首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent analysis of MiniBooNE experiment suggests that a better fit of the data arises if there are 2 types of sterile neutrinos. If the sterile neutrinos were produced during the early epoch of the Big Bang, they would be slightly degenerate. I show that the existence of 2 types slightly degenerate sterile neutrinos can fully explain the dark matter problem, the cusp problem, the hot gas density profile in clusters and the rotation curves of galaxies.  相似文献   

2.
In recent papers it was claimed that SN 1987A data supports the existence of 4.0 eV and 21.4 eV active neutrino mass eigenstates, and it was suggested that such large active neutrino masses could be made consistent with existing constraints including neutrino oscillation data and upper limits on the neutrino flavor state masses. The requirement was that there exist a pair of sterile neutrino mass states nearly degenerate with the active ones, plus a third active-sterile doublet that is tachyonic (m 2<0). Here, independent evidence is presented for the existence of sterile neutrinos with the previously claimed masses based on fits to the dark matter distributions in the Milky Way galaxy and four clusters of galaxies. The fits are in excellent agreement with observations within the uncertainties of the masses. In addition, sterile neutrinos having the suggested masses address the “cusp” problem and the missing satellites problem, as well as that of the “top down” scenario of structure formation—previously a chief drawback of HDM particles. Nevertheless, due to the highly controversial nature of the claim, and the need for two free parameters in the dark matter fits, additional confirming evidence will be required before it can be considered proven.  相似文献   

3.
Dwarf galaxy rotation curves and the core problem of dark matter haloes   总被引:1,自引:0,他引:1  
The standard cold dark matter (CDM) model has recently been challenged by the claim that dwarf galaxies have dark matter haloes with constant-density cores, whereas CDM predicts haloes with steeply cusped density distributions. Consequently, numerous alternative dark matter candidates have recently been proposed. In this paper we scrutinize the observational evidence for the incongruity between dwarf galaxies and the CDM model. To this end, we analyse the rotation curves of 20 late-type dwarf galaxies studied by Swaters. Taking the effects of beam smearing and adiabatic contraction into account, we fit mass models to these rotation curves with dark matter haloes with different cusp slopes, ranging from constant-density cores to r −2 cusps. Even though the effects of beam smearing are small for these data, the uncertainties in the stellar mass-to-light ratio and the limited spatial sampling of the halo's density distribution hamper a unique mass decomposition. Consequently, the rotation curves in our sample cannot be used to discriminate between dark haloes with constant-density cores and r −1 cusps. We show that the dwarf galaxies analysed here are consistent with CDM haloes in a ΛCDM cosmology, and that there is thus no need to abandon the idea that dark matter is cold and collisionless. However, the data are also consistent with any alternative dark matter model that produces dark matter haloes with central cusps less steep than r −1.5. In fact, we argue that based on existing H  i rotation curves alone, at best weak limits can be obtained on cosmological parameters and/or the nature of the dark matter. In order to make progress, rotation curves with higher spatial resolution and independent measurements of the mass-to-light ratio of the disc are required.  相似文献   

4.
In this paper, we show that if a single sterile neutrino exists such that     , it can serendipitously solve all outstanding issues of the Modified Newtonian Dynamics. We focus on fitting the angular power spectrum of the cosmic microwave background (CMB) in detail which is possible using a flat Universe with     and the usual baryonic and dark energy components. One cannot match the CMB if there is more than one massive sterile neutrino, nor with three active neutrinos of 2 eV. This model has the same expansion history as the Λ cold dark matter  (ΛCDM)  model and only differs at the galactic scale, where the modified dynamics outperform  ΛCDM  comprehensively. We discuss how an 11 eV sterile neutrino can explain the dark matter of galaxy clusters without influencing individual galaxies and potentially match the matter power spectrum.  相似文献   

5.
Recent observations indicate that core-like dark matter structures exist in many galaxies, while numerical simulations reveal a singular dark matter density profile at the center. In this article, I show that if the annihilation of dark matter particles gives invisible sterile neutrinos, the Sommerfeld enhancement of the annihilation cross-section can give a sufficiently large annihilation rate to solve the core-cusp problem. The resultant core density, core radius, and their scaling relation generally agree with recent empirical fits from observations. Also, this model predicts that the resultant core-like structures in dwarf galaxies can be easily observed, but not for large normal galaxies and galaxy clusters.  相似文献   

