首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Geochemistry》1999,14(7):939-951
Strontium isotope ratios are used to identify end-member ground-water compositions at Äspö in southeastern Sweden where the Hard Rock Laboratory (HRL) has been constructed to evaluate the suitability of crystalline rock for the geologic disposal of nuclear waste. The Hard Rock Laboratory is a decline (tunnel) constructed in 1.8 Ga-old granitic rock that forms islands in an archipelago along the Swedish coast. Ground-water samples were obtained for isotopic analyses from boreholes drilled from the surface and from side boreholes drilled within the HRL. Infiltration at Äspö occurs primarily through fractures zones in the granitic bedrock beneath thin soils throughout the area. Because of extremely low Sr concentrations, rain and snow are not important contributors to the Sr isotope budget of the ground-water system. At shallow levels, water percolating downward along fractures and fracture zones acquires a δ87Sr between +9.5 and +10.0‰ and maintains this value downward while Sr concentrations increase by two orders of magnitude. Ground-water samples from both boreholes and from in the HRL show the effects of mixing with saline waters containing as much as 59 mg/L Sr and δ87Sr values as large as +13.9‰. Baltic Sea water is a potential component of the groundwater system with δ87Sr values only slightly larger than modern marine values (+0.3‰) but with much lower concentrations (1.5 mg/L) than ocean water (8 mg/L). However, because of large Sr concentration differences between the saline groundwater (59 mg/L) and Baltic Sea water (1.5 mg/L), δ87Sr values are not particularly sensitive indicators of sea-water intrusion even though their δ87Sr values differ substantially.  相似文献   

2.
The Malari Leucogranite in the Garhwal Himalaya is cut across by a continental-scale normal fault system called the South Tibetan Detachment (STD). A mineralogical, geochemical and fluid inclusion study of samples from the fault zone of the Malari Granite was performed to reveal the imprints of fluid–rock interaction. Fluid inclusion assemblages observed in the alteration zone indicate the presence of NaCl-dominated aqueous fluids with varied salinity of 6–16 wt.% of NaCl equivalent. Mineralogical changes include the alteration of feldspar to muscovite and muscovite to chlorite. This alteration took place at temperatures of 275°–335°C and pressures between 1.9 and 4.2 kbars as revealed by the application of chlorite thermometry, fluid isochores, and presence of K-feldspar+muscovite+chlorite+quartz mineral assemblage. Geochemical mass-balance estimates predict 32% volume loss during alteration. An estimated fluid/rock ratio of 82 is based on loss of silica during alteration, and reveals presence of a moderately low amount of fluid at the time of faulting.  相似文献   

3.
The estimation of the fluid/rock (W/R) ratio during serpentinization on the basis of oxygen isotope characteristics is peculiar, because this process is accompanied by not only changes in the stoichiometric proportions of oxygen in fluid and rock, but also by the formation of associated minerals. These factors should be taken into account for environments when the volume of aqueous fluid is limited, for instance, for serpentinization of the deep-seated rocks of oceanic lithosphere under low spreading rates. We studied isotope characteristics of samples collected in dives of submersible MIR during Cruise 50 of the R/V Akademik Mstislav Keldysh along vertical profile on the southern slope of the Atlantis Massif, which hosts the Lost City hydrothermal field. Almost all studied serpentinites have homogenous strontium isotope composition corresponding to the composition of the modern seawater. Oxygen isotope composition of these serpentinites shows systematic variations from 2. 6 to 6.1‰ with sampling depth, which indicates the preservation of stratigraphic position of samples in the sequence of the Atlantis Massif and the global serpentinization of the entire plutonic sequence. The value of the fluid–rock ratio during serpentinization in a system closed to fluid was estimated using the dissolution–crystallization model. This model takes into account the variable stoichiometry of oxygen and the effect of the simultaneous crystallization of brucite on the oxygen isotope composition of newly formed serpentine. The results show that at moderately elevated temperatures (≈300°C) and 0.1 < W/R < 5, fluid, crystallizing serpentine, and brucite are characterized by sharp variations in oxygen isotope composition: 1.3–7.8, 2.5–8.9, and 4.5–1.9‰, respectively. The model explains the observed range of δ18O in the serpentinized harzburgites of the Atlantis Massif. According to our estimates, the rocks of the studied sequence of the Atlantis Massif were serpentinized at 270–350°C and W/R = 0.7–3. For lower temperature serpentinization, for instance, at T = 250°C, the W/R ratio can be as high as 6. The present-day serpentinization of the deepseated zones of the Atlantis Massif with the Lost City fluid participance proceeds at T > 270°C and W/R ratio <1. These conditions are similar to those of serpentinization of harzburgites from the lower parts of the studied sequence of the Atlantis Massif.  相似文献   

