首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 837 毫秒
1.
Javier Ruiz  Rosa Tejero 《Icarus》2006,180(2):308-313
Two independent sets of heat flow estimates provide constraints on the Hesperian-era surface and mantle heat flows, and the thickness of the heat-producing elements (HPE)-enriched upper crust, in the Solis Planum region of Mars. The calculations, which use the concentration of uppermost crust heat sources deduced from orbital gamma ray spectroscopy and soils geochemistry, are based on the effective elastic thickness of the lithosphere and the minimum depth of faults underlying winkle ridges. We find that, for the majority of analyzed settings, the HPE-enriched crust is thinner than the whole crust thickness in this region (∼65 km). Thus, our results strongly support a differentiated martian crust.  相似文献   

2.
Javier Ruiz  Valle López 《Icarus》2010,207(2):631-637
The present-day thermal state of the martian interior is a very important issue for understanding the internal evolution of the planet. Here, in order to obtain an improved upper limit for the heat flow at the north polar region, we use the lower limit of the effective elastic thickness of the lithosphere loaded by the north polar cap, crustal heat-producing elements (HPE) abundances based on martian geochemistry, and a temperature-dependent thermal conductivity for the upper mantle. We also perform similar calculations for the south polar region, although uncertainties in lithospheric flexure make the results less robust. Our results show that the present-day surface and sublithospheric heat flows cannot be higher than 19 and 12 mW m−2, respectively, in the north polar region, and similar values might be representative of the south polar region (although with a somewhat higher surface heat flow due to the radioactive contribution from a thicker crust). These values, if representative of martian averages, do not necessarily imply sub-chondritic HPE bulk abundances for Mars (as previously suggested), since (1) chondritic composition models produce a present-day total heat power equivalent to an average surface heat flow of 14-22 mW m−2 and (2) some convective models obtain similar heat flows for the present time. Regions of low heat flow may even have existed during the last billions of years, in accordance with several surface heat flow estimates of ∼20 mW m−2 or less for terrains loaded during Hesperian or Amazonian times. On the other hand, there are some evidences suggesting the current existence of regions of enhanced heat flow, and therefore average heat flows could be higher than those obtained for the north (and maybe the south) polar region.  相似文献   

3.
A. Morschhauser  D. Breuer 《Icarus》2011,212(2):541-400
We have reinvestigated the coupled thermal and crustal evolution of Mars taking new laboratory data concerning the flow behavior of iron-rich olivine into account. The low mantle viscosities associated with the relatively higher iron content of the martian mantle as well as the observed high concentrations of heat producing elements in a crust with a reduced thermal conductivity were found to promote phases of crustal recycling in many models. As crustal recycling is incompatible with an early separation of geochemical reservoirs, models were required to show no episodes of crustal recycling. Furthermore, admissible models were required to reproduce the martian crust formation history, to allow for the formation of partial melt under present day mantle conditions and to reproduce the measured concentrations of potassium and thorium on the martian surface. Taking dehydration stiffening of the mantle viscosity by the extraction of water from the mantle into account, we found that admissible models have low initial upper mantle temperatures around 1650 K, preferably a primordial crustal thickness of 30 km, and an initially wet mantle rheology. The crust formation process on Mars would then be driven by the extraction of a primordial crust after core formation, cooling the mantle to temperatures close to the peridotite solidus. According to this scenario, the second stage of global crust formation took place over a more extended period of time, waning at around 3500 Myr b.p., and was driven by heat produced by the decay of radioactive elements. Present-day volcanism would then be driven by mantle plumes originating at the core-mantle boundary under regions of locally thickened, thermally insulating crust. Water extraction from the mantle was found to be relatively efficient and close to 40% of the total inventory was lost from the mantle in most models. Assuming an initial mantle water content of 100 ppm and that 10% of the extracted water is supplied to the surface, this amount is equivalent to a 14 m thick global surface layer, suggesting that volcanic outgassing of H2O could have significantly influenced the early martian climate and increased the planet’s habitability.  相似文献   

