首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lisan Peninsula is located within the Dead Sea basin which represents the plate boundary between African and Arabian plates. This basin constitutes a good example of a pull-apart basin because of its large dimensions, its structural simplicity and its active subsidence . The gravity data reveal that the Dead Sea basin can be divided into segments, each of them about 30 km long in N-S direction , where the Lisan Peninsula represents the deepest one (9 km thick Pleistocene sediments ), overlying about 6 km thick Mesozoic sediments . In addition , 20 km of extension was predicted along the Dead Sea basin, which indicates that the Dead Sea basin should be about 3.3 Ma in age . Furthermore, the Precambrian basement under the Lisan area is characterized by high susceptibility contrast that is related to continuous tectonic activity in the region.  相似文献   

2.
Quantitative sinkhole hazard assessments in karst areas allow calculation of the potential sinkhole risk and the performance of cost-benefit analyses. These estimations are of practical interest for planning, engineering, and insurance purposes. The sinkhole hazard assessments should include two components: the probability of occurrence of sinkholes (sinkholes/km2 year) and the severity of the sinkholes, which mainly refers to the subsidence mechanisms (progressive passive bending or catastrophic collapse) and the size of the sinkholes at the time of formation; a critical engineering design parameter. This requires the compilation of an exhaustive database on recent sinkholes, including information on the: (1) location, (2) chronology (precise date or age range), (3) size, and (4) subsidence mechanisms and rate. This work presents a hazard assessment from an alluvial evaporite karst area (0.81 km2) located in the periphery of the city of Zaragoza (Ebro River valley, NE Spain). Five sinkholes and four locations with features attributable to karstic subsidence where identified in an initial investigation phase providing a preliminary probability of occurrence of 0.14 sinkholes/km2 year (11.34% in annual probability). A trenching program conducted in a subsequent investigation phase allowed us to rule out the four probable sinkholes, reducing the probability of occurrence to 0.079 sinkholes/km2 year (6.4% in annual probability). The information on the severity indicates that collapse sinkholes 10–15 m in diameter may occur in the area. A detailed study of the deposits and deformational structures exposed by trenching in one of the sinkholes allowed us to infer a modern collapse sinkhole approximately 12 m in diameter and with a vertical throw of 8 m. This collapse structure is superimposed on a subsidence sinkhole around 80 m across that records at least 1.7 m of synsedimentary subsidence. Trenching, in combination with dating techniques, is proposed as a useful methodology to elucidate the origin of depressions with uncertain diagnosis and to gather practical information with predictive utility about particular sinkholes in alluvial karst settings: precise location, subsidence mechanisms and magnitude, and timing and rate of the subsidence episodes.  相似文献   

3.
The Crestatx aquifer is the main source of water supply to the Bay of Alcudia, one of the largest resorts on the island of Majorca (Spain). This water has been used since the 1970s using several pumping wells, which draw an annual volume of 1.5 hm3. The seasonal exploitation of this karstic aquifer causes a substantial cone of depression with great variations in the piezometric level (up to 120 m) and dynamic water levels of down to 87 m below sea level. At the end of the 1990s, several sinkholes and subsidence depressions started being detected in a highly karstified area. Twenty subsidence and sinkhole morphologies have been inventoried in an area measuring 70,000 m2, with diameters up to 23 m and depth more than 15 m. The intense and continuous rainfall during recent years (2008–2010) has considerably accelerated the process, increasing the dimensions of existing sinkholes and the appearance of new morphologies. By means of electrical tomography techniques, a ground study was carried out. Numerous cavities have been identified in the upper 30 m. Using a map of the surface morphologies and the geophysical profiles, we can determine that the propagation and orientation of the sinkholes lie along three main directions: N30°E, N130°E and N60°E. The first is the most relevant, which is parallel to the main tectonic structures in the area. The interpretation of the electrical profiles has enabled us to identify the potentially most unstable areas, which is an effective tool to assess risk in the area, as there are roads and a housing development nearby. The high, but discontinuous, exploitation of the aquifer is considered the main trigger for these sinkholes and subsidence depressions, as it causes large variations of pressure and accelerates the dissolution process in the underlying rock.  相似文献   