4.
High arsenic water has been a global focus of both scientists and water supply managers because of its serious adverse impact on human health and wide distribution in the world. Processes of redox, sorption, precipitation, and dissolution release arsenic in both natural systems and in environments intensely modified by human activities. In natural systems, groundwater arsenic is controlled by lithologic geochemistry, sedimentation conditions, hydrogeologic setting and groundwater chemistry. However, in the intensely human-affected systems (such as mining and tilling areas), arsenic mobilization is dependent on the composition of the primary materials, treatment methods, storage design, and local climate. Well-designed experimental systems aid in characterizing sorption, precipitation, and redox processes associated with arsenic dynamics during water-rock interaction. Continued investigations of field sites will further refine understanding of the processes favoring arsenic mobility in the range of natural and man-made systems. The combination of field and experimental studies will lead to better understanding of arsenic cycling in all systems and sustainable management of water resources in arsenic-affected areas.  相似文献   

5.
《Chemical Geology》2002,182(2-4):473-482
Three lithological Groups I (medium-grained, with magmatogenic arfvedsonite), II (medium-grained, with secondary arfvedsonite) and III (fine-grained, with magmatogenic arfvedsonite) are identified in the Saertielieke alkali granite pluton, Ulungur of the northern Xinjiang, China. A weak negative correlation between the δ18O values of alkali feldspar and quartz separates from each group, and the distinctly lower δ18O values of alkali feldspar separates from Groups I and II than those from Group III are interpreted in terms of superimposed closed-system and open-system isotope exchange. A small amount of locally exsolved magmatic fluid is involved in the development of the perthitic texture in alkali feldspar at ∼400 °C that results in a volume increase and, hence, causes quartz deformation. The microtextural changes promote the closed-system oxygen isotope exchange between quartz and alkali feldspar that causes a dispersion in the quartz δ18O values. However, the distinctly lower δ18O values of alkali feldspar and secondary arfvedsonite coupled with their microtextural characteristics indicate that meteoric-derived water plays an important role in the further development of alkali feldspar exsolution texture at T<400 °C and directly causes secondary arfvedsonite formation. The estimated relative exchange rates kQuartz/kFeldspar/kArfvedsonite of ∼10/100/1 for Groups I and III, and ∼10/100/100 for Group II suggest that alkali feldspar, quartz, and secondary arfvedsonite have exchanged with meteoric-derived water mainly via dissolution–reprecipitation, whereas magmatogenic arfvedsonite has exchanged via diffusion.  相似文献   

6.
7.
《Applied Geochemistry》2002,17(3):225-243
Altered wallrocks of vein-type Pb–Zn–Sb mineralization, Siegerland district, Rheinisches Schiefergebirge, have been investigated by a combination of inorganic and organic geochemical methods, including major and trace element analysis, vitrinite reflectance measurements, C isotope and elemental analysis of kerogen. Alteration features of the siliciclastic pelitic-psammitic Lower Devonian wallrocks are increased K/Na ratios, significant desilicification and relative immobility of a number of elements, notably Al, Ti, Zr, Cr, V. Wallrock kerogens display elevated vitrinite reflectance values, decrease in H/C atomic ratios coupled with increase in S/C atomic ratios and heavier C isotope compositions, compared to the unaltered precursor sedimentary rocks. Interaction processes between the hydrothermal fluids and the respective wallrocks, related to injection of high-temperature silica-undersaturated solutions, are dominated by quartz dissolution coupled with sericitization reactions. Heat transfer due to fluid infiltration/convection and wallrock reactions caused fluid cooling, which promoted the sequential deposition of quartz and stibnite/sulphosalts within the vein systems. Hydrocarbons, detected in ore assemblages of Pb–Zn and Sb mineralization, were most probably derived from the Lower Devonian very low-grade (meta)sedimentary rocks. High maturity levels and pronounced, typical organic alteration patterns indicate that thermochemical SO2−4 reduction (TSR) played an important role in precipitation of metal sulphides. The present study demonstrates that a combination of inorganic and organic investigations on fluid–rock interaction processes is particularly useful for deciphering precipitation mechanisms of base metal sulphides.  相似文献   

