首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of circumnuclear star-forming regions (CNSFRs) in several early-type spirals has been carried out in order to investigate their main properties: stellar and gas kinematics, dynamical masses, ionising stellar masses, chemical abundances and other properties of the ionised gas. Both high resolution (R~20,000) and moderate resolution (R~5000) have been used. In some cases, these regions (about 100–150 pc in size) are composed of several individual star clusters with sizes between 1.5 and 4.9 pc, estimated from Hubble Space Telescope images. Stellar and gas velocity dispersions are found to differ by about 20 to 30 km?s?1, with the Hβ emission lines being narrower than both the stellar lines and the [Oiii]λ5007 Å lines. The twice ionised oxygen, on the other hand, shows velocity dispersions comparable to those of stars. We have applied the virial theorem to estimate dynamical masses of the clusters, assuming that the systems are gravitationally bounded and spherically symmetric, and using previously measured sizes. The measured values of the stellar velocity dispersions yield dynamical masses of the order of 107 to 108 M for the full CNSFRs. We obtain oxygen abundances which are comparable to those found in high-metallicity disc Hii regions from direct measurements of electron temperatures and consistent with solar values within the errors. The region with the highest oxygen abundance is R3+R4 in NGC3504, 12+log(O/H)=8.85, about 1.5 times solar. The derived N/O ratios are, on average, larger than those found in high-metallicity disc Hii regions, and they do not seem to follow the trend of N/O vs. O/H which marks the secondary behaviour of nitrogen. On the other hand, the S/O ratios span a very narrow range—between 0.6 and 0.8 times solar. Compared to high-metallicity disc Hii regions, CNSFRs show values of the O23 and the N2 parameters whose distributions are shifted to lower and higher values, respectively. Hence, even though their derived oxygen and sulphur abundances are similar, higher values would in principle be obtained for the CNSFRs if pure empirical methods were used to estimate abundances. CNSFRs also exhibit lower ionisation parameters than their disc counterparts, as derived from [Sii]/[Siii]. Their ionisation structure also seems to be different, with CNSFRs showing radiation-field properties more similar to Hii galaxies than to disc high-metallicity Hii regions.  相似文献   

2.
This article is devoted to the analysis of new observational data obtained on the 6-m telescope using multimode instrument SCORPIO for two peculiar galaxies NGC 2748 and UGC 4385. Using scanning Fabry-Perot interferometer (FPI) large-scale velocity fields of ionized gas in lines Hα and [N II] λ6584 Å for NGC 2748 and in line Hα for UGC 4385 and the maps of brightness distribution in continuum and in corresponding lines for both galaxies were constructed. Observational data obtained in the long-slit mode of spectroscopy gave information about the kinematics of stellar component. The analysis of the received materials for NGC 2748 have shown that this object is a disky galaxy with stellar shell which rotates around the major axis of main body. The origin of such shell is most likely connected with the capture and disruption of dwarf companion. The structure of ionized gas velocity field of UGC 4385 appeared to be very complex. The most regular part of the field which concerns the supposed ring is best represented by the model of circular rotation with expansion. In addition long-slit observations showed that the optical spectra of two bright in the infrared region condensations resemble the spectra of galaxies’ nuclei. A supposition was made that UGC 4385 is two galaxies in the stage of head-on collision.  相似文献   

3.
We analyze new observational data obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the multimode SCORPIO instrument and the Multi-Pupil Fiber Spectrograph for the group of galaxies NGC 7465/64/63. For one of the group members (NGC 7465), the presence of a polar ring has been suspected. We have constructed the large-scale brightness distributions, the ionized-gas velocity and velocity dispersion fields for all three galaxies as well as the line-of-sight velocity curves based on emission and absorption lines and the stellar velocity field in the central region for NGC 7465. As a result of our analysis of the data obtained, we have discovered an inner stellar disk (r ?? 0.5 kpc) and a warped gaseous disk in NGC 7465, in addition to the main stellar disk. Based on a joint study of our photometric and spectroscopic data, we have established that NGC 7464 is an irregular IrrI-type galaxy whose structural and kinematic peculiarities most likely resulted from its gravitational interaction with NGC 7465. The velocity field of the ionized gas in NGC 7463 turns out to be typical of barred spiral galaxies, and the warp of the outer parts of its disk could arise from a close encounter with one of the galaxies of the environment.  相似文献   

