germination in the upper intertidal marsh of three wetlands followed two large (>3.0 cm) rainfall events in the relatively dry 1996–1997 season and multiple medium and small rainfall events in the wetter 1997–1998 season. In addition to rainfall, plant cover and soil texture influenced, spatial and temporal variation in soil salinity and moisture. Daily and weekly sampling adequately described soil moisture and salinity so that germination could be predicted; monthly sampling would have missed the low-salinity and high-moisture events that trigger germination.  相似文献   

6.
Large-scale vegetation restoration in China’s Loess Plateau has been initiated by the central government to control soil and water losses since 1999. Knowledge of the spatio-temporal distribution of soil water storage (SWS) is critical to fully understand hydrological and ecological processes. This study analysed the temporal stability of the SWS pattern during the rainy season on a hillslope covered with Chinese pine (Pinus tabulaeformis Carr.). The soil water content in eight soil layers was obtained at 21 locations during the rainy season in 2014 and 2015. The results showed that the SWS at the 21 locations followed a normal distribution, which indicated moderate variability with the coefficients of variation ranging from 14 to 33%. The mean SWS was lowest in the middle slope. The spatial pattern of SWS displayed strong temporal stability, and the Spearman correlation coefficient ranged from 0.42 to 0.99 (p < 0.05). There were significant differences in the temporal stability of SWS among different soil layers (p < 0.01). The spatial patterns of SWS distribution showed small differences in different periods. The best representative locations of SWS were found at different soil depths. The maximum RMSE and MAE at 0–1.6 m soil depth for the rainy season were 4.27 and 3.54 mm, respectively. The best representative locations determined during a short period (13 days) can be used to estimate the mean SWS well for the same rainy season, but not for the next rainy season. Samples of SWS collected over a fortnight during the rainy season were able to capture the spatial patterns of soil moisture. Roots were the main factor affecting the temporal stability of SWS. Rainfall increased the temporal stability of the soil water distribution pattern. In conclusion, the SWS during the rainy season had a strong temporal stability on the forestland hillslope.  相似文献   

7.
Soil organic carbon (SOC) is one of the key components for assessing soil quality. Meanwhile, the changes in the stocks SOC may have large potential impact on global climate. It is increasingly important to estimate the SOC stock precisely and to investigate its variability. In this study, Yangjuangou watershed was selected to investigate the SOC distribution under different land uses. We found that SOC concentration decreased with increasing soil depth under all land uses and was significantly different across the vertical soil profile (P < 0.01). However, considering effect of land use on SOC, it is only significant (P < 0.01) in the topsoil (0-5 cm) layer. This indicated that land use has a large effect on the stocks of SOC in the surface soil. The stratification ratio of SOC > 1.2 may mean that soil quality is improving. The order of the SOC density (0-30 cm) under different land uses is forestland > orchard land > grassland > immature forestland > terraced cropland. The SOC stock is found to be as large as 2.67 × 103 t (0-30 cm) in this watershed. Considering time effect of restoration, the slope cropland just abandoned is more efficient for SOC accumulation than trees planted in the semi-arid hilly loess area.  相似文献   

8.
Permafrost degradation has the potential to significantly change soil moisture. The objective of this study was to assess the variability of soil moisture in a permafrost region using geostatistical techniques. The experiment was conducted in August 2008 in alpine steppe and meadow located in the Qinghai-Tibetan Plateau permafrost region. Four soil depths (0–10, 10–20, 20–30 and 30–40 cm) were analyzed using frequency domain reflectometry, and sampling made of 80 points in a 10 m × 10 m grid were sampled. Soil moisture was analyzed using classical statistics to appropriately describe central tendency and dispersion, and then using geostatistics to describe spatial variability. Classical statistical method indicated that soil moisture in the permafrost region had a normal distribution pattern. Mean surface soil moisture in alpine meadow was higher than that in alpine steppe. The semivariograms showed that soil moisture variability in alpine cold steppe was larger than that in alpine meadow, which decreased with depths. Nugget values in alpine steppe were low (0.1–4.5), in contrast to alpine cold meadow. Soil moisture in alpine steppe had highly structured spatial variability with more than 93.4% spatial heterogeneity, and the range decreased with depth. Soil moisture content in alpine cold meadow had a moderate spatial dependence with a range of 51.3–169.2 m, increasing with depth.  相似文献   