4.
In the valley of the Ebro River to the southeast of the city of Zaragoza (NE Spain), the dissolution of evaporite sediments (gypsum, halite and Na-sulphates) which underlie alluvial deposits gives rise to numerous sinkholes. These sinkholes are a potential hazard to human safety, particularly where they develop in a catastrophic way. Even slow-developing sinkholes are problematic, as they damage urban and agricultural infrastructure, necessitating costly repairs and vigilant maintenance. To assist in developing avoidance strategies for these hazards, the factors controlling sinkhole occurrence have been assessed using geomorphological maps produced from aerial photographs for 1956 and 1981. Important controls on sinkhole development are found to include underlying geological structure (manifest in preferred orientations of sinkholes on the azimuths N130-150E and N30-40E), and the presence of glauberite in the groundwater flow path, which apparently promotes accelerated gypsum dissolution. Perhaps surprisingly, alluvium thickness does not appear to significantly correlate with the density of sinkholes on the floodplain in this area. The maps for 1956 and 1981 reveal that both human activity and natural processes can serve to obscure the true density of sinkhole development. For instance, a large number of sinkholes which were conspicuous in 1956 have since been back-filled by farmers. In the most fluvially active zone of the Ebro valley (the meander belt), the relatively low density of sinkholes compared with adjoining zones suggests that subsidence is being masked by morpho-sedimentary dynamic processes (aggradation and erosion). Careful geomorphological mapping for different time periods yields a much more accurate impression of the frequency of sinkhole development than would be gained from surveying currently visible sinkholes in the area of interest.  相似文献   

5.
A preliminary sinkhole susceptibility analysis has been carried out in a stretch 50 km2 in area of the Ebro valley alluvial evaporite karst (NE Spain). A spatial database consisting of a sinkhole layer and 27 thematic layers related to causal factors was constructed and implemented in a GIS. Three types of sinkholes were differentiated on the basis of their markedly different morphometry and geomorphic distribution: large subsidence depressions (24), large collapse sinkholes (23), and small cover-collapse sinkholes (447). The susceptibility models were produced analysing the statistical relationships between the mapped sinkholes and a set of conditioning factors using the Favourability Functions approach. The statistical analyses indicate that the best models are obtained with 6 conditioning factors out of the 27 available ones and that different factors and processes are involved in the generation of each type of sinkhole. The validation of two models by means of a random-split strategy shows that reasonably good predictions on the spatial distribution of future dolines may be produced with this approach; around 75% of the sinkholes of the validation sample occur on the 10% of the pixels with the highest susceptibility and about 45% of the area can be considered as safe.  相似文献   

6.
The morphological evolution of the karstic systems is associated with a set of physical and chemical processes, triggered by the dissolution of the rocks, related to percolation of groundwater and surface water, which consequently open underground voids and carve out peculiar forms of relief. Due to environmental and geotechnical aspects, this system is naturally more fragile and vulnerable than other natural systems and, therefore, has increasingly received the attention of the scientific community over the past decades. The objective of the study was to delimit zones with varying degrees of susceptibility for collapses and subsidence of sinkholes in the municipality of Iraquara, Chapada Diamantina (BA), Brazil, and to understand their geological and morphological determinant factors. Geological data, karst phenomenon map, and visual analysis in the field were used to categorize zones with different types of susceptibilities to the nucleation of new sinkholes based on a Hazard Index. This index was defined from the sum of geological hazard factors, lineament density, and sinkhole density. The areas that presented the highest susceptibility for terrain collapse and subsidence corresponded to regions where carbonate rocks outcrop, with high density of photolineaments and 2.62 sinkholes/km2. Processes associated with terrain collapse and subsidence in karst areas consisted of a combination of various factors, hindering precise predictions. However, zones of different types of susceptibilities to terrain collapse and subsidence can be delimited when the relationships between these processes and their factors are understood. The Hazard Index proposed does not provide quantitative values for the probability of hazard susceptibility, but rather indicates areas that are more susceptible to terrain subsidence and collapse.  相似文献   

7.
High-resolution seismic reflections have been used effectively to investigate sinkholes formed from the dissolution of a bedded salt unit found throughout most of Central Kansas. Surface subsidence can have devastating effects on transportation structures. Roads, rails, bridges, and pipeliues can even be dramatically affected by minor ground instability. Areas susceptible to surface subsidence can put public safety at risk. Subsurface expressions significantly larger than surface depressions are consistently observed on seismic images recorded over sinkholes in Kansas. Until subsidence reaches the ground surface, failure appears to be controlled by compressional forces evidenced by faults with reverse orientation. Once a surface depression forms or dissolution of the salt slows or stops, subsidence structures are consistent with a tensional stress environment with prevalent normal faults. Detecting areas of rapid subsidence potential, prior to surface failure, is the ultimate goal of any geotechnical survey where the ground surface is susceptible to settling. Seismic reflection images have helped correlate active subsidence to dormant paleofeatures, project horizontal growth of active sinkholes based on subsurface structures, and appraise the risk of catastrophic failure.  相似文献   

