首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a Geographic Information System (GIS)-based spatial analysis scheme to account for spatial patterns and association in geological thematic mapping with multiple geological data sets. The multi-buffer zone analysis, the main part of the present study, was addressed to reveal the spatial pattern around geological source primitives and statistical analysis based on a contingency table was performed to extract information for the assessment of an integrated layer. Mineral potential mapping using multiple geological data sets from Ogdong in Korea was carried out to illustrate application of this methodology. The results obtained from the case study indicated that some geochemical elements and residual magnetic anomaly dominantly affected spatial patterns of the mineral potential map in the study area and the dominant classes of input data layers were also extracted. This information on spatial patterns of multiple geological data sets around mines could be used as effective evidences for the interpretation of the integrated layer within GIS.  相似文献   

2.
A quantitative methodology for landslide susceptibility zonationis described and its application to a study area in the lower part of the Deba Valley (Guipúzcoa,Spain) presented. Susceptibility models were obtained on the basis of statisticalrelationships between known mass movements and conditioning factors. A landslide rupturehypothesis was set and a digital database consisting of seventeen causal factors layers constructed.The modelling procedure was implemented utilising a GIS. The susceptibility analysis methodis based on the Favourability Functions approach, and two different mathematicalframeworks: probability theory and Zadehïs fuzzy set theory. Several landslidesusceptibility models were produced and validated using different sets of independent landslide data.The predictive capability of models was determined.  相似文献   

3.
Pathways for adaptive and integrated disaster resilience   总被引:7,自引:2,他引:5  
The GIS-multicriteria decision analysis (GIS-MCDA) technique is increasingly used for landslide hazard mapping and zonation. It enables the integration of different data layers with different levels of uncertainty. In this study, three different GIS-MCDA methods were applied to landslide susceptibility mapping for the Urmia lake basin in northwest Iran. Nine landslide causal factors were used, whereby parameters were extracted from an associated spatial database. These factors were evaluated, and then, the respective factor weight and class weight were assigned to each of the associated factors. The landslide susceptibility maps were produced based on weighted overly techniques including analytic hierarchy process (AHP), weighted linear combination (WLC) and ordered weighted average (OWA). An existing inventory of known landslides within the case study area was compared with the resulting susceptibility maps. Respectively, Dempster-Shafer Theory was used to carry out uncertainty analysis of GIS-MCDA results. Result of research indicated the AHP performed best in the landslide susceptibility mapping closely followed by the OWA method while the WLC method delivered significantly poorer results. The resulting figures are generally very high for this area, but it could be proved that the choice of method significantly influences the results.  相似文献   

4.
Landslide susceptibility mapping is an indispensable prerequisite for landslide prevention and reduction. At present, research into landslide susceptibility mapping has begun to combine machine learning with remote sensing and geographic information system (GIS) techniques. The random forest model is a new integrated classification method, but its application to landslide susceptibility mapping remains limited. Landslides represent a serious threat to the lives and property of people living in the Zigui–Badong area in the Three Gorges region of China, as well as to the operation of the Three Gorges Reservoir. However, the geological structure of this region is complex, involving steep mountains and deep valleys. The purpose of the current study is to produce a landslide susceptibility map of the Zigui–Badong area using a random forest model, multisource data, GIS, and remote sensing data. In total, 300 pre-existing landslide locations were obtained from a landslide inventory map. These landslides were identified using visual interpretation of high-resolution remote sensing images, topographic and geologic data, and extensive field surveys. The occurrence of landslides is closely related to a series of environmental parameters. Topographic, geologic, Landsat-8 image, raining data, and seismic data were used as the primary data sources to extract the geo-environmental factors influencing landslides. Thirty-four layers of causative factors were prepared as predictor variables, which can mainly be categorized as topographic, geological, hydrological, land cover, and environmental trigger parameters. The random forest method is an ensemble classification technique that extends diversity among the classification trees by resampling the data with replacement and randomly changing the predictive variable sets during the different tree induction processes. A random forest model was adopted to calculate the quantitative relationships between the landslide-conditioning factors and the landslide inventory map and then generate a landslide susceptibility map. The analytical results were compared with known landslide locations in terms of area under the receiver operating characteristic curve. The random forest model has an area ratio of 86.10%. In contrast to the random forest (whole factors, WF), random forest (12 major factors, 12F), decision tree (WF), decision tree (12F), the final result shows that random forest (12F) has a higher prediction accuracy. Meanwhile, the random forest models have higher prediction accuracy than the decision tree model. Subsequently, the landslide susceptibility map was classified into five classes (very low, low, moderate, high, and very high). The results demonstrate that the random forest model achieved a reasonable accuracy in landslide susceptibility mapping. The landslide hazard zone information will be useful for general development planning and landslide risk management.  相似文献   

