首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Within the scope of the Global Geodetic Observing System, Doppler Orbit Determination and Radiopositioning Integrated by Satellite – as a geodetic technique – can provide precise and continuous monitoring of the geocenter motion related to mass redistribution in the Earth, ocean and atmosphere system. We have reanalyzed 1998 DORIS/SPOT-4 (Satellite pour l’ Observation de la Terre) data that were previously generating inconsistent geocenter positions (?65 cm offset). We show here that this error is due to an incorrect phase center correction provided with the DORIS preprocessed data resulting from a +12 cm offset in the cross-track direction that has been confirmed since. We also conclude that a 1 mm error in the cross-track offset of non-yawing sun-synchronous SPOT satellites will generate a ?6.5 mm error in the derived Z-geocenter. Other non-yawing satellites would also be affected by a similar effect whose amplitude could be easily estimated from the orbit inclination  相似文献   

2.
3.
ITRF2008: an improved solution of the international terrestrial reference frame   总被引:53,自引:38,他引:15  
ITRF2008 is a refined version of the International Terrestrial Reference Frame based on reprocessed solutions of the four space geodetic techniques: VLBI, SLR, GPS and DORIS, spanning 29, 26, 12.5 and 16?years of observations, respectively. The input data used in its elaboration are time series (weekly from satellite techniques and 24-h session-wise from VLBI) of station positions and daily Earth Orientation Parameters (EOPs). The ITRF2008 origin is defined in such a way that it has zero translations and translation rates with respect to the mean Earth center of mass, averaged by the SLR time series. Its scale is defined by nullifying the scale factor and its rate with respect to the mean of VLBI and SLR long-term solutions as obtained by stacking their respective time series. The scale agreement between these two technique solutions is estimated to be 1.05 ± 0.13 ppb at epoch 2005.0 and 0.049 ± 0.010?ppb/yr. The ITRF2008 orientation (at epoch 2005.0) and its rate are aligned to the ITRF2005 using 179 stations of high geodetic quality. An estimate of the origin components from ITRF2008 to ITRF2005 (both origins are defined by SLR) indicates differences at epoch 2005.0, namely: ?0.5, ?0.9 and ?4.7?mm along X, Y and Z-axis, respectively. The translation rate differences between the two frames are zero for Y and Z, while we observe an X-translation rate of 0.3?mm/yr. The estimated formal errors of these parameters are 0.2?mm and 0.2?mm/yr, respectively. The high level of origin agreement between ITRF2008 and ITRF2005 is an indication of an imprecise ITRF2000 origin that exhibits a Z-translation drift of 1.8?mm/yr with respect to ITRF2005. An evaluation of the ITRF2008 origin accuracy based on the level of its agreement with ITRF2005 is believed to be at the level of 1?cm over the time-span of the SLR observations. Considering the level of scale consistency between VLBI and SLR, the ITRF2008 scale accuracy is evaluated to be at the level of 1.2?ppb (8?mm at the equator) over the common time-span of the observations of both techniques. Although the performance of the ITRF2008 is demonstrated to be higher than ITRF2005, future ITRF improvement resides in improving the consistency between local ties in co-location sites and space geodesy estimates.  相似文献   

4.
Present-day continental mass variation as observed by space gravimetry reveals secular mass decline and accumulation. Whereas the former contributes to sea-level rise, the latter results in sea-level fall. As such, consideration of mass accumulation (rather than focussing solely on mass loss) is important for reliable overall estimates of sea-level change. Using data from the Gravity Recovery And Climate Experiment satellite mission, we quantify mass-change trends in 19 continental areas that exhibit a dominant signal. The integrated mass change within these regions is representative of the variation over the whole land areas. During the integer 9-year period of May 2002 to April 2011, GIA-adjusted mass gain and mass loss in these areas contributed, on average, to ?(0.7 ± 0.4) mm/year of sea-level fall and + (1.8 ± 0.2) mm/year of sea-level rise; the net effect was + (1.1 ± 0.6) mm/year. Ice melting over Greenland, Iceland, Svalbard, the Canadian Arctic archipelago, Antarctica, Alaska and Patagonia was responsible for + (1.4±0.2) mm/year of the total balance. Hence, land-water mass accumulation compensated about 20 % of the impact of ice-melt water influx to the oceans. In order to assess the impact of geocentre motion, we converted geocentre coordinates derived from satellite laser ranging (SLR) to degree-one geopotential coefficients. We found geocentre motion to introduce small biases to mass-change and sea-level change estimates; its overall effect is + (0.1 ± 0.1) mm/year. This value, however, should be taken with care owing to questionable reliability of secular trends in SLR-derived geocentre coordinates.  相似文献   