8.
 Mining of coal, lead and zinc, gold, and iron ore deposits in karst areas has been closely associated with sinkholes in China. Surface collapse causes an increase in mine water drainage and the possibility of major water inflow from karst aquifers, which threatens the environment in mining areas and endangers mine safety. The origin of such sinkholes is analyzed quantitatively in this paper and a combination of factors including soil weight, buoyancy, suffosion process and vacuum suction can contribute to surface subsidence. The key measures to prevent sinkholes in mining areas are to control the amount of mine drainage, reduce water-level fluctuation, seal off karst conduits and subsurface cavities in the overlying soil, prevent water inflow, and to increase gas pressure in the karst conduits. Received: 2 May 1996 · Accepted: 29 July 1996  相似文献   

9.
Salento, the southern portion of Apulia region (SE Italy), is a narrow and elongated peninsula in carbonate rocks, with prevailing low coastlines, locally interrupted by high rock cliffs. The long stretches of low coasts are marked by typical karst landforms consisting of collapse sinkholes. As observed in many other karst coastal settings worldwide, development of sinkholes may be particularly severe along the coasts, where both natural and anthropogenic processes contribute to accelerate the dissolution of carbonate rocks and subsidence processes, even influencing the coastline evolution. Following a previous study, where the main features of sinkholes at Torre Castiglione (Taranto province) were investigated and described, and a preliminary susceptibility map produced, at the light of updated data and elaborations in the present paper we perform a detailed morphometric analysis on the sample of identified sinkholes. The main morphometric parameters generally used for sinkhole characterization have been considered in this study: shape of the sinkhole, azimuth and length of maximum and minimum axes, depth, elongation ratio, and distance from the shorelines. Each of them is described, both as individual parameter and in conjunction with the others, in the attempt to identify the main factors controlling development of sinkholes in the area, and their evolution as well. With regard to this latter aspect, beside simple morphometry of the sample of sinkholes at Torre Castiglione, we also focused our attention on the likely relationships existing between distribution and shape of the sinkholes and the tectonic discontinuities. To investigate the matter, a three-stage analysis has been carried out in this study by means of: field measurements of the fractures bounding the sinkholes, field measurement of the long axes azimuth of the elongated sinkholes, comparison of the previously described sets with the strikes of the main regional geological structures. The obtained results show, in addition to the coincidence of the main regional discontinuity systems with the major axis of elongated sinkholes, a clear control exerted by development and evolution of the sinkholes on the formation of coastal inlets and bays. Eventually, the approach here presented may be applied in other karst coastal sinkhole-prone areas, to gain new knowledge on the genesis and evolution of coastal sinkholes, and to properly evaluate the hazard they pose to the anthropogenic environment.  相似文献   

10.
Sinkhole collapse in the area of Maryland Interstate 70 (I-70) and nearby roadways south of Frederick, Maryland, has been posing a threat to the safety of the highway operation as well as other structures. The occurrence of sinkholes is associated with intensive land development. However, the geological conditions that have been developing over the past 200 million years in the Frederick Valley control the locations of the sinkholes. Within an area of approximately 8 km2, 138 sinkholes are recorded and their spatial distribution is irregular, but clustered. The clustering indicates the existence of an interaction between the sinkholes. The point pattern of sinkholes is considered to be a sample of a Gibbsian point process from which the hard-core Strauss Model is developed. The radius of influence is calculated for the recorded sinkholes which are most likely to occur within 30 m of an existing sinkhole. The stochastic analysis of the existing sinkholes is biased toward the areas with intensive land use. This bias is adjusted by considering (1) topography, (2) proximity to topographic depressions, (3) interpreted rock formation, (4) soil type, (5) geophysical anomalies, (6) proximity to geologic structures, and (7) thickness of overburden. Based on the properties of each factor, a scoring system is developed and the average relative risk score for individual 30-m segments of the study area is calculated. The areas designated by higher risk levels would have greater risk of a sinkhole collapse than the areas designated by lower risk levels. This risk assessment approach can be updated as more information becomes available.  相似文献   