4.
We present the results of our spectroscopic studies of the nebula NGC 6857 located in a region of current star formation. Data on the surface brightness distribution in the central region of the nebula (~60″ × 60″) in the Hα, Hβ, [OIII], 5007 Å, [N II], 6548, 6583 Å, [S II], 6717, 6731 Å, and He I, 6678 Å lines have been obtained with an angular resolution of ~4.″5 × 4.″5. The zones of maximum surface brightness and the region of maximum gas ionization ratio are located 12″ south of the central star, which may suggest the existence of a second gas ionization source.  相似文献   

5.
We determined atmospheric parameters of the Galactic early B-supergiant HD 198478 (55 Cyg) from the UV silicon lines taken from the high-resolution 1150–1980 Å IUE spectra. TLUSTY numerical code was used to model the stellar atmosphere and to determine the temperature and surface gravity assuming a non-LTE plane parallel hydrostatic stellar atmosphere with microturbulence. The synthesized spectra were broadened by the IUE instrumental profile, rotational and macroturbulent velocity with ROTIN numerical code. The silicon 1264 Å, 1309 Å, 1312 Å, 1417 Å and 1294–1303 Å multiplet lines of different stages of ionization (Si II and Si III) and Balmer Hδ 4101 Å line were modeled, leading to the temperature, surface gravity, rotational and macroturbulent velocity values. Our results have shown that the line broadening cannot be explained by rotational velocity only, but additional macroturbulent velocity component should be taken into account. HD 198478 shows a significant degeneracy in velocity, which means that the individual contributions of the macroturbulence and rotation in the total velocity broadening cannot be distinguished. Adequate fit of TLUSTY models to the observed non-resonant silicon lines suggests that the non-LTE plane-parallel hydrostatic stellar model without wind contribution can be used to explain such lines. We have obtained similar results using the HST STIS spectra in the same procedure, showing that the IUE spectra, despite their lacking quality compared to the STIS spectra, are reliable enough in determination of the B supergiants’ photospheric parameters.  相似文献   

6.
We present our observations of the pair of interacting galaxies NGC 6285/86 carried out with the 6-m Special Astrophysical Observatory (SAO) telescope using 1D and 2D spectroscopy. The observations of NGC 6286 with a long-slit spectrograph (UAGS) near the Hα line revealed the rotation of the gaseous disk around an axis offset by 5″–7″ from the photometric center and a luminous gas at a distance up to 9 kpc in a direction perpendicular to the galactic plane. Using a multipupil fiber spectrograph (MPFS), we constructed the velocity fields of the stellar and gaseous components in the central region of this galaxy, which proved to be similar. The close radial velocities of the pair and the wide (5′×5′) field of view of the scanning Fabry-Perot interferometer (IFP) allowed us to simultaneously obtain images in the Hα and [N II]λ6583 lines and in the continuum, as well as to construct the radial velocity fields and to map the distribution of the [N II]λ6583/Hα ratio for both galaxies. Based on all these data, we studied the gas kinematics in the galaxies, constructed their rotation curves, and estimated their masses (2 × 1011M for NGC 6286 and 1.2 × 1010M for NGC 6285). We found no evidence of gas rotation around the major axis of NGC 6286, which argues against the assumption that this galaxy has a forming polar ring. The IFP observations revealed an emission nebula around this galaxy with a structure characteristic of superwind galaxies. The large [N II]λ6583/Hα ratio, which suggests the collisional excitation of its emission, and the high infrared luminosity are additional arguments for the hypothesis of a superwind in the galaxy NGC 6286. A close encounter between the two galaxies was probably responsible for the starburst and the bipolar outflow of hot gas from the central region of the disk.  相似文献   

7.
We present the results of spectroscopic observations of three S0-Sa galaxies: NGC 338, NGC 3245, and NGC 5440 at the SAO RAS 6-m BTA telescope. The radial distributions of the line-ofsight velocities and radial velocity dispersions of stars and ionized gas were obtained, and rotation curves of galaxies were computed. We construct the numerical dynamic N-body galaxy models with N ?? 106 points. The models include three components: a ??live?? bulge, a collisionless disk, dynamically evolving to the marginally stable state, and a pseudo-isothermal dark halo. The estimates of radial velocities and velocity dispersions of stars obtained from observations are compared with model estimates, projected onto the line of sight. We show that the disks of NGC 5440 and the outer regions of NGC 338 are dynamically overheated. Taking into account the previously obtained observations, we conclude that the dynamic heating of the disk is present in a large number of early-type disk galaxies, and it seems to ensue from the external effects. The estimates of the disk mass and relative mass of the dark halo are given, as well as the disk mass-to-luminosity ratio for seven galaxies, observed at the BTA.  相似文献   