5.
J. Kouba 《Journal of Geodesy》2009,83(3-4):199-208
Several sources of a priori meteorological data have been compared for their effects on geodetic results from GPS precise point positioning (PPP). The new global pressure and temperature model (GPT), available at the IERS Conventions web site, provides pressure values that have been used to compute a priori hydrostatic (dry) zenith path delay z h estimates. Both the GPT-derived and a simple height-dependent a priori constant z h performed well for low- and mid-latitude stations. However, due to the actual variations not accounted for by the seasonal GPT model pressure values or the a priori constant z h, GPS height solution errors can sometimes exceed 10 mm, particularly in Polar Regions or with elevation cutoff angles less than 10 degrees. Such height errors are nearly perfectly correlated with local pressure variations so that for most stations they partly (and for solutions with 5-degree elevation angle cutoff almost fully) compensate for the atmospheric loading displacements. Consequently, unlike PPP solutions utilizing a numerical weather model (NWM) or locally measured pressure data for a priori z h, the GPT-based PPP height repeatabilities are better for most stations before rather than after correcting for atmospheric loading. At 5 of the 11 studied stations, for which measured local meteorological data were available, the PPP height errors caused by a priori z h interpolated from gridded Vienna Mapping Function-1 (VMF1) data (from a NWM) were less than 0.5 mm. Height errors due to the global mapping function (GMF) are even larger than those caused by the GPT a priori pressure errors. The GMF height errors are mainly due to the hydrostatic mapping and for the solutions with 10-degree elevation cutoff they are about 50% larger than the GPT a priori errors.  相似文献   

6.
Displacements of the Earth’s surface caused by tidal and non-tidal loading forces are relevant in high-precision space geodesy. Some of the corrections are recommended by the international scientific community to be applied at the observation level, e.g., ocean tidal loading (OTL) and atmospheric tidal loading (ATL). Non-tidal displacement corrections are in general recommended not to be applied in the products of the International Earth Rotation and Reference Systems Service, in particular atmospheric non-tidal loading (ANTL), oceanic and hydrological non-tidal corrections. We assess and compare the impact of OTL, ATL and ANTL on SLR-derived parameters by reprocessing 12 years of SLR data considering and ignoring individual corrections. We show that loading displacements have an influence not only on station long-term stability, but also on geocenter coordinates, Earth Rotation Parameters, and satellite orbits. Applying the loading corrections reduces the amplitudes of annual signals in the time series of geocenter and station coordinates. The general improvement of the SLR station 3D coordinate repeatability when applying OTL, ATL and ANTL corrections are 19.5 %, 0.2 % and 3.3 % respectively, w.r.t. the solutions without loading corrections. ANTL corrections play a crucial role in the combination of optical (SLR) and microwave (GNSS, VLBI, DORIS) space geodetic observation techniques, because of the so-called Blue-Sky effect: SLR measurements can be carried out only under cloudless sky conditions—typically during high air pressure conditions, when the Earth’s crust is deformed, whereas microwave observations are weather-independent. Thus, applying the loading corrections at the observation level improves SLR-derived products as well as the consistency with microwave-based results. We assess the Blue-Sky effect on SLR stations and the consistency improvement between GNSS and SLR solutions when ANTL corrections are included. The omission of ANTL corrections may lead to inconsistencies between SLR and GNSS solutions of up to 2.5 mm for inland stations. As a result, the estimated GNSS–SLR coordinate differences correspond better to the local ties at the co-located stations when applying ANTL corrections.  相似文献   