11.
More than 4,000 sinkholes have formed since the 1980s within a 60-km-long and 1-km-wide strip along the western coast of the Dead Sea (DS) in Israel. Their formation rate accelerated in recent years to >400 sinkholes per year. They cluster mostly in specific sites up to 1,000 m long and 200 m wide, which align parallel to the general direction of the fault systems associated with the DS Rift. The abrupt appearance of the sinkholes reflects changes to the groundwater regime around the shrinking DS. The eastward retreat of the shoreline and the lake-level drop (1 m/year in recent years) cause an eastward and downward migration of the fresh/saline groundwater interface. Consequently, a subsurface salt layer, which was previously enveloped by saline groundwater, is gradually being invaded and submerged by relatively fresh groundwater, and cavities form due to the rapid dissolution of the salt. Collapse of the overlying sediments into these cavities results in sinkholes at the surface. An association between sinkhole sites and land subsidence is revealed by interferometric synthetic aperture radar (InSAR) measurements. On a broad scale (hundreds of meters), subsidence occurs due to compaction of fine-grained sediments as groundwater levels decline along the retreating DS shoreline. At smaller scales (tens of meters), subsidence appears above subsurface cavities in association with the sinkholes, serving in many cases as sinkhole precursors, a few weeks to more than a year before their actual appearance at the surface. This paper overviews the processes of sinkhole formation and their relation to land subsidence.  相似文献   

12.
《Geodinamica Acta》2013,26(1-3):65-78
This paper discusses the interpretation of ground motions detected in the dried up Lynch Strait, Dead Sea area, by applying radar interferometric techniques to ALOS Palsar Synthetic Aperture Radar images. Four ALOS scenes spanning from December 15, 2007 to May 17, 2008 have been processed leading to the generation of five interferograms. Three ground deformation zones have been detected. One of them shows surface displacement which could be related to an earthquake (ML 3.1) that took place on April 13, 2008. High rates of subsidence have been measured in the northern Lynch Strait. They suggest that these subsidence phenomena follow the same trend of rapid increase as sinkholes. Additional measurements should be carried out in order to refine this observation.

The comparison between sinkholes' distributions in the Lynch Strait with that of Ghor Al Haditha, six kilometers eastward, supports the idea that the earthquake that hit the southern Dead Sea on April 23, 1979 (M 5.1) reactivated faults and fractures in the Lynch Strait triggering the development of sinkholes and subsidence in the frame of the Dead Sea recession.  相似文献   

13.
The lowest 17-km long reach of the Huerva River valley, down to its confluence with the Ebro River in Zaragoza city, flows across salt-bearing evaporites of the Ebro Tertiary Basin (NE Spain). Upstream, the horizontally lying Miocene evaporites are interfingered with non-soluble distal alluvial fan facies (shales and sandstones). The proportion of soluble facies in the Huerva River valley increases in a downstream direction towards the basin depocenter. On the basis of the type and magnitude of the paleosubsidence features, the valley has been divided into four reaches. Along reach I, undeformed terrace deposits less than 4 m thick rest on insoluble detrital bedrock. In reaches II and III, dissolution at the alluvium–bedrock boundary has generated local thickening, deformation and paleocollapse structures, which only affect the alluvial mantle. In reach IV, terrace deposits thicken to over 60 m resulting from a large-scale synsedimentary subsidence. In this sector, subsidence locally affects to both the alluvium and the underlying bedrock. This indicates that dissolution acts at the rockhead beneath the alluvial cover (alluvial karst) and within the evaporitic substratum (interstratal karst). The development of an intraevaporitic karst in reach IV is attributed to gypsum and salt dissolution. Irregular terrace gravel bodies (gravel pockets) embedded in a fine-grained matrix associated with paleocollapse structures have been interpreted as liquefaction–fluidization structures resulting from ground acceleration and suction induced by catastrophic collapses. Subsidence is currently active in the region affecting areas with a thin alluvial cover in reaches III and IV. The low subsidence activity in most of Zaragoza city is explained by the presence of thickened (around 50 m) and indurated alluvial deposits. In the surrounding area, numerous buildings in Cadrete and Santa Fe villages have been severely damaged by subsidence. Natural and human-induced subsidence favours the development of slope movements in the gypsum scarp overlooking Cadrete village. Several transport routes including the Imperial Canal (irrigation canal) and the recently completed Madrid–Barcelona high-speed railway are affected by human-induced sinkholes. The paleocollapse structures exposed in the trenches of this railway and a ring road under construction point to hazardous locations underlain by cavities and collapse structures where special protection measures should be applied. Rigid structures are recommended beneath the high-speed railway with sufficient strength to span the larger sinkholes with no deformation. Electronic monitoring devices linked to a warning system can detect subtle subsidence-induced deformations in carriageways or railways. This research demonstrates that the study of the paleokarst helps to understand the processes involved in the present-day subsidence phenomena and their general spatial distribution.  相似文献   

