首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The interaction of supersonic plasma jets with dense gases and plasmas has been studied experimentally and theoretically. Collimated plasma jets were generated from the laser pulse interaction with solid targets. The jet propagates with the velocity exceeding 400 km/s and transports the energy of a few kJ/cm2. The interaction of such a jet with an Ar and He gases at various pressures has been studied by using optical and X-ray diagnostics. Qualitative estimates and numerical simulations with a radiative hydrodynamic code explain a sequence of physical processes during the interaction. Experimental and numerical results show that, by changing ambient material, the working surface structure changes from an adiabatic outflow to a radiative cooling jet. The applications of this phenomenon to astrophysical conditions and the inertial confinement fusion are discussed.  相似文献   

2.
We present experimental results of plasma jet, interacted with an ambient medium, using intense lasers to investigate the complex features of astrophysical jets. This experiment was performed in France at the LULI facility, Ecole Polytechnique, using one long pulse laser to generate the jet and a short pulse laser to probe it by proton radiography. A foam filled cone target was used to generate high velocity plasma jet, and a gas jet nozzle produced the well known ambient medium. Using visible pyrometry and interferometry, we were able to measure the jet velocity and electronic density. We get a panel of measurements at various gas density and time delay. From these measurements, we could underline the growth of a perturbed shape of the jet interaction with the ambient medium. The reason of this last observation is still in debate and will be presented in the article.  相似文献   

3.
A double-pulse laser drive is used to create episodic supersonic plasma jets that propagate into a low density ambient medium. These are among the first laser experiments to generate pulsed outflow. The temporal laser-intensity profile consists of two 1-ns square pulses separated by 9.6 ns. The laser is focused on a truncated conical plug made of medium Z material inserted into a high-Z washer. Unloading material from the plug is collimated within the cylindrical washer hole, then propagates into the low-Z foam medium. The resulting jet is denser than the ambient medium. Double-pulse jet evolution is compared to that driven by a single laser pulse. The total drive energy is the same for both jets, as if a source with fixed energy generated a jet from either one or two bursts. Radiographs taken at 100 ns show that a single-pulse jet was broader than the double-pulse jet, as predicted by hydrodynamic simulations. Since the initial shock creating the jet is stronger when all the energy arrives in a single pulse, the jet material impacts the ambient medium with higher initial velocity. Detailed comparisons between single- and double-pulsed jet rheology and shock structure are presented. 2-D hydrodynamic simulations are compared to the experimental radiographs. PACS: 52.30.−q 41.75.Jv 42.62.−b 42.68.Sq 47.40.−x 47.56.+r  相似文献   

4.
We present experimental results on the formation of supersonic, radiatively cooled jets driven by pressure due to the toroidal magnetic field generated by the 1.5 MA, 250 ns current from the MAGPIE generator. The morphology of the jet produced in the experiments is relevant to astrophysical jet scenarios in which a jet on the axis of a magnetic cavity is collimated by a toroidal magnetic field as it expands into the ambient medium. The jets in the experiments have similar Mach number, plasma beta and cooling parameter to those in protostellar jets. Additionally the Reynolds, magnetic Reynolds and Peclet numbers are much larger than unity, allowing the experiments to be scaled to astrophysical flows. The experimental configuration allows for the generation of episodic magnetic cavities, suggesting that periodic fluctuations near the source may be responsible for some of the variability observed in astrophysical jets. Preliminary measurements of kinetic, magnetic and Poynting energy of the jets in our experiments are presented and discussed, together with estimates of their temperature and trapped toroidal magnetic field.  相似文献   

5.
We discuss the design of jet-driven, radiative-blast-wave experiments for a 10 kJ class pulsed laser facility. The astrophysical motivation is the fact that jets from Young Stellar Objects are typically radiative and that the resulting radiative bow shocks produce complex structure that is difficult to predict. To drive a radiative bow shock, the jet velocity must exceed the threshold for strong radiative effects. Using a 10 kJ class laser, it is possible to produce such a jet that can drive a radiative bow shock in gas that is dense enough to permit diagnosis by x-ray radiography. We describe the design and simulations of such experiments. The basic approach is to shock the jet material and then accelerate it through a collimating hole and into a Xe ambient medium. We identify issues that must be addressed through experimentation or further simulations in order to field successful experiments.  相似文献   