7.
用调和分析法分析DORIS、GPS和SLR 3种空间大地测量技术导出的地心运动时间序列。结果表明:地心长期运动不显著,但存在北向运动趋势,速度小于1mm/a;相对于DORIS和GPS,SLR导出的地心运动更符合地球物理模型计算的结果,用22aSLR数据导出的地心运动在X,Y,Z方向的周年运动振幅分别为2.8±0.2mm,2.7±0.2mm和6.1±0.2mm。  相似文献   

8.
The quality of the links between the different space geodetic techniques (VLBI, SLR, GNSS and DORIS) is still one of the major limiting factors for the realization of a unique global terrestrial reference frame that is accurate enough to allow the monitoring of the Earth system, i.e., of processes like sea level change, postglacial rebound and silent earthquakes. According to the specifications of the global geodetic observing system of the International Association of Geodesy, such a reference frame should be accurate to 1 mm over decades, with rates of change stable at the level of 0.1 mm/year. The deficiencies arise from inaccurate or incomplete local ties at many fundamental sites as well as from systematic instrumental biases in the individual space geodetic techniques. Frequently repeated surveys, the continuous monitoring of antenna heights and the geometrical mount stability (Lösler et al. in J Geod 90:467–486, 2016.  https://doi.org/10.1007/s00190-016-0887-8) have not provided evidence for insufficient antenna stability. Therefore, we have investigated variations in the respective system delays caused by electronic circuits, which is not adequately captured by the calibration process, either because of subtle differences in the circuitry between geodetic measurement and calibration, high temporal variability or because of lacking resolving bandwidth. The measured system delay variations in the electric chain of both VLBI- and SLR systems reach the order of 100 ps, which is equivalent to 3 cm of path length. Most of this variability is usually removed by the calibrations but by far not all. This paper focuses on the development of new technologies and procedures for co-located geodetic instrumentation in order to identify and remove systematic measurement biases within and between the individual measurement techniques. A closed-loop optical time and frequency distribution system and a common inter-technique reference target provide the possibility to remove variable system delays. The main motivation for the newly established central reference target, locked to the station clock, is the combination of all space geodetic instruments at a single reference point at the observatory. On top of that it provides the unique capability to perform a closure measurement based on the observation of time.  相似文献   

9.
We examine the impact of using seasonal and long-period time-variable gravity field (TVG) models on GPS orbit determination, through simulations from 1994 to 2012. The models of time-variable gravity that we test include the GRGS release RL02 GRACE-derived 10-day gravity field models up to degree and order 20 (grgs20x20), a 4 × 4 series of weekly coefficients using GGM03S as a base derived from SLR and DORIS tracking to 11 satellites (tvg4x4), and a harmonic fit to the above 4 × 4 SLR–DORIS time series (goco2s_fit2). These detailed models are compared to GPS orbit simulations using a reference model (stdtvg) based on the International Earth Rotation Service (IERS) and International GNSS Service (IGS) repro1 standards. We find that the new TVG modeling produces significant along, cross-track orbit differences as well as annual, semi-annual, draconitic and long-period effects in the Helmert translation parameters (Tx, Ty, Tz) of the GPS orbits with magnitudes of several mm. We show that the simplistic TVG modeling approach used by all of the IGS Analysis Centers, which is based on the models provided by the IERS standards, becomes progressively less adequate following 2006 when compared to the seasonal and long-period TVG models.  相似文献   

10.
In this study, we assess the impact of two combination strategies, namely local ties (LT) and global ties (GT), on the datum realization of Global Terrestrial Reference Frames in view of the Global Geodetic Observing System requiring 1 mm-accuracy. Simulated Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) data over a 7 year time span was used. The LT results show that the geodetic datum can be best transferred if the precision of the LT is at least 1 mm. Investigating different numbers of LT, the lack of co-located sites on the southern hemisphere is evidenced by differences of 9 mm in translation and rotation compared to the solution using all available LT. For the GT, the combination applying all Earth rotation parameters (ERP), such as pole coordinates and UT1-UTC, indicates that the rotation around the Z axis cannot be adequately transferred from VLBI to SLR within the combination. Applying exclusively the pole coordinates as GT, we show that the datum can be transferred with mm-accuracy within the combination. Furthermore, adding artificial stations in Tahiti and Nigeria to the current VLBI network results in an improvement in station positions by 13 and 12%, respectively, and in ERP by 17 and 11%, respectively. Extending to every day VLBI observations leads to 65% better ERP estimates compared to usual twice-weekly VLBI observations.  相似文献   