8.
《Applied Geochemistry》1999,14(7):893-905
The hydrogeology of a vertical fracture zone at 70 m depth at the access tunnel to the Äspö Hard Rock Laboratory was monitored over 3 a for hydrochemical changes that could be effected by construction of a deep repository for high-level nuclear waste. Tunnel construction dramatically disturbed the hydrogeological system, but this provided an opportunity to integrate hydrogeochemical and hydrological evaluation of the zone. The objective of this study was to evaluate hydrogeochemical evolution, groundwater flow and surface water intrusion during the experiment using an integrated approach of geochemical mass-balance calculations and numerical flow simulations.The dilution of major ions was the dominant hydrochemical trend. However, HCO3 and SO4 showed significant enrichment. Increasing activity of 14C suggested that oxidation of organic C was the likely source of HCO3. Any mineral source dissolving during the experiment seemed insufficient to account for changes in SO4 and current intrusion of sea water was excluded according to the data. Cation exchange as well as minor calcite reactions in fractures were assumed probable in such temporary chemical conditions. Conservative two end-member mixing models with shallow groundwater in the zone and initial groundwater at tunnel level also assumed remarkable mass transfer (several mmol/l). Therefore a third SO4-rich end-member, a regional shallow groundwater type which may mix by lateral flow in the system, was tested. This was also expected from hydraulic measurements and preliminary flow simulations assuming homogeneity.Three end-member mixing calculations using Cl and SO4 as conservative tracers give a constant proportion of lateral water in all boreholes after 300 days, which is consistent with the steady state character of the flow field in the late part of the experiment. To predict reactions on plausible levels needs significant adjustments of initial and final waters, indicating uncertainties in the hydrochemical information of the fracture zone. In the flow simulations the transmissivities were selected so that the chemical mixing proportions would match simulated portions of flow as closely as possible. The simulated total recoveries (drawdowns) differ from the measurements mainly due to overly simple parametrisation of the transmissivity in the fracture zone. However, integrating hydrochemistry in flow modelling is considered encouraging in producing additional information of the heterogeneity of a flow structure.  相似文献   

9.
《Gondwana Research》2007,11(3-4):267-276
The boundary between the Archean cratons and the Eastern Ghats Belt in peninsular India represents a rifted Mesoproterozoic continental margin which was overprinted by a Pan-African collisional event associated with the westward thrusting of the Eastern Ghats granulites over the cratonic foreland. The contact zone contains a number of deformed and metamorphosed nepheline syenite complexes of rift-related geochemical affinities. In addition to the nepheline-bearing rocks, metamorphosed quartz-bearing monzosyenitic bodies can also be identified along the suture in the region between the Godavari-Pranhita graben and the Prakasam Igneous Province. One such occurrence at Jojuru near Kondapalle is geochemically comparable to the nepheline syenites and furnishes a weighted mean concordant U–Th–Pb SHRIMP zircon age of 1263 ± 23 Ma (2σ), which provides a lower age bracket for the rift-related magmatic activity. The original igneous mineral assemblage in the monzosyenite was partially replaced by the formation of coronitic garnet during the Pan-African metamorphism of the rocks. PT estimates of garnet corona formation at the interface between clinopyroxene–orthopyroxene–ilmenite clusters and plagioclase indicate mid to upper amphibolite facies condition (5.5–7.0 kbar and 600–700 °C) during the thrust induced deformation and metamorphism associated with the Pan-African collisional tectonics.  相似文献   

10.
Natural Hazards - We performed a seismic vulnerability assessment that involves geotechnical and building structure analysis for Puerto Vallarta, Mexico, a city located along the pacific coast....  相似文献   