5.
大数据环境下数字填图数据集成服务技术   总被引:4,自引:0,他引:4  
李丰丹  李超岭  吴亮  李健强  吕霞 《地质通报》2015,34(7):1300-1308
应用数字填图技术形成了大量地质填图图幅数据,这些数据空间结构化和非结构化特征并存,如何在网络环境下提供高效的数据服务是急需解决的一个难题。大数据技术的发展为数字填图、数据集成服务提供了一种新的途径。通过对数字填图数据特征的分析,在研究地质调查信息网格大数据处理框架的基础上,提出了结构化和非结构化数据相结合的有序化组织管理、发布与服务方法,并对关键技术进行了研究与试验,取得了良好的效果。  相似文献   

6.
空间三维滑坡敏感性分区工具及其应用   总被引:1,自引:0,他引:1  
对于滑坡敏感性分区目前有三种方法:定性法、统计法和基于岩土定量模型的确定性方法。定性法基于对滑坡敏感性或灾害评估的人为判断;统计法用一个来源于结合了权重因子的预测函数或指标;而确定性法,或者说是物理定量模型法以质量、能量和动量守恒定律为基础。二维确定性模型广泛用于土木工程设计,而无限边坡模型(一维)也用于滑坡灾害分区的确定性模型。文中提出了一个新的基于GIS(地理信息系统)的滑坡敏感性分区系统,这个系统可用于从复杂地形中确认可能的危险三维(3-D)滑坡体。所有与滑坡相关的空间数据(矢量或栅格数据)都被集成到这个系统中。通过把研究区域划分为边坡单元并假定初始滑动面是椭球的下半部分,并使用Monte Carlo随机搜索法,三维滑坡稳定性分析中的三维最危险滑面是三维安全系数最小的地方。使用近似方法假定有效凝聚力、有效摩擦角和三维安全系数服从正态分布,可以计算出滑坡失稳概率。3DSlopeGIS是一个计算机程序,它内嵌了GIS Developer kit(ArcObjects of ESRI)来实现GIS空间分析功能和有效的数据管理。应用此工具可以解决所有的三维边坡空间数据解问题。通过使用空间分析、数据管理和GIS的可视化功能来处理复杂的边坡数据,三维边坡稳定性问题很容易用一个友好的可视化图形界面来解决。将3DSlopeGIS系统应用到3个滑坡敏感性分区的实例中:第一个是一个城市规划项目,第二个是预测以往滑坡灾害对临近区域可能的影响,第三个则是沿着国家主干道的滑坡分区。基于足够次数的Monte Carlo模拟法,可以确认可能的最危险滑坡体。这在以往的传统边坡稳定性分析中是不可能的。  相似文献   

7.
数据驱动的证据权法被用来进行金矿潜力制作。为了确定秦岭~松潘金矿的潜力区,需利用地质、地球化学、地球物理等数据。数据采集、图形处理、空间分析都是在GIS平台上进行的。预测结果表明,证据权法在综合不同空间数据上是有效的,最终的预测图件圈出了最有利的矿化区,可用于进一步勘查研究。  相似文献   

8.
9.
Landslides lead to a great threat to human life and property safety. The delineation of landslide-prone areas achieved by landslide susceptibility assessment plays an important role in landslide management strategy. Selecting an appropriate mapping unit is vital for landslide susceptibility assessment. This paper compares the slope unit and grid cell as mapping unit for landslide susceptibility assessment. Grid cells can be easily obtained and their matrix format is convenient for calculation. A slope unit is considered as the watershed defined by ridge lines and valley lines based on hydrological theory and slope units are more associated with the actual geological environment. Using 70% landslide events as the training data and the remaining landslide events for verification, landslide susceptibility maps based on slope units and grid cells were obtained respectively using a modified information value model. ROC curve was utilized to evaluate the landslide susceptibility maps by calculating the training accuracy and predictive accuracy. The training accuracies of the grid cell-based susceptibility assessment result and slope unit-based susceptibility assessment result were 80.9 and 83.2%, and the prediction accuracies were 80.3 and 82.6%, respectively. Therefore, landslide susceptibility mapping based on slope units performed better than grid cell-based method.  相似文献   