11.
This paper evaluates the sensitivity of ITRF2008-based satellite laser ranging (SLR) station positions estimated weekly using LAGEOS-1/2 data from 1993 to 2012 to non-tidal time-varying gravity (TVG). Two primary methods for modeling TVG from degree-2 are employed. The operational approach applies an annual GRACE-derived field, and IERS recommended linear rates for five coefficients. The experimental approach uses low-order/degree $4\times 4$ coefficients estimated weekly from SLR and DORIS processing of up to 11 satellites (tvg4x4). This study shows that the LAGEOS-1/2 orbits and the weekly station solutions are sensitive to more detailed modeling of TVG than prescribed in the current IERS standards. Over 1993–2012 tvg4x4 improves SLR residuals by 18 % and shows 10 % RMS improvement in station stability. Tests suggest that the improved stability of the tvg4x4 POD solution frame may help clarify geophysical signals present in the estimated station position time series. The signals include linear and seasonal station motion, and motion of the TRF origin, particularly in Z. The effect on both POD and the station solutions becomes increasingly evident starting in 2006. Over 2008–2012, the tvg4x4 series improves SLR residuals by 29 %. Use of the GRGS RL02 $50\times 50$ series shows similar improvement in POD. Using tvg4x4, secular changes in the TRF origin Z component double over the last decade and although not conclusive, it is consistent with increased geocenter rate expected due to continental ice melt. The test results indicate that accurate modeling of TVG is necessary for improvement of station position estimation using SLR data.  相似文献   

12.
In October 2002, 15 continuous days of Very Long Baseline Interferometry (VLBI) data were observed in the Continuous VLBI 2002 (CONT02) campaign. All eight radio telescopes involved in CONT02 were co-located with at least one other space-geodetic technique, and three of them also with a Water Vapor Radiometer (WVR). The goal of this paper is to compare the tropospheric zenith delays observed during CONT02 by VLBI, Global Positioning System (GPS), Doppler Orbitography Radiopositioning Integrated by Satellite (DORIS) and WVR and to compare them also with operational pressure level data from the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the tropospheric zenith delays from VLBI and GPS are in good agreement at the 3–7 mm level. However, while only small biases can be found for most of the stations, at Kokee Park (Hawaii, USA) and Westford (Massachusetts, USA) the zenith delays derived by GPS are larger by more than 5 mm than those from VLBI. At three of the four DORIS stations, there is also a fairly good agreement with GPS and VLBI (about 10 mm), but at Kokee Park the agreement is only at about 30 mm standard deviation, probably due to the much older installation and type of DORIS equipment. This comparison also allows testing of different DORIS analysis strategies with respect to their real impact on the precision of the derived tropospheric parameters. Ground truth information about the zenith delays can also be obtained from the ECMWF numerical weather model and at three sites using WVR measurements, allowing for comparisons with results from the space-geodetic techniques. While there is a good agreement (with some problems mentioned above about DORIS) among the space-geodetic techniques, the comparison with WVR and ECMWF is at a lower accuracy level. The complete CONT02 data set is sufficient to derive a good estimate of the actual precision and accuracy of each geodetic technique for applications in meteorology.  相似文献   