8.
We suggest a model that explains the stratification peculiarities of the [O III] and Hα line emission from some of the ring nebulae around Wolf-Rayet stars. These peculiarities lie in the fact that the [O III] line emission regions are farther from the central star than the Hα regions, with the distance between them reaching several tenths of a parsec. We show that the radiative shock produced by a Wolf-Rayet stellar wind and propagating with a velocity of ~100 km s?1 cannot explain such large distances between these regions due to the low velocity of the gas outflow from the shock front. The suggested model takes into account the fact that the shock produced by a Wolf-Rayet stellar wind propagates in a two-phase medium: a rarefied medium and dense compact clouds. The gas downstream of a fast shock traveling in a rarefied gas compresses the clouds. Slow radiative shocks are generated in the clouds; these shocks heat the latter to temperatures at which ions of doubly ionized oxygen are formed. The clouds cool down, radiating in the lines of this ion, to temperatures at which Balmer line emission begins. The distance between the [O III] and Hα line emission regions is determined by the cooling time of the clouds downstream of the slow shock and by the velocity of the fast shock. Using the ring nebula NGC 6888 as an example, we show that the gas downstream of the fast shock must be at the phase of adiabatic expansion rather than deceleration with radiative cooling, as assumed previously.  相似文献   

9.
We analyze the spectral variability for two narrow line Seyfert 1 galaxies, PG 1700+518 and NGC 4051 using the spectral decomposition method. We focus on their optical Fe ii variability to investigate the origin of Fe ii in AGNs. For PG 1700+518, we find that the Fe ii size is about 200 light-days, which is consistent with the Hβ size derived from the empirical R–L relation. For NGC 4051, the [O iii] 5007 Å flux is strongly correlated with continuum flux, suggesting that we should recalibrate the spectral flux on a scale defined by [O iii] flux. The corrected light curves of Fe ii, Hβ, He ii, f λ (5100 Å) are given here. A detailed analysis will be given in the near future.  相似文献   

10.
We use line-of-sight velocity information on the filamentary emission-line nebula of NGC 1275 to infer a dynamical model of the nebula's flow through the surrounding intracluster gas. We detect outflowing gas and flow patterns that match simulations of buoyantly rising bubbles from which we deduce that some of the nebula filaments have been drawn out of NGC 1275. We find a radial gradient of the ratio [N  ii ]λ6584/Hα which may be due to a variation in metallicity, interactions with the surrounding intracluster medium or a hardening of the excitation mechanism. We find no preferred spatial correlation of stellar clusters within the filaments and there is a notable lack of [O  iii ]λ5007 emission, therefore it is unlikely that the filaments are ionized by stellar ultraviolet.  相似文献   

11.
We present V -band surface photometry and major-axis kinematics of stars and ionized gas of three early-type spiral galaxies, namely NGC 772, 3898 and 7782. For each galaxy we present a self-consistent Jeans model for the stellar kinematics, adopting the light distribution of bulge and disc derived by means of a two-dimensional parametric photometric decomposition. This allows us to investigate the presence of non-circular gas motions, and derive the mass distribution of luminous and dark matter in these objects.
NGC 772 and 7782 have apparently normal kinematics with the ionized gas tracing the gravitational equilibrium circular speed. This is not true in the innermost region (| r |≲8 arcsec) of NGC 3898, where the ionized gas is rotating more slowly than the circular velocity predicted by dynamical modelling. This phenomenon is common in the bulge-dominated galaxies for which dynamical modelling enables us to make the direct comparison between the gas velocity and the circular speed, and it poses questions about the reliability of galaxy mass distributions derived by the direct decomposition of the observed ionized-gas rotation curve into the contributions of luminous and dark matter.  相似文献   

12.
The question of which progenitor channel can reproduce the observed rate of Type Ia supernovae (SNe Ia) remains unresolved, the two leading models being the so-called single and double degenerate scenarios. The former implies a large population of accreting, nuclear-burning white dwarfs with photospheric temperatures T~105–106 K during some part of their accretion history. Recently, we demonstrated that a population of accreting white dwarfs large enough to reproduce the observed SN Ia rate would contribute significantly to the ionizing radiation expected from the stellar population in early-type galaxies, now commonly observed to host spatially extended regions of neutral and ionized gas. From our photoionization calculations, we show that one can constrain the contribution of the single degenerate channel to the SN Ia rate in early-type galaxies from upper limits on the luminosity of a number of emission lines characteristic of ionization by high-temperature sources. Detection (or strong upper limits on) He II 1640 Å and [C II] 1335 Å, expected to be overluminous in these galaxies if the single-degenerate channel holds true, can strongly constrain the total luminosity of nuclear-burning white dwarfs in these populations. In the near-UV, our photoionization calculations demonstrate that the EW of the [O II] 3727 doublet and the [Ne III] 3869/[O II] 3727 ratio can also provide a powerful diagnostic, particularly in post-starburst galaxies. Together with the He II 3203 Å (5 → 3) recombination line, these lines present an excellent opportunity for strongly constraining the population of accreting, nuclear-burning white dwarfs, and in general the available ionizing continuum, at relatively short delay-times (time from initial starburst).  相似文献   