11.
In the northern limb of the 2.06-Ga Bushveld Complex, the Platreef is a platinum group elements (PGE)-, Cu-, and Ni-mineralized zone of pyroxenite that developed at the intrusion margin. From north to south, the footwall rocks of the Platreef change from Archaean granite to dolomite, hornfels, and quartzite. Where the footwall is granite, the Sr-isotope system is more strongly perturbed than where the footwall is Sr-poor dolomite, in which samples show an approximate isochron relationship. The Nd-isotope system for samples of pyroxenite and hanging wall norite shows an approximate isochron relationship with an implied age of 2.17 ± 0.2 Ga and initial Nd-isotope ratio of 0.5095. Assuming an age of 2.06 Ga, the ɛNd values range from −6.2 to −9.6 (ave. −7.8, n = 17) and on average are slightly more negative than the Main Zone of the Bushveld. These data are consistent with local contamination of an already contaminated magma of Main Zone composition. The similarity in isotope composition between the Platreef pyroxenites and the hanging wall norites suggests a common origin. Where the country rock is dolomite, the Platreef has generally higher plagioclase and pyroxene δ 18O values, and this indicates assimilation of the immediate footwall. Throughout the Platreef, there is considerable petrographic evidence for sub-solidus interaction with fluids, and the Δ plagioclase–pyroxene values range from −2 to +6, which indicates interaction at both high and low temperatures. Whole-rock and mineral δD values suggest that the Platreef interacted with both magmatic and meteoric water, and the lack of disturbance to the Sr-isotope system suggests that fluid–rock interaction took place soon after emplacement. Where the footwall is granite, less negative δD values suggest a greater involvement of meteoric water. Consistently higher values of Δ plagioclase–pyroxene in the Platreef pyroxenites and hanging wall norites in contact with dolomite suggest prolonged interaction with CO2-rich fluid derived from decarbonation of the footwall rocks. The overprint of post crystallization fluid–rock interaction is the probable cause of the previously documented lack of correlation between PGE and sulfide content on the small scale. The Platreef in contact with dolomite is the focus of the highest PGE grades, and this suggests that dolomite contamination played a role in PGE concentration and deposition, but the exact link remains obscure. It is a possibility that the CO2 produced by decarbonation of assimilated dolomite enhanced the process of PGE scavenging by sulfide precipitation.  相似文献   

12.
We studied the geometry, intensity of deformation and fluid–rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid–rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange–brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid–rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.  相似文献   

13.
Environmental Earth Sciences - Hydrogeochemistry data collected from three multi-level monitoring wells in a sandy alluvial aquifer located in the Keum River watershed, South Korea, are used in...  相似文献   

14.
The origin and evolution of formation water from Upper Jurassic to Upper Cretaceous mudstone–packstone–dolomite host rocks at the Jujo–Tecominoacán oil reservoir, located onshore in SE-Mexico at a depth from 5200 to 6200 m.b.s.l., have been investigated, using detailed water geochemistry from 12 producer wells and six closed wells, and related host rock mineralogy. Saline waters of Cl–Na type with total dissolved solids from 10 to 23 g/L are chemically distinct from hypersaline Cl–Ca–Na and Cl–Na–Ca type waters with TDS between 181 and 385 g/L. Bromine/Cl and Br/Na ratios suggest the subaerial evaporation of seawater beyond halite precipitation to explain the extreme hypersaline components, while less saline samples were formed by mixing of high salinity end members with surface-derived, low salinity water components. The dissolution of evaporites from adjacent salt domes has little impact on present formation water composition. Geochemical simulations with Harvie-Mφller-Weare and PHRQPITZ thermodynamic data sets suggest secondary fluid enrichment in Ca, HCO3 and Sr by water–rock interaction. The volumetric mass balance between Ca enrichment and Mg depletion confirms dolomitization as the major alteration process. Potassium/Cl ratios below evaporation trajectory are attributed to minor precipitation of K feldspar and illitization without evidence for albitization at the Jujo–Tecominoacán reservoir. The abundance of secondary dolomite, illite and pyrite in drilling cores from reservoir host rock reconfirms the observed water–rock exchange processes. Sulfate concentrations are controlled by anhydrite solubility as indicated by positive SI-values, although anhydrite deposition is limited throughout the lithological reservoir column. The chemical variety of produced water at the Jujo–Tecominoacán oil field is related to a sequence of primary and secondary processes, including infiltration of evaporated seawater and original meteoric fluids, the subsequent mixing of different water types and the formation of secondary minerals by water–rock interaction. A best fit between measured and calculated reservoir temperatures was obtained with the Mg–Li geothermometer for high salinity formation water (TDS > 180 g/L), whereas Na–K, Na–Ka–Ca and quartz geothermometers are partially applicable for less salinite water (TDS < 23 g/L).  相似文献   