6.
Although very successful in explaining the observed conspiracy between the baryonic distribution and the gravitational field in spiral galaxies without resorting to dark matter (DM), the modified Newtonian dynamics (MOND) paradigm still requires DM in X-ray bright systems. Here, to get a handle on the distribution and importance of this DM, and thus on its possible form, we deconstruct the mass profiles of 26 X-ray emitting systems in MOND, with temperatures ranging from 0.5 to 9 keV. Initially, we compute the MOND dynamical mass as a function of radius, then subtract the known gas mass along with a component of galaxies which include the cD galaxy with   M / L K = 1  . Next, we test the compatibility of the required DM with ordinary massive neutrinos at the experimental limit of detection  ( m ν= 2 eV)  , with density given by the Tremaine–Gunn limit. Even by considering that the neutrino density stays constant and maximal within the central 100 or 150 kpc (which is the absolute upper limit of a possible neutrino contribution there), we show that these neutrinos can never account for the required DM within this region. The natural corollary of this finding is that, whereas clusters  ( T ≳ 3 keV)  might have most of their mass accounted for if ordinary neutrinos have a 2 eV mass, groups  ( T ≲ 2 keV)  cannot be explained by a 2 eV neutrino contribution. This means that, for instance, cluster baryonic dark matter (CBDM, Milgrom) or even sterile neutrinos would present a more satisfactory solution to the problem of missing mass in MOND X-ray emitting systems.  相似文献   

7.
Recently it was pointed out that a non-zero cosmological constant can play a role in the formation of neutrino halos only in the case of neutrinos of very low rest mass (m v <-0.1eV). However, phase-space considerations would requirem v >50 eV if neutrinos dominate the missing mass in halos of large spiral galaxies and moreoverm v >200 eV is implied in the case of dwarf spheroidals. These larger neutrino masses would be in conflict with observed constraints on the age of the Universe unless a cosmological constant is invoked.  相似文献   

8.
In this letter we investigate the kinematical properties of early-type dwarfs by significantly enlarging the scarce observational sample so far available. We present rotation curves and mean velocity dispersions for four bright dwarf ellipticals and two dwarf lenticular galaxies in the Virgo cluster. Most of these galaxies exhibit conspicuous rotation curves. In particular, five out of the six new galaxies are found to be close to the predictions for oblate spheroids flattened by rotation. Therefore, and contrary to the previous observational hints, the present data suggest that an important fraction of dwarf early-type galaxies may be rotationally supported.  相似文献   

9.
The neutrinos from the Big Bang or the Cosmic Neutrino Background (CNB) carry precious information from the early epoch when our universe was only 1 s old. Although not yet directly detected, CNB may be revealed indirectly through cosmological observations due to neutrino important cosmological influence.We review the cosmological role of neutrinos and the cosmological constraints on neutrino characteristics. Namely, we discuss the impact of neutrinos in the early universe: the cosmic expansion, neutrino decoupling, the role of neutrinos in the primordial production of light elements, leptogenesis, etc. We briefly discuss the role of neutrino at later stages of the universe.Due to the considerable cosmological influence of neutrinos, cosmological bounds on neutrino properties from observational data exist. We review the cosmological constraints on the effective number of neutrino species, neutrino mass and mixing parameters, lepton number of the universe, presence of sterile neutrino, etc.  相似文献   

10.
Sterile neutrinos may be one of the best warm dark matter candidates we have today. Both lower and upper bounds on the mass of the sterile neutrino come from astronomical observations. We show that the proper inclusion of the neutrino momentum distribution reduces the allowed region to be  2.6 keV< m <5 keV  for the simplest models. A search for a spectral line with   E = m /2  is thus more interesting than ever before.  相似文献   