10.
Landslides are natural geological disasters causing massive destructions and loss of lives, as well as severe damage to natural resources, so it is essential to delineate the area that probably will be affected by landslides. Landslide susceptibility mapping (LSM) is making increasing implications for GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. It is considered to be an effective tool to understand natural disasters related to mass movements and carry out an appropriate risk assessment. This study is based on an integrated approach of GIS and statistical modelling including fuzzy analytical hierarchy process (FAHP), weighted linear combination and MCE models. In the modelling process, eleven causative factors include slope aspect, slope, rainfall, geology, geomorphology, distance from lineament, distance from drainage networks, distance from the road, land use/land cover, soil erodibility and vegetation proportion were identified for landslide susceptibility mapping. These factors were identified based on the (1) literature review, (2) the expert knowledge, (3) field observation, (4) geophysical investigation, and (5) multivariate techniques. Initially, analytical hierarchy process linked with the fuzzy set theory is used in pairwise comparisons of LSM criteria for ranking purposes. Thereafter, fuzzy membership functions were carried out to determine the criteria weights used in the development of a landslide susceptibility map. These selected thematic maps were integrated using a weighted linear combination method to create the final landslide susceptibility map. Finally, a validation of the results was carried out using a sensitivity analysis based on receiver operator curves and an overlay method using the landslide inventory map. The study results show that the weighted overlay analysis method using the FAHP and eigenvector method is a reliable technique to map landslide susceptibility areas. The landslide susceptibility areas were classified into five categories, viz. very low susceptibility, low susceptibility, moderate susceptibility, high susceptibility, and very high susceptibility. The very high and high susceptibility zones account for 15.11% area coverage. The results are useful to get an impression of the sustainability of the watershed in terms of landsliding and therefore may help decision makers in future planning and mitigation of landslide impacts.  相似文献   

11.
China is one of the countries where landslides caused the most fatalities in the last decades.The threat that landslide disasters pose to people might even be greater in the future,due to climate change and the increasing urbanization of mountainous areas.A reliable national-scale rainfall induced landslide suscep-tibility model is therefore of great relevance in order to identify regions more and less prone to landslid-ing as well as to develop suitable risk mitigating strategies.However,relying on imperfect landslide data is inevitable when modelling landslide susceptibility for such a large research area.The purpose of this study is to investigate the influence of incomplete landslide data on national scale statistical landslide susceptibility modeling for China.In this context,it is aimed to explore the benefit of mixed effects mod-elling to counterbalance associated bias propagations.Six influencing factors including lithology,slope,soil moisture index,mean annual precipitation,land use and geological environment regions were selected based on an initial exploratory data analysis.Three sets of influencing variables were designed to represent different solutions to deal with spatially incomplete landslide information:Set 1(disregards the presence of incomplete landslide information),Set 2(excludes factors related to the incompleteness of landslide data),Set 3(accounts for factors related to the incompleteness via random effects).The vari-able sets were then introduced in a generalized additive model(GAM:Set 1 and Set 2)and a generalized additive mixed effect model(GAMM:Set 3)to establish three national-scale statistical landslide suscep-tibility models:models 1,2 and 3.The models were evaluated using the area under the receiver operating characteristics curve(AUROC)given by spatially explicit and non-spatial cross-validation.The spatial pre-diction pattern produced by the models were also investigated.The results show that the landslide inven-tory incompleteness had a substantial impact on the outcomes of the statistical landslide susceptibility models.The cross-validation results provided evidence that the three established models performed well to predict model-independent landslide information with median AUROCs ranging from 0.8 to 0.9.However,although Model 1 reached the highest AUROCs within non-spatial cross-validation(median of 0.9),it was not associated with the most plausible representation of landslide susceptibility.The Model 1 modelling results were inconsistent with geomorphological process knowledge and reflected a large extent the underlying data bias.The Model 2 susceptibility maps provided a less biased picture of landslide susceptibility.However,a lower predicted likelihood of landslide occurrence still existed in areas known to be underrepresented in terms of landslide data(e.g.,the Kuenlun Mountains in the northern Tibetan Plateau).The non-linear mixed-effects model(Model 3)reduced the impact of these biases best by introducing bias-describing variables as random effects.Among the three models,Model 3 was selected as the best national-scale susceptibility model for China as it produced the most plausible portray of rainfall induced landslide susceptibility and the highest spatially explicit predictive perfor-mance(median AUROC of spatial cross validation 0.84)compared to the other two models(median AUROCs of 0.81 and 0.79,respectively).We conclude that ignoring landslide inventory-based incomplete-ness can entail misleading modelling results and that the application of non-linear mixed-effect models can reduce the propagation of such biases into the final results for very large areas.  相似文献   