15.
Liquid–liquid immiscibility has crucial influences on geological processes, such as magma degassing and formation of ore deposits. Sulfate, as an important component, associates with many kinds of deposits. Two types of immiscibility, including (i) fluid–melt immiscibility between an aqueous solution and a sulfate melt, and (ii) fluid–fluid immiscibility between two aqueous fluids with different sulfate concentrations, have been identified for sulfate–water systems. In this study, we investigated the immiscibility behaviors of a sulfate- and quartz-saturated Na2SO4–SiO2–H2O system at elevated temperature, to explore the phase relationships involving both types of immiscibility. The fluid–melt immiscibility appeared first when the Na2SO4–SiO2–H2O sample was heated to ~270°C, and then fluid–fluid immiscibility emerged while the sample was further heated to ~450°C. At this stage, the coexistence of one water-saturated sulfate melt and two aqueous fluids with distinct sulfate concentrations was observed. The three immiscible phases remain stable over a wide pressure–temperature range, and the appearance temperature of the fluid–fluid immiscibility increases with the increased pressure. Considering that sulfate components occur extensively in carbonatite-related deposits, the fluid–fluid immiscibility can result in significant sulfate fractionation and provides implications for understanding the formation of carbonatite-related rare earth deposits.  相似文献   

16.
Petrogenetic studies of carbonatites are challenging, because carbonatite mineral assemblages and mineral chemistry typically reflect both variable pressure–temperature conditions during crystallization and fluid–rock interaction caused by magmatic–hydrothermal fluids. However, this complexity results in recognizable alteration textures and trace-element signatures in the mineral archive that can be used to reconstruct the magmatic evolution and fluid–rock interaction history of carbonatites. We present new LA–ICP–MS trace-element data for magnetite, calcite, siderite, and ankerite–dolomite–kutnohorite from the iron-rich carbonatites of the 1.3 Ga Grønnedal–Íka alkaline complex, Southwest Greenland. We use these data, in combination with detailed cathodoluminescence imaging, to identify magmatic and secondary geochemical fingerprints preserved in these minerals. The chemical and textural gradients show that a 55 m-thick basaltic dike that crosscuts the carbonatite intrusion has acted as the pathway for hydrothermal fluids enriched in F and CO2, which have caused mobilization of the LREEs, Nb, Ta, Ba, Sr, Mn, and P. These fluids reacted with and altered the composition of the surrounding carbonatites up to a distance of 40 m from the dike contact and caused formation of magnetite through oxidation of siderite. Our results can be used for discrimination between primary magmatic minerals and later alteration-related assemblages in carbonatites in general, which can lead to a better understanding of how these rare rocks are formed. Our data provide evidence that siderite-bearing ferrocarbonatites can form during late stages of calciocarbonatitic magma evolution.  相似文献   

17.
Depending on the geological setting, the interaction of submarine hydrothermal fluids with the host rock leads to distinct energy and mass transfers between the lithosphere and the hydrosphere. The Nibelungen hydrothermal field is located at 8°18′S, about 9 km off-axis of the Mid-Atlantic Ridge (MAR). At 3000 m water depth, 372 °C hot, acidic fluids emanate directly from the bottom, without visible sulfide chimney formation. Hydrothermal fluids obtained in 2009 are characterized by low H2S concentrations (1.1 mM), a depletion of B (192 μM) relative to seawater, lower Si (13.7 mM) and Li (391 μM) concentrations relative to basaltic-hosted hydrothermal systems and a large positive Eu anomaly, and display a distinct stable isotope signature of hydrogen (?2HH2O = 7.6–8.7‰) and of oxygen (?18OH2O = 2.2–2.4‰).The heavy hydrogen isotopic signature of the Nibelungen fluids is a specific feature of ultramafic-hosted hydrothermal systems and is mainly controlled by the formation of OH-bearing alteration minerals like serpentine, brucite, and tremolite during pervasive serpentinization. New isotopic data obtained for the ultramafic-hosted Logatchev I field at 14°45′N, MAR (?2HH2O = 3.8–4.2‰) display a similar trend, being clearly distinguished from other, mafic-hosted hydrothermal systems at the MAR.The fluid geochemistry at Nibelungen kept stable since the first sampling campaign in 2006 and is evident for a hybrid alteration of mafic and ultramafic rocks in the subseafloor. Whereas the ultramafic-fingerprint parameters Si, Li, B, Eu anomaly and ?2HH2O distinguish the Nibelungen field from other hydrothermal systems venting in basaltic settings at similar physico-chemical conditions and are related to the interaction with mantle rocks, the relatively high concentrations of trace alkali elements, Pb, and Tl can only be attributed to the alteration of melt-derived gabbroic rocks. The elemental and isotopic composition of the fluid suggest a multi-step alteration sequence: (1) low- to medium-temperature alteration of gabbroic rocks, (2) pervasive serpentinization at moderate to high temperatures, and (3) limited high-temperature interaction with basaltic rocks during final ascent of the fluid. The integrated water/rock ratio for the Nibelungen hydrothermal system is about 0.5.The fluid compositional fingerprint at Nibelungen is similar to the ultramafic-hosted Logatchev I fluids with respect to key parameters. Some compositional differences can be ascribed to different alteration temperatures and other fluid pathways involving a variety of source rocks, higher water/rock ratios, and sulfide precipitation in the sub-seafloor at Logatchev I.  相似文献   