9.
喀斯特石漠化治理区不同土地利用方式的小气候效应   总被引:2,自引:0,他引:2  
研究小气候变化对植被恢复的响应机制可为喀斯特地区石漠化综合防治提供理论依据。文章选取喀斯特高原山地和高原峡谷石漠化综合防治示范区4种土地利用类型为研究对象,通过常规的小气候监测方法,在雨季前(4月)、雨季(8月)、雨季后(12月)对4种土地利用类型的大气温度、光照强度、相对湿度、土壤温度日变化进行监测和对比分析。结果表明:(1)4种土地利用方式中,大气温度、光照强度和土壤温度均表现为石漠化裸地>农耕地>灌木林>林地,而相对湿度的变化规律则反之:林地>灌木林>农耕地>石漠化裸地,说明林地的小气候调节作用最优,而石漠化裸地最差,与其石漠化治理和植被恢复效果相对应;(2)高原峡谷的大气温度、光照强度和相对湿度在不同的季节和不同土地利用方式下都显著高于高原山地,不同土层的土壤温度是高原山地显著低于高原峡谷;(3)各土地利用方式的小气候季节差异明显,大气温度、土壤温度均为:雨季(8月)>雨季前(4月)>雨季后(12月),而光照强度、相对湿度为:雨季(8月)>雨季后(12月)>雨季前(4月),8月各小气候指标值最高,且不同土地利用方式和治理区间的差异亦最大,因此,选取8月进行小气候监测以比较各土地利用方式和治理区之间的差异要优于其他两个月份。  相似文献   

10.
采用1982~1985年和2002年两个时段的定点观测数据,系统分析了小流域尺度地形和土地利用类型对土壤水分时空格局的影响.结果表明:1)土壤水分变化特征为所有年份农地土壤水分都最大,灌木林地和荒草地较低,林地居中;不同坡向间以阴坡土壤水分最大;而不同坡位间以坡中部土壤水分最大.受降雨和植被耗水的影响,所有土地利用类型中土壤水分在整个生长期表现为降低型.2)在年尺度上表现为干旱年份土地利用类型和坡向对土壤水分的影响较大;而在湿润年份,其影响程度减弱;坡位在干旱和湿润年份对土壤水分的影响都较小.湿润年份,降雨量的增大弱化了地形和土地利用类型对土壤水分时空格局的影响;而干旱年份正好相反.3)在季节尺度上表现为在生长季节的中后期,土壤水分的变异格局主要受坡向影响;而在生长季节的中期,主要受土地利用类型影响;坡位在整个观测时段内影响都较小.4)在不同土壤层次方面特征为土地利用类型对0~20em层次影响较小,而对其他4个深度较大的层次(20~100cm)影响较大,并且5个层次中以40~60cm层次的差异最大;坡向对5个层次土壤水分的变异格局均有明显影响,并呈现随着深度的增加,其影响减弱的趋势;坡位对5个层次的土壤水分变异格局影响均较小.  相似文献   