6.
After briefly reviewing observations of molecular outflows from young stars, we discuss current ideas as to how they might be accelerated. Broadly speaking it is thought that such outflows represented either deflected accreted gas, or ambient material that has been pushed by a poorly collimated wind or accelerated by a highly collimated jet. Observations tend to favour the latter model, with jets being the clear favourite at least for the youngest flows. Jets from young stars may accelerate ambient gas either through the development of a boundary layer, where ambient and jet material are turbulently mixed, or at the working surface of the jet, i.e. the bow shock, via the prompt entrainment mechanism. Recently, we (Downes and Ray, 1999) have investigated, through simulations, the efficiency of prompt entrainment in jets from young stars as a means of accelerating ambient molecular gas without causing dissociation. Prompt entrainment was found to be very poor at transferring momentum from the jet to its surroundings in both the case of ``heavy' (not surprizingly) but also ``equi-density' (with respect to the ambient environment) jets. Moreover the transfer efficiency decreases with increasing density as the bow shock takes on a more aerodynamic shape. Models, however, in which jets are the ultimate prime movers, do have the advantage that they can reproduce several observational features of molecular outflows. In particular a power law relationship for mass versus velocity, similar to what is observed, is predicted by the simulations and the so-called ``Hubble Law' for molecular outflows is naturally explained. Pulsing of the jet, i.e. varying its velocity, is found to have little effect on the momentum transfer efficiency at least for the dynamically young jets we have studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The ZaP sheared-flow Z-pinch produces high density Z-pinch plasmas that are stable for up to 2000 times the classical instability times. The presence of an embedded radial shear in the axial flow is correlated with the observed stability, and is in agreement with numerical predictions of the stability threshold. The case is made that using a higher-Z working gas will produce supersonic plasma jets, consistent with dimensionless similarity constraints of astrophysical jets. This would allow laboratory testing of some regimes of astrophysical jet theory, computations, and observations.  相似文献   

8.
Plasma jets were produced using a high repetition rate laser by laser-ablation of coatings on the surface of conical impressions machined into solid blocks of an aluminium alloy. The ablating plasmas emerged into background gases generating shock waves. The jet-shock system was diagnosed using interferometry. The use of a high repetition rate laser allowed examination of a large number of combinations of jet materials, background gases and gas pressures.  相似文献   

9.
Supersonic plasma jets are ubiquitous in astrophysics. Our study focus on the jets emanated from Herbig-Haro (HH) objects. They have velocities of a few hundred km/s and are extending over the distances more than a parsec. Interaction of the jets with surrounding matter produces two specific structures in the jet head: the bow shock and the Mach disk. The radiative cooling of these shocks affects strongly the jet dynamics. A tool to understand the physics of these jets is the laboratory experiment. A supersonic jet interaction with surrounding plasma was studied on the PALS laser facility. A collimated high-Z plasma jet with a velocity exceeding 400 km/s was generated and propagated over a few millimeters length. Here we report on study the effect of radiative cooling on the head jet structure with a 2D radiative hydrodynamic code. The simulation results demonstrated the scalability of the experimental observations to the HH jets.  相似文献   

10.
We present experiments performed with the LULI2000 nanosecond laser facility. We generated plasma jets by using specific designed target. The main measured quantities related to the jet such as its propagation velocity, temperature and emissive radius evolution are presented. We also performed analytical work, which explains the jet evolution in some cases.  相似文献   

11.
12.
We report on experiments in which magnetically driven radiatively cooled plasma jets were produced by a 1 MA, 250 ns current pulse on the MAGPIE pulsed power facility. The jets were driven by the pressure of a toroidal magnetic field in a “magnetic tower” jet configuration. This scenario is characterized by the formation of a magnetically collimated plasma jet on the axis of a magnetic “bubble”, confined by the ambient medium. The use of a radial metallic foil instead of the radial wire arrays employed in our previous work allows for the generation of episodic magnetic tower outflows which emerge periodically on timescales of ~30 ns. The subsequent magnetic bubbles propagate with velocities reaching ~300 km/s and interact with previous eruptions leading to the formation of shocks.  相似文献   