13.
In a cooperation between the Astronomical Institute, University of Bern (AIUB), the Geodetic Observatory Pecný (GOPE), and the Institut Géographique National (IGN), DORIS data analysis capabilities were implemented into a development version of the Bernese GPS software. The DORIS Doppler observables are reformulated such that they are similar to global navigation satellite system (GNSS) carrier-phase observations, allowing the use of the same observation models and algorithms as for GNSS carrier-phase data analysis with only minor software modifications. As such, the same algorithms may be used to process DORIS carrier-phase observations. First results from the analysis of 3 weeks of DORIS data (September 2004, five DORIS-equipped satellites) at GOPE are promising and are presented here. They include the comparison of station coordinates with coordinate estimates derived by the Laboratoire d’Etudes en Géophysique et Océanographie Spatiale/Collecte Localisation Satellites analysis centre (LCA) and the Institut Géographique National/Jet Propulsion Laboratory (IGN/JPL), and the comparison of Earth orientation parameters (EOPs) with the International Earth Rotation and Reference Frames Service (IERS) C04 model. The modified Bernese results are of a slightly lower, but comparable, quality than corresponding solutions routinely computed within the IDS (International DORIS Service). The weekly coordinate repeatability RMS is of the order of 2–3 cm for each 3D station coordinate. Comparison with corresponding estimates of station coordinates from current IDS analysis centers demonstrates similar precision. Daily pole component estimates show a mean difference from IERS-C04 of 0.6  mas in X p and  ? 0.5  mas in Y p and a RMS of 0.8  mas in X p and 0.9  mas in Y p (mean removed). An automatic analysis procedure is under development at GOPE, and routine DORIS data processing will be implemented in the near future.  相似文献   

14.
C. Noll  L. Soudarin 《Journal of Geodesy》2006,80(8-11):419-427
The International DORIS Service (IDS) was formed under the direction of the International Association of Geodesy (IAG) in 2003 to support geodetic research utilizing DORIS data and products. The IDS is organized into a hierarchy of components: network of Tracking Stations, Satellite Segment, Data Centers, Analysis Centers, Central Bureau, and Governing Board. The DORIS infrastructure consists of a globally distributed network of over 50 ground beacons and a constellation of five satellites equipped with receivers that relay range rate measurements through a central collection facility to the IDS archives. The Data Centers and Central Bureau supporting the IDS are the primary means of distributing DORIS data, products, and general information to the user community. These facilities utilize Web and ftp servers, as well as an email service, to support the users of DORIS data and products. The current status and recent developments of these components are discussed, as well as a review of available information, data, and geodetic product types.  相似文献   

15.
We analyse geodetically estimated deformation across the Nepal Himalaya in order to determine the geodetic rate of shortening between Southern Tibet and India, previously proposed to range from 12 to 21 mm yr?1. The dataset includes spirit-levelling data along a road going from the Indian to the Tibetan border across Central Nepal, data from the DORIS station on Everest, which has been analysed since 1993, GPS campaign measurements from surveys carried on between 1995 and 2001, as well as data from continuous GPS stations along a transect at the logitude of Kathmandu operated continuously since 1997. The GPS data were processed in International Terrestrial Reference Frame 2000 (ITRF2000), together with the data from 20 International GNSS Service (IGS) stations and then combined using quasi- observation combination analysis (QOCA). Finally, spatially complementary velocities at stations in Southern Tibet, initially determined in ITRF97, were expressed in ITRF2000. After analysing previous studies by different authors, we determined the pole of rotation of the Indian tectonic plate to be located in ITRF2000 at 51.409±1.560° N and ?10.915±5.556°E, with an angular velocity of 0.483±0.015°. Myr?1. Internal deformation of India is found to be small, corresponding to less than about 2 mm yr?1 of baseline change between Southern India and the Himalayan piedmont. Based on an elastic dislocation model of interseismic strain and taking into account the uncertainty on India plate motion, the mean convergence rate across Central and Eastern Nepal is estimated to 19±2.5 mm yr?1, (at the 67% confidence level). The main himalayan thrust (MHT) fault was found to be locked from the surface to a depth of about 20 km over a width of about 115 km. In these regions, the model parameters are well constrained, thanks to the long and continuous time-series from the permanent GPS as well as DORIS data. Further west, a convergence rate of 13.4±5 mm yr?1, as well as a fault zone, locked over 150 km, are proposed. The slight discrepancy between the geologically estimated deformation rate of 21±1.5 mm yr?1 and the 19±2.5 mm yr?1 geodetic rate in Central and Eastern Nepal, as well as the lower geodetic rate in Western Nepal compared to Eastern Nepal, places bounds on possible temporal variations of the pattern and rate of strain in the period between large earthquakes in this region.  相似文献   