11.
济南趵突泉泉域岩溶水化学特征时空差异性研究   总被引:1,自引:0,他引:1  
高帅  李常锁  贾超  孙斌  张海林  逄伟 《地质学报》2019,93(S1):61-70
水文地球化学一直是水文地质领域的研究重点,而地下水化学组分的时空变化特征受多种因素的影响。为了掌握济南趵突泉泉域岩溶地下水水化学特征时空差异性,本文分别于枯、丰水期在泉域内采集并分析了岩溶地下水样品,并采用数理统计、Piper三线图、Gibbs图解法及离子比例系数法等分析手段,对研究区岩溶地下水水化学特征及时空差异性进行了研究。结果显示,研究区地下水优势阳离子为Ca,优势阴离子为HCO3,丰水期除HCO3外,其他离子的变异系数较枯水期普遍升高,且大于05,表现出丰水期空间差异性增大的特点。地下水水化学类型具有以HCO3·SO4- Ca为主,多种类型并存的特点。Ca、Mg、HCO3含量在枯、丰水期比值要小于1,且比其他离子要相对稳定,呈现出全局性特点。而Na、K含量在枯、丰水期比值波动较大,大部分比值大于1,Cl、SO4、NO3含量在枯、丰水期比值具有波动剧烈的特点,呈现出区域性特征,同时表明人类活动大大改变了研究区地下水水化学场的分布特征。  相似文献   

12.
Over the past decades, the vast limestone mountain areas in southwestern China have suffered greatly from karst rocky desertification (KRD), which is a unique type of desertification caused by irrational land-use practices and has drawn increasing attention of international academic community. Characterizing soil erosion in this region is the key to understanding the escalating KRD problem and finding solution to it. The authors applied leveling method to study soil erosion process in the Huajiang Karst Canyon area between 1999 and 2003, and tried to relate it to KRD expansion. The monitoring data indicate that soil in the study area was losing at an alarming rate, which is much higher than soil formation rate and has already resulted in severe KRD problem. Soil loss under different land-use conditions varied greatly during the monitoring period. The highest soil erosion rate occurred in bare and newly abandoned cropland, followed by sparse grass land, forest land, and dense grass land. In addition, soil erosion could be significantly different under different micro-topographic conditions. Because soil erosion rate in the studied karst mountain areas is surprisingly high, it is urgent to take quick actions to fight against the ongoing KRD problems in Southwest China before an irreversible situation occurs. However, the traditional way to combat KRD by abandoning current cropland needs to be carefully reconsidered, since a bare newly abandoned cropland may suffer more from rapid soil loss than before.  相似文献   

13.
Physical processes are at the root of determining hydrologic response at all scales. Here, the physical mechanisms linking (1) subsurface heterogeneities to soil moisture and (2) resulting land-surface energy feedbacks to the atmosphere, are examined at the hillslope scale using a fully coupled surface-subsurface-land-surface model, ParFlow. A hillslope with a heterogeneous subsurface and uniform topography was modeled numerically using summer atmospheric conditions and a single precipitation event under controlled boundary conditions in order to isolate the contribution of hydraulic conductivity to land-surface hydrological processes and energy interactions. Patterns of subsurface hydraulic conductivity are shown to govern soil-moisture distribution at the hillslope scale following precipitation. This variability in soil moisture is closely linked to the variability in land-surface energy feedbacks. The role that vegetation plays in subsurface soil moisture and land energy communications is also examined. Results show that hillslope soil moisture variation is first established by patterns in vertical hydraulic conductivity, while later on in the dry-down period, vegetation exerts greater control on the land-surface energy fluxes and controls the rate of hillslope dry down. Furthermore, as compared to bare-soil simulations, grass-cover simulations show an increase in near-surface soil moisture despite water up-take along the rooting depth.  相似文献   

14.
通过野外溶蚀试片和测量土壤CO2浓度、水分、孔隙度、pH值和有机质含量的方法,探讨不同土地利用方式下土壤环境因子及其相互耦合对岩溶溶蚀速率的影响。研究结果表明,金佛山国家自然保护区不同土地利用方式下的平均溶蚀速率差异显著,总体表现为:竹林地>林地>草地>灌丛地>灌草丛地。不同土地利用方式下的土壤pH值与溶蚀速率呈很好的负相关,土壤水分含量、孔隙度与溶蚀速率呈正相关。山顶岩溶作用明显强于山下,这与重庆市百年一遇的大旱不无关系。土壤环境中CO2浓度、水分、孔隙度、pH值和有机质含量影响着岩溶溶蚀速率,同时这些土壤环境相互耦合也影响着岩溶溶蚀速率。  相似文献   