14.
Sinkholes and land subsidence are among the main coastal geologic hazards. Their occurrence poses a serious threat to the man-made environment, due to the increasing density of population, pipelines and other infrastructures along the coasts, and to the catastrophic nature of the phenomena, which generally occur without any premonitory signs. To assess the potential danger from sinkholes along the coast, it is important to identify and monitor the main factors contributing to the process. This article reports a methodology based on sequential stratigraphic, hydrogeological and geophysical investigations to draw up a susceptibility map of sinkholes in coastal areas. The town of Casalabate situated in the Apulia region (southern Italy), affected by a long history of sinkhole phenomena, is here presented as an example. The approach proposed is based on sequential stratigraphical, geomorphological and geophysical surveys to identify the mechanisms of sinkhole formation and to provide a zonation of the areas in which further sinkhole phenomena may likely occur. Interpretation of the ground penetration radar and electrical tomography profiles has enabled us to identify the potentially most unstable sectors, significantly improving the assessment of the sinkhole susceptibility in the area. The proposed methodology is suitable to be exported in other coastal areas where limestone bedrock is not directly exposed at the surface, but covered by a variable thickness of recent deposits.  相似文献   

15.
An active sinkhole around 100 m long has been investigated in the city of Zaragoza (NE Spain). Subsidence activity on this depression, including the sudden occurrence of a collapse sinkhole 5 m across, led to the abandonment of a factory in the 1990s. At the present time, a building with 100 flats and shallow pad foundations partially built on the sinkhole, is affected by rapid differential settlement. The development of the sinkhole results from the karstification of the halite- and glauberite- bearing bedrock and the sagging and collapse of the overlying bedrock and alluvium, more than 30 m thick. GPR and electrical resistivity profiles have provided information on the distribution and geometry of the subsidence structure. The application of the trenching technique and geochronological methods (AMS and OSL dating) has allowed us to infer objective and practical data on the sinkhole including (1) Limits of the subsidence structure, (2) subsidence mechanisms, (3) cumulative subsidence (>408 cm), (4) subsidence rates on specific failure planes (>1.8 cm/year), (5) episodic displacement regime of some fault planes. The available information indicates that the progressive deformation recorded in the building will continue and might be punctuated by events of more rapid displacement. This work illustrates the practicality of the trenching technique for the study of sinkholes in mantled karst areas.  相似文献   

16.
Evolution of coastlines in karst areas may be strongly controlled by dissolution processes which favour the development of surface and subsurface landforms. The generation of caves in these environments is commonly favoured by the mixing between fresh and brackish waters. The sinkholes resulting from the upward propagation of the caves may interfere with the anthropogenic environment and cause damage to human elements (property and activities). To highlight the often underestimated importance of karst phenomena in coastal areas, we have analyzed a coastal stretch of Apulia, in southern Italy. The study area, covering an extension of about 6 km2, is situated in the Ionian coast, and presents several interesting karst landforms that are generally connected to caves. Tens of sinkholes were mapped through field surveys, multi-year aerial-photographs (dating back to the 1940s) and archival research. We have performed a morphometric analysis of the sinkholes. The analysis describes the main parameters of the sinkholes (area, length, width, and depth), and the control exerted by the main discontinuity systems in the area. The detrimental effects derived from interaction between human environment and these karst landforms is also under consideration. A sinkhole susceptibility map, which may provide useful information for planners, developers and the insurance industry has eventually been produced through application of a decision tree model.  相似文献   

17.
Induced sinkholes (catastrophic subsidence) are those caused or accelerated by human activities These sinkholes commonly result from a water level decline due to pumpage Construction activities in a cone of depression greatly increases the likelihood of sinkhole occurrence Almost all occur where cavities develop in unconsolidated deposits overlying solution openings in carbonate rocks. Triggering mechanisms resulting from water level declines are (1) loss of buoyant support of the water, (2) increased gradient and water velocity, (3) water-level fluctuations, and (4) induced recharge Construction activities triggering sinkhole development include ditching, removing overburden, drilling, movement of heavy equipment, blasting and the diversion and impoundment of drainage Triggering mechanisms include piping, saturation, and loading Induced sinkholes resulting from human water development/management activities are most predictable in a youthful karst area impacted by groundwater withdrawals Shape, depth, and timing of catastrophic subsidence can be predicted in general terms Remote sensing techniques are used in prediction of locations of catastrophic subsidence. This provides a basis for design and relocation of structures such as a gas pipeline, dam, or building Utilization of techniques and a case history of the relocation of a pipeline are described  相似文献   