12.
Modeling landslide susceptibility over large regions with fuzzy overlay   总被引:2,自引:0,他引:2  
Landslide susceptibility mapping is most effective if detailed surface and subsurface information can be combined with authoritative landslide catalogs or a deep understanding of local conditions. However, these types of homogeneous input data and catalogs are frequently not available over large areas. In this study, we model landslide susceptibility in Central America and the Caribbean islands by combining three globally available datasets and one regional dataset with fuzzy overlay. This primarily heuristic model provides the flexibility to test a range of different contributing variables and the capability to compare landslide inventories within the model framework that vary greatly in their size, spatiotemporal scope, and collection methods. We create a regional susceptibility map and evaluate its performance using receiver operating characteristics for both continuous and binned susceptibility values. This susceptibility map forms the basis for a near-real-time landslide hazard assessment system that couples susceptibility with rainfall and soil moisture triggers to estimate potential landslide activity at a regional scale. The application of this susceptibility model at the regional scale provides a foundation for transferring the methodology to other geographic areas.  相似文献   

13.
地矿勘查工作信息化的理论与方法问题   总被引:11,自引:0,他引:11  
实现地矿勘查工作信息化的有效途径与方法是根据地矿勘查工作自身的特点, 建立以主题式地矿点源数据库(包括空间数据库和属性数据库)为基础的共用数据平台; 利用信息系统技术对地矿勘查工作主流程进行充分改造, 实现全程计算机辅助化; 进行“多S”的技术集成、网络集成、数据集成和应用集成, 同时实现勘查数据的三维可视化.为此, 需要加强地质信息科学和地矿勘查工作信息化的理论框架、技术体系和方法论研究, 重视与地矿勘查工作相适应的集成化信息技术开发.   相似文献   

14.
Abstract: Landslide research at the British Geological Survey (BGS) is carried out through a number of activities, including surveying, database development and real-time monitoring of landslides. Landslide mapping across the UK has been carried out since BGS started geological mapping in 1835. Today, BGS geologists use a combination of remote sensing and ground-based investigations to survey landslides. The development of waterproof tablet computers (BGS·SIGMAmobile), with inbuilt GPS and GIS for field data capture provides an accurate and rapid mapping methodology for field surveys. Regional and national mapping of landslides is carried out in conjunction with site-specific monitoring, using terrestrial LiDAR and differential GPS technologies, which BGS has successfully developed for this application. In addition to surface monitoring, BGS is currently developing geophysical ground-imaging systems for landslide monitoring, which provide real-time information on subsurface changes prior to failure events. BGS’s mapping and monitoring activities directly feed into the BGS National Landslide Database, the most extensive source of information on landslides in Great Britain. It currently holds over 14?000 records of landslide events. By combining BGS’s corporate datasets with expert knowledge, BGS has developed a landslide hazard assessment tool, GeoSure, which provides information on the relative landslide hazard susceptibility at national scale.  相似文献   

15.
基于滑坡分类的西宁市滑坡易发性评价   总被引:1,自引:0,他引:1       下载免费PDF全文
以往的滑坡易发性评价多以全体滑坡为研究对象,忽视了滑坡类型的区别。各评价指标对不同类型滑坡的影响程度不同,也导致指标权重无法精确地反映其对滑坡的影响。为更准确地对滑坡灾害进行空间预测,针对西宁市滑坡特征及发育机理,将全区滑坡分为土质滑坡和岩质滑坡;在野外实际调查的基础上,结合相关性分析,选取坡度、坡向、剖面曲率、平面曲率、工程地质岩组,以及滑坡点距断层、水系、道路的距离远近等8项因素作为滑坡易发性评价指标,并通过滑坡点分布密度和滑坡点相对分布密度,分析各评价指标分别对土质滑坡和岩质滑坡的影响;利用信息量模型,计算各评价指标对两类滑坡的信息量值,利用人工神经网络模型,赋予各评价指标对两类滑坡的权重;最后基于GIS平台利用加权信息量模型对研究区进行易发性评价。通过统计方法和ROC曲线法分别计算滑坡易发性评价成功率,结果表明:评价成功率可达到82.61%和82.30%,与未经滑坡分类的成功率比较,分别提高了10.9%和5.2%;同时,经过滑坡分类后,湟水河两岸地质条件较差的地区转变为滑坡高易发区。  相似文献   