15.
土壤结构恶化是土壤侵蚀性退化的普遍现象和结果,在喀斯特地区表现尤为突出。本文以重庆黔江区为例,分析了四种不同的土地利用方式下,土壤团聚体的组成、稳定性及其影响因素。结果表明:研究区土壤颗粒组成主要集中在<0.05mm的范围内,土壤粘粒(<0.001mm)含量普遍较高;土壤经人为开垦利用转变为耕地后,表层土壤颗粒砂化明显;土地利用方式不同,风干团聚体含量相差不大,而水稳性团聚体组成和稳定性差异较大,>5mm和>1mm水稳性团聚体含量由大到小为:灌草坡>林地>退耕地>耕地,>0.25mm团聚体含量由大到小为:灌草坡>退耕地>林地>耕地。灌草坡的水稳性团聚体含量最大,稳定性最强,耕地最差。有机质是影响水稳性团聚体的主要因素,因此,增加有机质的含量是恢复和改良喀斯特山地土壤结构状况的关键   相似文献   

16.

Karst aquifers in subtropical regions are characterized by high variability of water availability and quality due to changes associated with rainy and dry seasons. An additional challenge for water management is the combination of surface-water and karst groundwater systems since high spatiotemporal dynamics cause high variability of water quality. In these cases, adapted protection strategies are required. In this study, a protection approach for the catchment of a river-water diversion point in a rural area in northern Vietnam is developed. The variability of water quality was evaluated by rainy and dry season synoptic surveys of suspended particles and microbial contamination at 49 sites and time series at three sets of paired sites under constant hydraulic conditions. The anthropogenic land-use activities in the catchment were mapped to identify potential contamination sources and to highlight the challenging combination of surface-water and karst groundwater management. The analyzed data indicate differences in water quality between the dry and rainy seasons and a higher influence on water quality from land use than from hydrologic conditions. Furthermore, the results suggest a high risk of contamination resulting from residential areas, agriculture, and livestock farming, and reveal the necessity of implementation of appropriate measures such as restricted farming and the hook-up of buildings to municipal sewage disposal. Finally, the data show that water quality can be improved by adjusting water withdrawals by the time of day. The applied methods can be transferred to other surface-water and karst groundwater systems in similar subtropical environments.

  相似文献   

17.
Vegetation cover plays an important role in the process of evaporation and infiltration. To explore the relationships between precipitation, soil water and groundwater in Taihang mountainous region, China, precipitation, soil water and water table were observed from 2004 to 2006, and precipitation, soil water and groundwater were sampled in 2004 and 2005 for oxygen-18 and deuterium analysis at Chongling catchment. The soil water was sampled at three sites covered by grass (Carex humilis and Carex lanceolata), acacia and arborvitae respectively. Precipitation is mainly concentrated in rainy seasons and has no significant spatial variance in study area. The stable isotopic compositions are enriched in precipitation and soil water due to the evaporation. The analysis of soil water potential and isotopic profiles shows that evaporation of soil water under arborvitae cover is weaker than under grass and acacia, while soil water evaporation under grass and acacia showed no significant difference. Both δ18O profiles and soil water potential dynamics reveal that the soil under acacia allows the most rapid infiltration rate, which may be related to preferential flow. In the process of infiltration after a rainstorm, antecedent water still takes up over 30% of water in the topsoil. The soil water between depths of 0–115 cm under grass has a residence time of about 20 days in the rainy season. Groundwater recharge from precipitation mainly occurs in the rainy season, especially when rainstorms or successive heavy rain events happen.  相似文献   