13.
Pulsed-power technology and appropriate boundary conditions have been used to create simulations of magnetically driven astrophysical jets in a laboratory experiment. The experiments are quite reproducible and involve a distinct sequence. Eight initial flux tubes, corresponding to eight gas injection locations, merge to form the jet, which lengthens, collimates, and eventually kinks. A model developed to explain the collimation process predicts that collimation is intimately related to convection and pile-up of frozen-in toroidal flux convected with the jet. The pile-up occurs when there is an axial non-uniformity in the jet velocity so that in the frame of the jet there appears to be a converging flow of plasma carrying frozen-in toroidal magnetic flux. The pile-up of convected flux at this “stagnation region” amplifies the toroidal magnetic field and increases the pinch force, thereby collimating the jet.  相似文献   

14.
The experiment described here is focussed to the observation of underexpanded, hypersonic turbulent jets. The experiment is relevant to a few aspects concerning the dynamics of astrophysical phenomena such as the Herbig-Haro jets and to the interaction between the large-scale vortices and the system of shocks that determine the spreading and entrainment properties of highly compressible free-flows. A number of orifice jets with a ratio between the stagnation pressure and the ambient pressure of the order 103-104 have been studied by changing the stagnation/ambient density ratio. This has been realized using dissimilar gases in the jet and in the ambient medium: by using He, Ar and air the stagnation/ambient density ratio can be changed by one order of magnitude while keeping fixed the pressure ratio. It has been possible to visualize the near and mid-term evolution of the jets and measure the axial and transversal density distributions. A comparison relevant to the shock waves configuration in between the nozzle exit and the first Mach's disk is shown for an air in air laboratory jet and its numerical simulation.  相似文献   

15.
《Icarus》1987,71(1):178-191
The recent discovery of CN and C2 gas jets in comet Halley has led to basic speculation as to their physical source mechanism. A basic quantitative study of the photosputtering of CHON grains and the spatial evolution of trace gas jets is presented here. Two possible single sources, a parent gas and CHON grains, for both the jet and the background gas, are also investigated. It is shown that a parent trace gas jet will remain focused out to distances as large as 105 km from the nucleus and could provide a source for the observed radical jets. Conversely, photosputtering of small CHON grains by solar UV radiation can provide the source not only for cometary CN and C2 but also possibly for inner coma C atoms and C+ ions. However, constraints on the size and/or morphology of the contributing grains themselves are found. Isotropic speed components comparable to the outflow speed are likely to be added to radicals upon production from either the CHON grain or the parent gas source and will yield a radical jet which becomes more diffuse with increasing distance from the nucleus. However, in neither case will the radical jet completely isotropicize; it will be confined generally to a quadrant as projected on the sky plane. Observational tests which can be made once the large set of in situ and remote observations have been analyzed are suggested to distinguish between the two scenarios.  相似文献   

16.
Collimated flows ejected from young stars are believed to play a vital role in the star formation process by extracting angular momentum from the accretion disk. We discuss the first experiments to simulate rotating radiatively cooled, hypersonic jets in the laboratory. A modification of the conical wire array $z$-pinch is used to introduce angular momentum into convergent flows of plasma, a jet-forming standing shock and into the jet itself. The rotation of the jet is evident in laser imaging through the presence of discrete filaments which trace the rotational history of the jet. The presence of angular momentum results in a hollow density profile in both the standing conical shock and the jet.  相似文献   

17.
Recent observations show the existence of an increasing number of collimated outflows ejected by young, low-mass stars which are embedded in H  ii regions. At distances of a few tens of au from the star, at least one lobe of these outflows will be shielded from the ambient ionizing radiation by the compact, high-extinction circumstellar disc. Within these shielded regions, the jets are probably mostly neutral, similar to the jets in 'normal' Herbig–Haro (HH) objects. At larger distances, these jets emerge into the photoionized nebula, and start to be photoionized by the radiation from the ionizing photon source of the nebula.
In this paper, we model the photoionization of an initially neutral HH jet. This process begins as an ionization front at the side of the jet, which is directed towards the ionizing star of the nebula, and progresses into the beam of the jet. There are two possible solutions. In the first solution, the jet beam becomes fully ionized through the passage of an R-type ionization front. In the second solution, the ionization front slows down enough to become a D-type front (or is already a D-type front at the point in which the jet emerges into the photoionized nebula), forming a partially ionized jet beam, with an expanding photoionized region and a compressed neutral region.
We explore these two types of solutions both analytically and numerically, and discuss the observational effects introduced by this jet photoionization process, concentrating in a region of parameter space that straddles the parameters deduced for HH 444 (the jet from V 510 Orionis).  相似文献   