18.
A catastrophic rock avalanche–mud flow was triggered by the heavy rainfall in Sichuan, China, on July 27, 2010. A mass of strongly weathered basalts with a volume of ∼480,000 m3 was initiated from a valley side slope and then moved downstream along the valley, entraining a large amount of unconsolidated substrate and bilateral materials and colluviums. The entrainment increased the volume of slide to ∼1.0 million m3 and may also enhance the mobility of the landslide. Approximately 30 min after the first failure, the deposits of the rock avalanche in the steepest part of the valley started to creep slowly down as a mud flow. It reached a small town at the foot of the slope after several hours, causing the damage of 92 houses and the urgent evacuation of 1,500 people. The field investigation, mapping, grain size test, and aerial photo interpretation were applied to analyze the dynamic process and the formation mechanism of the landslide. The strongly weathered and fragmented basalts as well as the most vulnerable combination of joint sets were revealed to be the most contributive factors. The antecedent torrential rainfall is the direct trigger, which affected the slope stability in three aspects: induced debris flow that scoured the toe of the sliding surface of rock avalanche; caused the increase of the slope unit weight, and penetrated into the steep joints reducing the strength of the materials.  相似文献   

19.
Although antimony (Sb) and arsenic (As) exhibit similar geochemical behavior and toxicity in the environment, growing evidence suggests that their water–rock interaction behavior in contaminated rivers is quite different. Twenty-nine river water samples were collected between September and November 2018 from contaminated rivers around an antimony mine in Hunan Province, China. The concentrations of As and Sb were inversely proportional to the water flow distance. The rates and magnitudes of Sb decrease were more prominent than those of As. Silicate mineral dissolution from rocks such as silicified limestone increased the As and Sb concentration of in-mine-district (IMD) water. Dissolution of carbonate minerals, ion exchange, and competitive adsorption were the major water–rock interactions, resulting in rapidly decreasing As and Sb concentration in IMD direct impacted water and IMD indirect impacted water. The behaviors of As and Sb during water–rock interaction were dissimilar for areas dominated by carbonate and silicate minerals.  相似文献   

20.
Structural and geochemical patterns of heterogeneously deformed diamictite in northern Utah (USA) record interrelations between strain accumulation, fluid–rock interaction, and softening processes across a major fault (Willard thrust). Different clast types in the diamictite have varying shape fabrics related to competence contrasts with estimated effective viscosity ratios relative to micaceous matrix of: ∼6 and 8 for large quartzite clasts respectively in the Willard hanging wall and footwall; ∼5 and 2 for less altered and more altered granitic clasts respectively in the hanging wall and footwall; and ∼1 for micaceous clasts that approximate matrix strain. Within the footwall, matrix XZ strain ratios increase from ∼2 to 8 westward along a distinct deformation gradient. Microstructures record widespread mass transfer, alteration of feldspar to mica, and dislocation creep of quartz within matrix and clasts. Fluid influx along microcracks and mesoscopic vein networks increased westward and led to reaction softening and hydrolytic weakening, in conjunction with textural softening from alignment of muscovite aggregates. Consistent Si, Al, and Ti concentrations between matrix, granitic clasts, and protoliths indicate limited volume change. Mg gain and Na loss reflect alteration of feldspar to phengitic muscovite. Within the hanging wall, strain is overall lower with matrix XZ strain ratios of ∼2 to 4. Microstructures record mass transfer and dislocation creep concentrated in the matrix. Greater Al and Ti concentrations and lower Si concentrations in matrix indicate volume loss by quartz dissolution. Na gain in granitic clasts reflects albitization. Large granitic clasts have less mica alteration and greater competence compared to smaller clasts. Differences in strain and alteration patterns across the Willard thrust fault suggest overall downward (up-temperature) fluid flow in the hanging wall and upward (down-temperature) fluid flow in the footwall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号