4.
M. Grott  D. Breuer 《Icarus》2009,201(2):540-151
The martian elastic lithosphere thickness Te has recently been constrained by modeling the geodynamical response to loading at the martian polar caps and Te was found to exceed 300 km at the north pole today. Geological evidence suggests that Mars has been volcanically active in the recent past and we have reinvestigated the martian thermal evolution, identifying models which are consistent with Te>300 km and the observed recent magmatic activity. We find that although models satisfying both constraints can be constructed, special assumptions regarding the concentration and distribution of radioactive elements, the style of mantle convection and/or the mantle's volatile content need to be made. If a dry mantle rheology is assumed, strong plumes caused by, e.g., a strongly pressure dependent mantle viscosity or endothermic phase transitions near the core-mantle boundary are required to allow for decompression melting in the heads of mantle plumes. For a wet mantle, large mantle water contents of the order of 1000 ppm are required to allow for partial mantle melting. Also, for a moderate crustal enrichment of heat producing, elements the planet's bulk composition needs to be 25 and 50% sub-chondritic for dry and wet mantle rheologies, respectively. Even then, models resulting in a globally averaged elastic thicknesses of Te>300 km are difficult to reconcile with most elastic thickness estimates available for the Hesperian and Amazonian periods. It therefore seems likely that large elastic thicknesses in excess of 300 km are not representative for the bulk of the planet and that Te possibly shows a large degree of spatial heterogeneity.  相似文献   

5.
Heat flow calculations based on geological and/or geophysical indicators can help to constrain the thickness, and potentially the geochemical stratification, of the martian crust. Here we analyze the Warrego rise region, part of the ancient mountain range referred to as the Thaumasia highlands. This region has a crustal thickness much greater than the martian average, as well as estimations of the depth to the brittle-ductile transition beneath two scarps interpreted to be thrust faults. For the local crustal density (2900 kg m−3) favored by our analysis of the flexural state of compensation of the local topography, the crustal thickness is at least 70 and 75 km at the scarp locations. However, for one of the scarp locations our nominal model does not obtain heat flow solutions permitting a homogeneous crust as thick as required. Our results, therefore, suggest that the crust beneath the Warrego rise region is chemically stratified with a heat-producing enriched upper layer thinner than the whole crust. Moreover, if the mantle heat flow (at the time of scarp formation) was higher than 0.3 of the surface heat low, as predicted by thermal history models, then a stratified crust rise seems unavoidable for this region, even if local heat-producing element abundances lower than average or hydrostatic pore pressure are considered. This finding is consistent with a complex geological history, which includes magmatic-driven activity.  相似文献   

6.
M. Grott  D. Breuer 《Icarus》2008,193(2):503-515
Estimates of the martian elastic lithosphere thickness Te imply that Te increased from around 20 km in the Noachian to about 70 km in the Amazonian period. A phase of rapid lithospheric growth is observed during the Hesperian and we propose that this elastic thickness history is a consequence of the martian crustal rheology and its thermal evolution. A wet crustal rheology is found to generate a mechanically incompetent layer in the lower crust during the early evolution and the rapid growth of Te during the Hesperian results from the disappearance of this layer due to planetary cooling. The incompetent layer and the related rapid lithospheric growth are absent for a dry basaltic crustal rheology, which is therefore incompatible with the observations. Furthermore, we find that the observed elastic thickness evolution is best compatible with a wet mantle rheology, although a dry mantle cannot be ruled out. It therefore seems likely that rheologically significant amounts of water were retained in the Martian crust and mantle after planetary accretion.  相似文献   