13.
We present high-resolution near-infrared imaging obtained using adaptive optics and HST /NICMOS, and ground-based spectroscopy of the hotspot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hotspots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H  ii regions, as revealed by the HST /NICMOS Pa α image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc.
The star formation properties of the stellar clusters and H  ii regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4–7×106 yr after the peak of star formation, or absolute ages 6.5–9.5×106 yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7–12 per cent of the total stellar mass in the central 625 pc of NGC 2903. The H  ii regions in the ring of star formation have luminosities close to that of the supergiant H  ii region 30 Doradus, they are younger than the stellar clusters, and they will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.  相似文献   

14.
The Galaxy Evolution Explorer (GALEX) imaged the sky in the Ultraviolet (UV) for almost a decade, delivering the first sky surveys at these wavelengths. Its database contains far-UV (FUV, λ eff~1528 Å) and near-UV (NUV, λ eff~2310 Å) images of most of the sky, including deep UV-mapping of extended galaxies, over 200 million source measurements, and more than 100,000 low-resolution UV spectra. The GALEX archive will remain a long-lasting resource for statistical studies of hot stellar objects, QSOs, star-forming galaxies, nebulae and the interstellar medium. It provides an unprecedented road-map for planning future UV instrumentation and follow-up observing programs in the UV and at other wavelengths. We review the characteristics of the GALEX data, and describe final catalogs and available tools, that facilitate future exploitation of this database. We also recall highlights from the science results uniquely enabled by GALEX data so far.  相似文献   

15.
The Fabry-Perot scanning interferometer mounted on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences is used to study the distribution and kinematics of ionized gas in the peculiar galaxy Arp 212 (NGC 7625, IIIZw 102). Two kinematically distinct subsystems—the inner disk and outer emission filaments—are found within the optical radius of the galaxy. The first subsystem, at galactocentric distances r < 3.5 kpc, rotates in the plane of the stellar disk. The inner part of the ionized-gas disk (r<1.5–2 kpc) exactly coincides with the previously known disk consisting of molecular gas. The second subsystem of ionized gas is located at galactocentric distances 2–6 kpc. This subsystem rotates in a plane tilted by a significant angle to the stellar disk. The angle of orbital inclination in the outer disk increases with galactocentric distance and reaches 50° at r ≈ 6 kpc. The ionized fraction of the gaseous disk does not show up beyond this galactocentric distance, but we believe that the HI disk continues to warp and approaches the plane that is polar with respect to the inner disk of the galaxy. Hence Arp 212 can be classified as a galaxy with a polar ring (or a polar disk). The observed kinematics of the ionized and neutral gas can be explained assuming that the distribution of gravitational potential in the galaxy is not spherically symmetric. Most probably, the polar ring have formed via accretion of gas from the dwarf satellite galaxy UGC 12549.  相似文献   

16.
This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have compared the synoptic program λ5250 Å line of Fe?i to the line of Fe?i at λ5233 Å since this latter line has a broad shape with a profile that is nearly linear over a large portion of its wings. The present study uses five pairs of sampling points on the λ5233 Å line. Line profile observations show that the determination of the field strength from the Stokes V parameter or from line bisectors in the circularly polarized line profiles lead to similar dependencies on the spectral sampling of the lines, with the bisector method being the less sensitive. We recommend adoption of the field determined with the line bisector method as the best estimate of the emergent photospheric flux and further recommend the use of a sampling point as close to the line core as is practical. The combination of the line profile measurements and the cross-correlation of fields measured simultaneously with λ5250 Å and λ5233 Å yields a formula for the scale factor δ ?1 that multiplies the MWO synoptic magnetic fields. By using ρ as the center-to-limb angle (CLA), a fit to this scale factor is δ ?1=4.15?2.82sin?2(ρ). Previously δ ?1=4.5?2.5sin?2(ρ) had been used. The new calibration shows that magnetic fields measured by the MDI system on the SOHO spacecraft are equal to 0.619±0.018 times the true value at a center-to-limb position 30°. Berger and Lites (2003, Solar Phys. 213, 213) found this factor to be 0.64±0.013 based on a comparison using the Advanced Stokes Polarimeter.  相似文献   