11.
We discuss here what model independent information about properties of neutrinos and of the sun can be obtained from future solar neutrino experiments (SNO, Super-Kamiokande). It is shown that in the general case of transitions of solar νe's into νμ and/or ντ the initial 8B neutrino flux can be measured by the observation of NC events. From the CC measurements the νe survival probability can be determined as a function of neutrino energy. The general case of transitions of solar νe's into active as well as sterile neutrinos is considered. A number of relations between measurable quantities the test of which will allow to answer the question whether there are sterile neutrinos in the solar neutrino flux on the earth are derived. Transitions of solar νe's into active and sterile states due to neutrino mixing and Dirac magnetic moments or into active left-handed neutrinos and active right-handed antineutrinos due to neutrino mixing and Majorana transition magnetic moments are also considered. It is shown that future solar neutrino experiments will allow to distinguish between the cases of Dirac and Majorana magnetic moments.  相似文献   

12.
Loeb and Waxman have argued that high energy neutrinos from the decay of pions produced in interactions of cosmic rays with interstellar gas in starburst galaxies would be produced with a large enough flux to be observable. Their model is reexamined here and we obtain an upper limit to the diffuse neutrino flux from starburst galaxies. The upper limit obtained here is a factor of 5 lower than the flux which they predict. Our predicted neutrino flux would be below the atmospheric neutrino foreground flux at energies below 300 TeV and therefore would be unobservable. Compared with predicted fluxes from other extragalactic high energy neutrino sources, starburst neutrinos with PeV energies would have a flux considerably below that predicted for AGN models.

We also estimate an upper limit for the diffuse GeV γ-ray flux from starbust galaxies to be of the observed γ-ray background, much less than the component from unresolved blazars and more than an order of magnitude below the estimate of Thompson et al.  相似文献   


13.
We use high-quality optical rotation curves of nine low-luminosity disc galaxies to obtain the velocity profiles of the surrounding dark matter haloes. We find that they increase linearly with radius at least out to the edge of the stellar disc, implying that, over the entire stellar region, the density of the dark halo is about constant.
The properties of the mass structure of these haloes are similar to those found for a number of dwarf and low surface brightness galaxies, but provide a more substantial evidence of the discrepancy between the halo mass distribution predicted in the cold dark matter scenario and those actually detected around galaxies. We find that the density law proposed by Burkert reproduces the halo rotation curves, with halo central densities ( ρ 0∼1–4×10−24 g cm−3) and core radii ( r 0∼5–15 kpc) scaling as ρ 0∝ r 0−2/3.  相似文献   

14.
The results obtained from a study of the mass distribution of 36 spiral galaxies are presented. The galaxies were observed using Fabry–Perot interferometry as part of the GHASP survey. The main aim of obtaining high-resolution Hα 2D velocity fields is to define more accurately the rising part of the rotation curves which should allow to better constrain the parameters of the mass distribution. The Hα velocities were combined with low resolution H  i data from the literature, when available. Combining the kinematical data with photometric data, mass models were derived from these rotation curves using two different functional forms for the halo: an isothermal sphere (ISO) and a Navarro–Frenk–White (NFW) profile. For the galaxies already modelled by other authors, the results tend to agree. Our results point at the existence of a constant density core in the centre of the dark matter haloes rather than a cuspy core, whatever the type of the galaxy from Sab to Im. This extends to all types the result already obtained by other authors studying dwarf and low surface brightness galaxies but would necessitate a larger sample of galaxies to conclude more strongly. Whatever model is used (ISO or NFW), small core radius haloes have higher central densities, again for all morphological types. We confirm different halo scaling laws, such as the correlations between the core radius and the central density of the halo with the absolute magnitude of a galaxy: low-luminosity galaxies have small core radius and high central density. We find that the product of the central density with the core radius of the dark matter halo is nearly constant, whatever the model and whatever the absolute magnitude of the galaxy. This suggests that the halo surface density is independent from the galaxy type.  相似文献   

15.
We consider sterile neutrinos as a component of dark matter in the Milky Way and clusters, and compare their rest mass, decay rate and the mixing angle. A radiative decaying rate of order Γ∼10−19 s−1 for sterile neutrino rest mass m s =18–19 keV can satisfactorily account for the cooling flow problem and heating source in Milky Way center simultaneously. Also, these ranges of decay rate and rest mass match the prediction of the mixing angle sin 22θ∼10−3 with a low reheating temperature in the inflation model, which enables the sterile-active neutrino oscillation to be visible in future experiments. However, decaying sterile neutrinos have to be ruled out as a major component of dark matter because of the high decay rate.  相似文献   