7.
A. Rivoldini  T. Van Hoolst 《Icarus》2011,213(2):451-472
Knowledge of the interior structure of Mars is of fundamental importance to the understanding of its past and present state as well as its future evolution. The most prominent interior structure properties are the state of the core, solid or liquid, its radius, and its composition in terms of light elements, the thickness of the mantle, its composition, the presence of a lower mantle, and the density of the crust. In the absence of seismic sounding only geodesy data allow reliably constraining the deep interior of Mars. Those data are the mass, moment of inertia, and tides. They are related to Mars’ composition, to its internal mass distribution, and to its deformational response to principally the tidal forcing of the Sun. Here we use the most recent estimates of the moment of inertia and tidal Love number k2 in order to infer knowledge about the interior structure of the Mars.We have built precise models of the interior structure of Mars that are parameterized by the crust density and thickness, the volume fractions of upper mantle mineral phases, the bulk mantle iron concentration, and the size and the sulfur concentration of the core. From the bulk mantle iron concentration and from the volume fractions of the upper mantle mineral phases, the depth dependent mineralogy is deduced by using experimentally determined phase diagrams. The thermoelastic properties at each depth inside the mantle are calculated by using equations of state. Since it is difficult to determine the temperature inside the mantle of Mars we here use two end-member temperature profiles that have been deduced from studies dedicated to the thermal evolution of Mars. We calculate the pressure and temperature dependent thermoelastic properties of the core constituents by using equations state and recent data about reference thermoelastic properties of liquid iron, liquid iron-sulfur, and solid iron. To determine the size of a possible inner core we use recent data on the melting temperature of iron-sulfur.Within our model assumptions the geodesy data imply that Mars has no solid inner core and that the liquid core contains a large fraction of sulfur. The absence of a solid inner is in agreement with the absence of a global magnetic field. We estimate the radius of the core to be 1794 ± 65 km and its core sulfur concentration to be 16 ± 2 wt%. We also show that it is possible for Mars to have a thin layer of perovskite at the bottom of the mantle if it has a hot mantle temperature. Moreover a chondritic Fe/Si ratio is shown to be consistent with the geodesy data, although significantly different value are also possible. Our results demonstrate that geodesy data alone, even if a mantle temperature is assumed, can almost not constrain the mineralogy of the mantle and the crust. In order to obtain stronger constraints on the mantle mineralogy bulk properties, like a fixed Fe/Si ratio, have to be assumed.  相似文献   

8.
C.C. Reese  V.S. Solomatov 《Icarus》2010,207(1):82-359
During late-stage planet formation, giant impacts produce localized mantle melt regions within which impactor iron droplets settle to the bottom near a permeability horizon. After accumulation, iron heated by the impact migrates downward to the core through colder, mostly solid mantle. The degree of thermal equilibration and partitioning of viscous heating between impactor iron and silicates depends on the mechanism of iron transport to the core. Simple estimates suggest that, following a giant impact, the temperature difference between iron delivered to the core and the mantle outside the impact heated region can be ∼103 K. Hot impactor iron mergers with the core where it may be efficiently mixed or remain stratified due to thermal buoyancy. In either case, collisional energy carried to the core by impactor iron helps establish conditions favorable for early core cooling and dynamo generation. In this study, we consider the end-member scenario in which impactor iron forms a layer at the top of the core. Energy transfer from the impactor iron layer to the mantle is sufficient to power a dynamo for up to ∼30 Myr even in the limit of a very viscous mantle and heat flux limited by conduction. Using two-dimensional finite element calculations of mantle convection, we show that large-scale mantle flow driven by the buoyancy of the impact thermal anomaly focuses plumes in the impact region and increases both dynamo strength and duration. Melting within the mantle thermal boundary layer likely leads to formation of a single superplume in the location of the impact anomaly driven upwelling. We suggest that formation of magnetized southern highland crust may be related to spreading and differentiation of an impact melt region during the impact-induced dynamo episode.  相似文献   