17.
Based on our Hα interferometric observations and CO data, we analyze the structure and kinematics of the gas in an extended region of the Cygnus arm around the recently discovered star WR 142a. We have established that WR 142a and the ionized hydrogen in its immediate neighborhood are associated with the complex of molecular clouds observed in a region with l ~ 78°–80°30′, b ~ 2°–3°20′, and V LSR ~ 4–16 km s?1. Traces of the action of the stellar wind from WR 142a on the ambient gas have been found to the northeast of the star in a region devoid of dense absorbing foreground clouds. These include very weak thin gas and dust filaments as well as high-velocity components of the Hα profile, which can be interpreted as a possible expansion of the shell swept up by the wind with a velocity as high as 50–80 km s?1. Giant regions of reduced CO emission dominated by high-velocity motions of ionized hydrogen have been detected. Stars of the Cyg OB2 association and the cluster NGC 6910 can be responsible for these motions.  相似文献   

18.
In the UV spectra of BP Tau, GW Ori, T Tau, and RY Tau obtained with the Hubble Space Telescope, we detected an inflection near 2000 Å in the F λ c (λ) curve that describes the continuum energy distribution. The inflection probably stems from the fact that the UV continuum in these stars consists of two components: the emission from an optically thick gas with T<8000 K and the emission from a gas with a much higher temperature. The total luminosity of the hot component is much lower than that of the cool component, but the hot-gas radiation dominates at λ<1800 Å. Previously, other authors have drawn a similar conclusion for several young stars from low-resolution IUE spectra. However, we show that the short-wavelength continuum is determined from these spectra with large errors. We also show that, for three of the stars studied (BP Tau, GW Ori, and T Tau), the accretion-shock radiation cannot account for the observed dependence F λ c (λ) in the ultraviolet. We argue that more than 90% of the emission continuum in BP Tau at λ>2000 Å originates not in the accretion shock but in the inner accretion disk. Previously, a similar conclusion was reached for six more classical T Tau stars. Therefore, we believe that the high-temperature continuum can be associated with the radiation from the disk chromosphere. However, it may well be that the stellar chromosphere is its source.  相似文献   

19.
We analyze new optical spectroscopic observations obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the SCORPIO focal reducer (in the modes of a Fabry–Perot interferometer (FPI) and long-slit spectroscopy) and the Multi-Pupil Fiber Spectrograph for the galaxy IC 883. We have confirmed that the main body of the galaxy rotates around its minor axis. The positions of the dynamical axes of the stellar and gaseous components have been found to differ by ~10°. The velocities in the SE tail do not correspond to the circular rotation around the galaxy’s minor axis. This structure is probably a fragment of an unwound curved spiral arm. Regions with high velocity dispersions and peculiarities in the velocity fields have been found along the minor axis. Our study of the age and metallicity of the galaxy’s stellar population has shown that the mean values of these parameters in the stellar disk, except for the central region (r ≤ 5?), are ≈1 Gyr and ≈?0.4 dex, respectively. Both young (2?5 × 108 yr) and old (5?10 × 109 yr) stellar populations are present in the circumnuclear region. Our analysis of the spectroscopic data for the bright feature 8? south of the nucleus coincident in position with a compact X-ray source has shown that this is apparently a dwarf galaxy or a remnant of a companion galaxy. Our FPI observations in the Hα emission line and direct images have revealed a region of ionized gas that together with the already known structures along the minor axis forms a clumpy tidal structure of ionized gas pulled from the companion galaxy. The results of our study confirm the previously proposed hypothesis that the observed peculiar structures were formed by the merger of two galaxies. However, it can be said that IC 883 does not belong to the class of polar-ring galaxies.  相似文献   

20.
We present the velocity field of the stars in the central 25″ × 22″ of NGC 1068 derived from 2-D spectroscopy of the Ca II triplet. A preliminary analysis provides evidence for two distinct stellar systems in the centre of NGC 1068. In the outer regions (say r > 10″), the mean stellar velocity field seems coupled to those of the ionized and molecular gas, indicating aproximately regular rotation with the kinematic minor axis at PA ~ 0°. However, in the inner region, the stars are rotating, whereas the ionized gas is outflowing in the NE-SW direction probably due to the effects of the nuclear activity, and the molecular gas is responding to the bar potential. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号