18.
Because of the relatively low soil moisture in arid or semi-arid regions, water vapour movement often predominates in the vadose zone and affects the partitioning of energy among various land surface fluxes. In an outdoor sand bunker experiment, the soil water content at 10 and 30 cm depth were measured at hourly intervals for 2.5 days during October 2004. It was found that the soil moisture reached the daily maximum value (5.9–6.1% at 10 cm and 11.9–13.1% at 30 cm) and minimum value (4.4–4.5% at 10 cm and 10.4–10.8% at 30 cm) at midday (0–1 p.m. for 10 cm and 2–3 p.m. for 30 cm) and before dawn (2–3 a.m. for 10 cm and 4–5 a.m. for 30 cm), respectively. The modified HYDRUS-1D code, which refers to the coupled water, water vapour and heat transport in soil, was used to simulate the moisture and water vapour flow in the soil. The numerical analyses provided insight into the diurnal movement of liquid water and water vapour driven by the gradients of pressure heads and temperatures in the subsurface zone. The simulated temperature and water content were in good agreement with the measured values. The spatial–temporal distribution of liquid water flux, water vapour flux and soil temperature showed a detailed diurnal pattern of soil water dynamics in relatively coarse sand. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Copper contamination in soils and vegetables in the vicinity of an abandoned copper mine in China was investigated. The Cu concentrations of 93 soil samples ranged from 30.4 to 3,191 mg kg−1 soil for a mean of 816.8 mg kg−1 soil. Among 15 samples from a 0 to 20-cm soil layer used for the toxicity characteristic leaching procedure (TCLP) test, the highest value of Cu-TCLP was 133.8 mg kg−1 soil and the TCLP values were positively correlated with the total Cu content of the soils. The sequential extraction of soils in the 0–20-, 20–40-, and 40–60-cm soil layers showed that Cu existed mainly in the Fe–Mn oxide fraction, sulfide/organic fraction, and residual fraction. The copper contamination of 21 species of vegetables from in situ sampling was also examined. Cu concentrations in the edible portions of Brassica chinensis and Solanum melongena were higher than the FAO/WHO standard (40 mg kg−1 DW). The health risk of copper for local inhabitants from consuming these vegetables was assessed on the basis of the target hazard quotient. Enriched concentrations of copper were also found in situ in eight cultivars of B. chinensis planted in the fields, with two levels of Cu concentration. The results showed that there is severe copper contamination in this mine area, and the pollutant in soils show a high risk of leaching into the groundwater and diffusing through the food chain.  相似文献   

20.
Surface soil and sediment samples were collected from the surroundings of the Ittehad Chemical Industries Kalashah Kaku industrial zone to assess residual level of 19 organochlorine pesticides (OCPs) and identify their sources. DDTs and HCHs were most prevalent OCPs and general pattern of contamination followed the order: ∑DDT > ∑HCH > dicofol > endrin > heptachlor > dieldrin > endosulfan II. Total measured concentrations of HCHs (6.38–121.71 ng/g) and DDTs (759.65–1811.98 ng/g) were greater in the soil samples collected from fodder/rice fields irrigated with the factory effluents and in the surrounding of waste disposal site. Ratios of β to γ-HCH highlighted an old mixed source of technical HCH and lindane in surface soils. Predominance of p,p′-DDT and p,p′-DDE among isomers and metabolites showed that large quantity of technical grade DDT is still present in the surrounding surface soils. Six soil samples were categorized as heavy polluted soils (class III category of DDT > 1,000 ng/g), two soil samples into less polluted soil between class I and II (50–500 ng/g) and 28 soil samples as non-polluted (<50 ng/g) according to environmental quality standards for surface soils. Six soil samples were categorized as less polluted between class I and II of HCHs (50–500 ng/g). Greater concentration of DDTs and HCHs above quality guideline poses potential exposure risk to biological organisms, safety of agricultural products and human health in the surrounding of the Ittehad Chemical Industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号