16.
Landslides are among the most common and dangerous natural hazards in mountainous regions that can cause damage to properties and loss of lives. Landslide susceptibility mapping (LSM) is a critical tool for preventing or mitigating the negative impacts of landslides. Although many previous studies have employed various statistical methods to produce quantitative maps of the landslide susceptibility index (LSI) based on inventories of past landslides and contributing factors, they are mostly ad hoc to a specific area and their success has been hindered by the lack of a methodology that could produce the right mapping units at proper scale and by the lack of a general framework for objectively accounting for the differing contribution of various preparatory factors. This paper addresses these issues by integrating the geomorphon and geographical detector methods into LSM to improve its performance. The geomorphon method, an innovative pattern recognition approach for identifying landform elements based on the line of sight concept, is adapted to delineate ridge lines and valley lines to form slope units at self-adjusted spatial scale suitable for LSM. The geographical detector method, a spatial variance analysis method, is integrated to objectively assign the weights of contributing factors for LSM. Applying the new integrated approach to I-Lan, Taiwan produced very significant improvement in LSI mapping performance than a previous model, especially in highly susceptible areas. The new method offers a general framework for better mapping landslide susceptibility and mitigating its negative impacts.  相似文献   

17.
K. T. Chau  J. E. Chan 《Landslides》2005,2(4):280-290
On the basis of 1,834 landslide data for Hong Kong Island (HKI), landslide susceptibility maps were generated using logistic regression and GIS. Regional bias of the landslide inventory is examined by dividing the whole HKI into a southern and a northern region, separated by an east-west trending water divide. It was found that the susceptibility map of southern HKI generated by using the southern data differs significantly from that generated by using northern data, and similar conclusion can be drawn for the northern HKI. Therefore, a susceptibility map of HKI was established based on regional data analysis, and it was found to reflect closely the spatial distributions of historical landslides. Elevation appears to be the most dominant factor in controlling landslide occurrence, and this probably reflects that human developments are concentrated at certain elevations on the island. Classification plot, goodness of fit, and occurrence ratio were used to examine the reliability of the proposed susceptibility map. The size of landslide susceptible zones varies depending on the data sets used, thus this demonstrates that the historical landslide data may be biased and affected by human activities and geological settings on a regional basis. Therefore, indiscriminate use of regional-biased data should be avoided.  相似文献   

18.
19.
Landslide zoning in a part of the Garhwal Himalayas   总被引:21,自引:1,他引:20  
 The Himalayas are undergoing constant rupturing in the thrust belt zone in the Garhwal Himalayas, due to which earthquake and mass movement activity is triggered. These processes of mass movement and landslides have been constantly modifying the landscape. Landslides are one of the indicators of the geomorphological modifications taking place in this active and fragile terrain. This work is aimed at providing another example of landslide susceptibility mapping based on geological and geomorphological attributes. The data collected from aerial photographs, topographic sheets and the image suggests that there is a correlation between the distribution of landslides and some of the geological and geomorphological factors, for example, the distance from an active fault, relative relief and slope. Parameters like factor of safety, altitude, relief, slope and the distance from the fault lineament have been included in the study. A rating system has been applied to the factors for arriving at a quantitative estimate of landslide susceptibility for each physiographic unit. Since terrain classification forms the foundation of this work, the entire study can be grouped into two sequential activities: (1) the terrain classification and (2) landslide susceptibility mapping. The result is the landslide susceptibility zoning map presented. The landslides have not been classified with respect to time and may represent the final result of the on-going geological, geomorphological and seismic activity since the Holocene period or late Pleistocene time when the glaciers retreated. The area chosen for the study lies between Badri gad and Barni gad in Yamuna valley region of the Garhwal Himalaya where a very large scale investment is in the pipe line for Hydroelectric power generation. Received: 12 August 1993 · Accepted: 13 January 1998  相似文献   

20.
论地质信息科学   总被引:7,自引:4,他引:7  
地质信息科学是关于地质信息本质特征及其运动规律和应用方法的一个综合性学科领域.其发生和发展,是地球信息科学与地质科学相结合的产物,内部条件是地质学定量化和地矿勘查信息化的自身需要,外部条件是计算机科学和地球空间信息科学兴起和发展的促进.其研究对象是岩石圈的地质信息,其理论框架的核心是地质信息机理,包括地质信息的本质、运动规律、传输机制和信息流的形成机理等.其方法论体系包含着主题信息管理法、信息分析综合法、行为功能模拟法和系统整体优化法.其技术体系由地质数据采集、地质数据管理、地质数据处理、地质图件编绘、地质过程模拟、地质资源评价、地质信息传播及其多S集成化技术所组成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号