共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Christian Abrahamsson 《Area》2008,40(1):137-138
Statement The Editors do not necessarily agree with the statements contained in the book reviews, and neither they nor the RGS-IBG assume responsibility for the reviewers' assessments of the books that they evaluate. 相似文献
18.
19.
Richard S. Gross 《Geophysical Journal International》1986,85(1):161-177
Summary. A direct calculation is made of the effect on the Chandler wobble of 1287 earthquakes that occurred during 1977–1983. The hypocentral parameters (location and origin time) and the moment tensor representation of the best point source for each earthquake as determined by the 'centroidmoment tensor' technique were used to calculate the change in the Chandler wobble's excitation function by assuming this change is due solely to the static deformation field generated by that earthquake. The resulting theoretical earthquake excitation function is compared with the 'observed' excitation function that is obtained by deconvolving a Chandler wobble time series derived from LAGEOS polar motion data. Since only 7 years of data are available for analysis it is not possible to resolve the Chandler band and determine whether or not the theoretical earthquake excitation function derived here is coherent and in phase with the 'observed' excitation function in that band. However, since the power spectrum of the earthquake excitation function is about 56 dB less than that of the 'observed' excitation function at frequencies near the Chandler frequency, it is concluded that earthquakes, via their static deformation field, have had a negligible influence on the Chandler wobble during 1977–1983. However, fault creep or any type of aseismic slip that occurs on a time-scale much less than the period of the Chandler wobble could have an important (and still unmodelled) effect on the Chandler wobble. 相似文献