18.
During the Neogene, the tectonic and sedimentary evolution of the Baja California Peninsula followed four stages: (1) during the early Miocene (22 Ma), the initiation of transform motion between Pacific and North American plates, caused a rapid subsidence in the Continental Borderland Province and in some adjacent areas.This subsidence coincided in time with with a global rise in sea level. At this time, the eastern and southern parts of the peninsula did not show any evidence of subsidence. (2) During the middle Miocene (12 Ma), normal and strike slip faulting migrated eastward, causing subsidence in the northern part of the Gulf of California, where the oldest Tertiary marine sedimentary rocks were deposited. The areas in central Baja California Sur and the central part of the Gulf itself received abundant volcanic deposits related to continental extension. (3) During the late Miocene (8 Ma), the western margin of the Peninsula changed to a slightly compressive regime, while the northern part of the Gulf contained a marine basin with upper bathyal environments. The central area of the Gulf continued receiving abundant volcanic deposits, while the Los Cabos block received marine sedimentation, correlatable with sedimentary units reported from the continental margins in Nayarit, Jalisco and Michoacán. (4) Beginning in the early Pliocene (5 Ma), the present configuration of the Gulf of California developed through right-lateral strike slip and extension in the Gulf itself. Since Pliocene times, the Gulf presents widespread marine sedimentation with deep basins reaching lower bathyal depths.  相似文献   

19.
Land subsidence due to groundwater overdraft has been an ongoing problem in south-central and southern Arizona (USA) since the 1940s. The first earth fissure attributed to excessive groundwater withdrawal was discovered in the early 1950s near Picacho. In some areas of the state, groundwater-level declines of more than 150 m have resulted in extensive land subsidence and earth fissuring. Land subsidence in excess of 5.7 m has been documented in both western metropolitan Phoenix and Eloy. The Arizona Department of Water Resources (ADWR) has been monitoring land subsidence since 2002 using interferometric synthetic aperture radar (InSAR) and since 1998 using a global navigation satellite system (GNSS). The ADWR InSAR program has identified more than 25 individual land subsidence features that cover an area of more than 7,300 km2. Using InSAR data in conjunction with groundwater-level datasets, ADWR is able to monitor land subsidence areas as well as identify areas that may require additional monitoring. One area of particular concern is the Willcox groundwater basin in southeastern Arizona, which is the focus of this paper. The area is experiencing rapid groundwater declines, as much as 32.1 m during 2005–2014 (the largest land subsidence rate in Arizona State—up to 12 cm/year), and a large number of earth fissures. The declining groundwater levels in Arizona are a challenge for both future groundwater availability and mitigating land subsidence associated with these declines. ADWR’s InSAR program will continue to be a critical tool for monitoring land subsidence due to excessive groundwater withdrawal.  相似文献   

20.
《Geodinamica Acta》2013,26(1-3):113-127
Sinkholes constitute a significant risk in many karst areas, and may even threat human safety. Collapse sinkholes that occur catastrophically without showing premonitory signs may result in severe economic losses and casualties. In the last years, research on sinkholes and related detrimental effects has significantly increased in Italy, in the aftermath of remarkable events.

Aimed at analysing the peculiar conditions which lead to sinkhole occurrence in Southern Italy, a set of cases in the plain areas of Campania, Apulia and Calabria is discussed. The considered regions show a wide variety of environmental conditions. In Campania, the plains are underlain by alluvial deposits with intercalations of volcaniclastic sediments. Sinkholes are generally located along the Tyrrhenian margin of the carbonate massifs or within intramontane Apennine basins. In Apulia, a flat and elongated peninsula, most of the cases occur on calcarenites overlying limestone bedrock along the coast. In Calabria, one of the most seismogenic Italian regions, the surveyed cases seem to be attributable mainly to earthquake-induced liquefaction.

The article provides a first glance on the variety of sinkholes in the plain areas of Southern Italy, to highlight the possibility of further subsidence events in the considered regions, as well as in other comparable areas of the country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号