16.
The DORIS Doppler measurements collected by Jason-1 are abnormally perturbed by the influence of the South Atlantic Anomaly (SAA). The DORIS ultra-stable oscillators on-board Jason-1 are not as stable as they should be; their frequency is sensitive both to the irradiation rate and to the total irradiation encountered in orbit. The consequence is that not only are the DORIS measurement residuals higher than they ought to be, but also large systematic positioning errors are introduced for stations located in the vicinity of the SAA. In this paper, we present a method that has been devised to obtain a continuous observation of Jason-1 frequency offsets. This method relies on the precise determination of the station frequency and troposphere parameters via the use of other DORIS satellites. More than 3 years of these observations have then been used to construct a model of response of the oscillators of Jason-1 to the SAA. The sensitivity of the Jason-1 oscillators to the SAA perturbations has evolved over time, multiplied by a factor of four between launch and mid-2004. The corrective performances of the model are discussed in terms of DORIS measurement residuals, precise orbit determination and station positioning. The average DORIS measurement residuals are decreased by more than 7 % using this model. In terms of precise orbit determination, the 3D DORIS-only orbit error decreases from 5 to 4.2 cm, but the DORIS+SLR orbit error is almost unaffected, due to the already good quality of this type of orbit. In terms of station positioning, the model brings down the average 3D mono-satellite monthly network solution discrepancy with the International Terrestrial Reference Frame ITRF2000 from 11.3 to 6.1 cm, and also decreases the scatter about that average from 11.3 to 3.7 cm. The conclusion is that, with this model, it is possible to re-incorporate Jason-1 in the multi-satellite geodetic solutions for the DORIS station network.  相似文献   

17.
All space-geodetic techniques are now organized as separate services of the International Association of Geodesy (IAG), supporting the first pilot project “Global Geodetic Observing System (GGOS)”. The International DORIS (Détermination d’Orbite et Radiopositionnement Intégrés par Satellite) Service (IDS) was created in mid-2003 to organize a DORIS contribution to this project and to foster a larger international cooperation on this topic. The goal of this paper is to summarize the key steps that were taken to create this structure and to present its current organization and recent results. At present, more than 50 groups from 35 different countries participate in the IDS at various levels, including 43 groups hosting DORIS stations in 32 countries all around the globe. Four Analysis Centres (ACs) provide results, such as estimates of weekly or monthly station coordinates, geocentre variations or Earth polar motion, that will soon be used to generate IDS-combined products for geodesy and geodynamics. As a first test, a preliminary combination was performed for all the 2004 data from these four ACs. Three of them show RMS of weighted station residuals with respect to this combination solution between 1 and 2 cm. The main topic under investigation is a discrepancy in the scale factor of the terrestrial reference frame (TRF) to map the individual solutions into the combination solution, which reaches 6 cm (multiplying the unit-less scale factor by the Earth radius to get convert scale to millimetre in vertical at the Earth’s surface). Finally, foreseen improvements of the DORIS technology are discussed as well as future improvements concerning the service organization itself and the accuracy and reliability of its scientific products.  相似文献   

18.
We examine the contribution of the Doppler Orbit determination and Radiopositioning Integrated by Satellite (DORIS) technique to the International Terrestrial Reference Frame (ITRF2005) by evaluating the quality of the submitted solutions as well as that of the frame parameters, especially the origin and the scale. Unlike the previous versions of the ITRF, ITRF2005 is constructed with input data in the form of time-series of station positions (weekly for satellite techniques and daily for VLBI) and daily Earth orientation parameters (EOPs), including full variance–covariance information. Analysis of the DORIS station positions’ time-series indicates an internal precision reaching 15 mm or better, at a weekly sampling. A cumulative solution using 12 years of weekly time-series was obtained and compared to a similar International GNSS Service (IGS) GPS solution (at 37 co-located sites) yielding a weighted root mean scatter (WRMS) of the order of 8 mm in position (at the epoch of minimum variance) and about 2.5 mm/year in velocity. The quality of this cumulative solution resulting from the combination of two individual DORIS solutions is better than any individual solution. A quality assessment of polar motion embedded in the contributed DORIS solutions is performed by comparison with the results of other space-geodetic techniques and in particular GPS. The inferred WRMS of polar motion varies significantly from one DORIS solution to another and is between 0.5 and 2 mas, depending on the strategy used and in particular estimating or not polar motion rate by the analysis centers. This particular aspect certainly needs more investigation by the DORIS Analysis Centers.  相似文献   