16.
Recent observations of the rotation curves of large disk galaxies of all Hubble-types have shown that they possess flat or slowly rising rotation curves up to large distances from the centre. It has been suggested here that such rotation curves are understood under normal fluid dynamical considerations provided that viscous (and/or magnetic) transfer of mass and angular momentum from inner to outer regions of these galaxies is efficient. Flow of gas from halo to the disk in regions close to the axis of rotation is also suggested. The existence of rising rotation curves in some galaxies with varying gradients and flat rotation curves in others suggest that probably these galaxies are not coeval. The formers are probably of more recent origin.  相似文献   

17.
The dynamical masses of dwarf-spheroidals, spiral and elliptical galaxies, dwarf irregular binaries, groups of galaxies and clusters are shown to lie in a band about the M ∼ ρR3 line. The value of ρ is approximately the same as that estimated for unseen matter in the solar neighbourhood. The clusters themselves lie about theM ∼ R -3 line derived for a self-gravitating neutrino gas; their masses are distributed around the maximum Jeans-mass, MJmax. corresponding to mv - 10 eV in an expanding universe. The present day length scales of clusters and the dispersion in the velocities observed within them are understood in terms of a 100-fold expansion subsequent to the initial growth of the fluctuations at MJmax. These systematics on theR-M plane imply that the initial condensations in the expanding universe are on the scale of the rich clusters of galaxies, these condensations were triggered dominantly by the gravitation of the neutrinos and the constant density of al systems arises naturally due to the embedding of these systems in the large scale neutrino condensations. If the neutrino density falls off asr -2 beyond the cluster edge till the distributions from different clusters overlap, then the mean density of the neutrinos approximately equals the closure density of the universe.  相似文献   

18.
Models of spherically-symmetric static systems made up of self-gravitating, completely degenerate neutral fermions containing a core are constructed within the framework of general relativity and the effects of different core masses and compactness on the properties of the system are examined. For the specific case where the fermions are massive neutrinos (10 eV) we find, for example, that it is possible to have a neutrino halo with a normal Galaxy, or a cluster of galaxies, as the core, with the right values of mass and radius required of the invisible halo in the missing mass problem. The suggestive nature of these results calls for further studies using a more realistic equation of state.  相似文献   

19.
We present a deep Giant Metrewave Radio Telescope (GMRT) search for H  i 21-cm emission from three dwarf galaxies, viz. POX 186, SC 24 and KKR 25. Based, in part, on previous single-dish H  i observations, these galaxies have been classified as a blue compact dwarf (BCD), a dwarf irregular and a transition galaxy, respectively. However, in conflict with previous single-dish detections, we do not detect H  i in SC 24 or KKR 25. We suggest that the previous single-dish measurements were probably confused with the local Galactic emission. In the case of POX 186, we confirm the previous non-detection of H  i but with substantially improved limits on its H  i mass. Our derived upper limits on the H  i mass of SC 24 and KKR 25 are similar to the typical H  i mass limit for dwarf spheroidal (dSph) galaxies, whereas in the case of POX 186, we find that its gas content is somewhat smaller than is typical of BCD galaxies.  相似文献   

20.
The relationship between the rotation curves for the galaxies and the distribution of mass and angular momentum within the galaxies is examined. The theory of angular momentum transfer is applied to the observed properties of the galaxies. The coupling between the dynamical mass of a spiral galaxy and its luminosity is studied. Most of the spiral galaxies in subclusters surrounding NGC 4889, NGC 4874, and NGC 4839 in the Coma cluster are galaxies that have lower luminosities, with MB fainter than −21m.5. These galaxies are characterized by a higher mass-to-luminosity ratio than that of the galaxies with higher luminosities MB brighter than −21m.5, which suggests the presence of a large fraction of dark matter in the spiral galaxies of the subclusters. Translated from Astrofizika, Vol. 52, No. 1, pp. 75–84 (February 2009).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号