18.
We have applied numerical simulations and modeling to the particle acceleration, magnetic field generation, and emission from relativistic shocks. We investigate the nonlinear stage of theWeibel instability and compare our simulations with the observed gamma-ray burst emission. In collisionless shocks, plasma waves and their associated instabilities (e.g., the Weibel, Buneman and other two-stream instabilities) are responsible for particle (electron, positron, and ion) acceleration and magnetic field generation. 3-D relativistic electromagnetic particle (REMP) simulations with three different electron-positron jet velocity distributions and also with an electron-ion plasma have been performed and show shock processes including spatial and temporal evolution of shocks in unmagnetized ambient plasmas. The growth time and nonlinear saturation levels depend on the initial jet parallel velocity distributions. Simulations show that the Weibel instability created in the collisionless shocks accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The nonlinear fluctuation amplitude of densities, currents, electric, and magnetic fields in the electron-positron shocks are larger for smaller jet Lorentz factor. This comes from the fact that the growth time of the Weibel instability is proportional to the square of the jet Lorentz factor. We have performed simulations with broad Lorentz factor distribution of jet electrons and positrons, which is assumed to be created by photon annihilation. Simulation results with this broad distribution show that the Weibel instability is excited continuously by the wide-range of jet Lorentz factor from lower to higher values. In all simulations the Weibel instability is responsible for generating and amplifying magnetic fields perpendicular to the jet propagation direction, and contributes to the electron’s (positron’s) transverse deflection behind the jet head. This small scale magnetic field structure contributes to the generation of “jitter” radiation from deflected electrons (positrons), which is different from synchrotron radiation in uniform magnetic fields. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks. The detailed studies of shock microscopic process evolution may provide some insights into early and later GRB afterglows.  相似文献   

19.
Jets and outflows are thought to be an integral part of accretion phenomena and are associated with a large variety of objects. In these systems, the interaction of magnetic fields with an accretion disk and/or a magnetized central object is thought to be responsible for the acceleration and collimation of plasma into jets and wider angle flows. In this paper we present three-dimensional MHD simulations of magnetically driven, radiatively cooled laboratory jets that are produced on the MAGPIE experimental facility. The general outflow structure comprises an expanding magnetic cavity which is collimated by the pressure of an extended plasma background medium, and a magnetically confined jet which develops within the magnetic cavity. Although this structure is intrinsically transient and instabilities in the jet and disruption of the magnetic cavity ultimately lead to its break-up, a well collimated, “knotty” jet still emerges from the system; such clumpy morphology is reminiscent of that observed in many astrophysical jets. The possible introduction in the experiments of angular momentum and axial magnetic field will also be discussed.  相似文献   

20.
《Icarus》1987,72(3):555-567
The behavior of isolated pure and dusty gas jets ejected from an active spot on the sunlit side of the nucleus surface is hydrodynamically investigated in the inner coma of an H2O-dominated comet that is assumed to have no ambient ejection of the gas and dust from the dust-covered surface except the active spot. Steady-state solutions of the expanding jets are obtained by numerically solving the axisymmetric, time-dependent, coupled hydrodynamic equations of H2O gas and the dust in polar coordinates (r, θ, φ). The dust particles are treated as multicomponents composed of the three radii of a = 0.01, 0.1, and 1 μm. The boundary conditions of a slip wall are applied to the dust-covered surface. Discussion is given on the no-slip-wall conditions. Compared with the previous study on the jets surrounded by ambient gas and dust ejected from a nonactive region by Y. Kitamura (1986, Icarus 66, 241–257), the jet features can be clearly discerned even at large distances from the nucleus center, and the shift of the density peaks from the central axis to the wings, which was seen in the previous study, does not occur, because the jets can freely expand in the θ direction without being decelerated by the ambient gas and dust. The gas flow in the θ direction is supersonic, and consequently it is predicted that the shock waves are formed in the interactive regions among several jets. For the isolated jets with no ambient ejection, it is to be noted that the flow of the gas and dust along the nucleus surface arises in spite of the radial ejection from the active spot, and that this flow may change the surface structure. In the dusty case, the gas temperature increases immediately from 200 to ∼275°K in the vicinity of the surface owing to strong heating by the fine dust particles with the radius as small as 0.01 μm. In addition to the fine dust, the hot dust mantle (300–400°K) on the surface may considerably heat the gas near the mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号