19.
Non-linear station motions in epoch and multi-year reference frames   总被引:5,自引:5,他引:0  
In the conventions of the International Earth Rotation and Reference Systems Service (e.g. IERS Conventions 2010), it is recommended that the instantaneous station position, which is fixed to the Earth’s crust, is described by a regularized station position and conventional correction models. Current realizations of the International Terrestrial Reference Frame use a station position at a reference epoch and a constant velocity to describe the motion of the regularized station position in time. An advantage of this parameterization is the possibility to provide station coordinates of high accuracy over a long time span. Various publications have shown that residual non-linear station motions can reach a magnitude of a few centimeters due to not considered loading effects. Consistently estimated parameters like the Earth Orientation Parameters (EOP) may be affected if these non-linear station motions are neglected. In this paper, we investigate a new approach, which is based on a frequent (e.g. weekly) estimation of station positions and EOP from a combination of epoch normal equations of the space geodetic techniques Global Positioning System (GPS), Satellite Laser Ranging (SLR) and Very Long Baseline Interferometry (VLBI). The resulting time series of epoch reference frames are studied in detail and are compared with the conventional secular approach. It is shown that both approaches have specific advantages and disadvantages, which are discussed in the paper. A major advantage of the frequently estimated epoch reference frames is that the non-linear station motions are implicitly taken into account, which is a major limiting factor for the accuracy of the secular frames. Various test computations and comparisons between the epoch and secular approach are performed. The authors found that the consistently estimated EOP are systematically affected by the two different combination approaches. The differences between the epoch and secular frames reach magnitudes of $23.6~\upmu \hbox {as}$ (0.73 mm) and $39.8~\upmu \hbox {as}$ (1.23 mm) for the x-pole and y-pole, respectively, in case of the combined solutions. For the SLR-only solutions, significant differences with amplitudes of $77.3~\upmu \hbox {as}$ (2.39 mm) can be found.  相似文献   

20.
Applying a one-step integrated process, i.e. by simultaneously processing all data and determining all satellite orbits involved, a Terrestrial Reference Frame (TRF) consisting of a geometric as well as a dynamic part has been determined at the observation level using the EPOS-OC software of Deutsches GeoForschungsZentrum. The satellite systems involved comprise the Global Positioning System (GPS) as well as the twin GRACE spacecrafts. Applying a novel approach, the inherent datum defect has been overcome empirically. In order not to rely on theoretical assumptions this is done by carrying out the TRF estimation based on simulated observations and using the associated satellite orbits as background truth. The datum defect is identified here as the total of all three translations as well as the rotation about the z-axis of the ground station network leading to a rank-deficient estimation problem. To rectify this singularity, datum constraints comprising no-net translation (NNT) conditions in x, y, and z as well as a no-net rotation (NNR) condition about the z-axis are imposed. Thus minimally constrained, the TRF solution covers a time span of roughly a year with daily resolution. For the geometric part the focus is put on Helmert transformations between the a priori and the estimated sets of ground station positions, and the dynamic part is represented by gravity field coefficients of degree one and two. The results of a reference solution reveal the TRF parameters to be estimated reliably with high precision. Moreover, carrying out a comparable two-step approach using the same data and models leads to parameters and observational residuals of worse quality. A validation w.r.t. external sources shows the dynamic origin to coincide at a level of 5 mm or better in x and y, and mostly better than 15 mm in z. Comparing the derived GPS orbits to IGS final orbits as well as analysing the SLR residuals for the GRACE satellites reveals an orbit quality on the few cm level. Additional TRF test solutions demonstrate that K-Band Range-Rate observations between both GRACE spacecrafts are crucial for accurately estimating the dynamic frame’s orientation, and reveal the importance of the NNT- and NNR-conditions imposed for estimating the components of the dynamic geocenter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号