9.
Large impacts not only create giant basins on terrestrial planets but also heat their interior by shock waves. We investigate the impacts that have created the largest basins existing on the planets: Utopia on Mars, Caloris on Mercury, Aitken on Moon, all formed at ∼4 Ga. We determine the impact-induced temperature increases in the interior of a planet using the “foundering” shock heating model of Watters et al. (Watters, W.A., Zuber, M.T., Hager, B.H. [2009]. J. Geophys. Res. 114, E02001. doi:10.1029/2007JE002964). The post-impact thermal evolution of the planet is investigated using 2D axi-symmetric convection in a spherical shell of temperature-dependent viscosity and thermal conductivity, and pressure-dependent thermal expansion. The impact heating creates a superheated giant plume in the upper mantle which ascends rapidly and develops a strong convection in the mantle of the sub-impact hemisphere. The upwelling of the plume rapidly sweeps up the impact-heated base of the mantle away from the core-mantle boundary and replaces it with the colder surrounding material, thus reducing the effects of the impact-heated base of the mantle on the heat flux out of core. However, direct shock heating of the core stratifies the core, suppresses the pre-existing thermal convection, and cripples a pre-existing thermally-driven core dynamo. It takes about 17, 4, and 5 Myr for the stratified cores of Mars, Mercury, and Moon to exhaust impact heat and resume global convection, possibly regenerating core dynamos.  相似文献   

10.
Alberto G. Fairén 《Icarus》2010,208(1):165-48
Water on Mars has been explained by invoking controversial and mutually exclusive solutions based on warming the atmosphere with greenhouse gases (the “warm and wet” Mars) or on local thermal energy sources acting in a global freezing climate (the “cold and dry” Mars). Both have critical limitations and none has been definitively accepted as a compelling explanation for the presence of liquid water on Mars. Here is considered the hypothesis that cold, saline and acidic liquid solutions have been stable on the sub-zero surface of Mars for relatively extended periods of time, completing a hydrogeological cycle in a water-enriched but cold planet. Computer simulations have been developed to analyze the evaporation processes of a hypothetical martian fluid with a composition resulting from the acid weathering of basalt. This model is based on orbiter- and lander-observed surface mineralogy of Mars, and is consistent with the sequence and time of deposition of the different mineralogical units. The hydrological cycle would have been active only in periods of dense atmosphere, as having a minimum atmospheric pressure is essential for water to flow, and relatively high temperatures (over ∼245 K) are required to trigger evaporation and snowfall; minor episodes of limited liquid water on the surface could have occurred at lower temperatures (over ∼225 K). During times with a thin atmosphere and even lesser temperatures (under ∼225 K), only transient liquid water can potentially exist on most of the martian surface. Assuming that surface temperatures have always been maintained below 273 K, Mars can be considered a “cold and wet” planet for a substantial part of its geological history.  相似文献   

11.
Studies extending over three decades have concluded that the current orientation of the martian rotation pole is unstable. Specifically, the gravitational figure of the planet, after correction for a hydrostatic form, has been interpreted to indicate that the rotation pole should move easily between the present position and a site on the current equator, 90° from the location of the massive Tharsis volcanic province. We demonstrate, using general physical arguments supported by a fluid Love number analysis, that the so-called non-hydrostatic theory is an inaccurate framework for analyzing the rotational stability of planets, such as Mars, that are characterized by long-term elastic strength within the lithosphere. In this case, the appropriate correction to the gravitational figure is the equilibrium rotating form achieved when the elastic lithospheric shell (of some thickness LT) is accounted for. Moreover, the current rotation vector of Mars is shown to be stable when the correct non-equilibrium theory is adopted using values consistent with recent, independent estimates of LT. Finally, we compare observational constraints on the figure of Mars with non-equilibrium predictions based on a large suite of possible Tharsis-driven true polar wander (TPW) scenarios. We conclude, in contrast to recent comparisons of this type based on a non-hydrostatic theory, that the reorientation of the pole associated with the development of Tharsis was likely less than 15° and that the thickness of the elastic lithosphere at the time of Tharsis formation was at least ∼50 km. Larger Tharsis-driven TPW is possible if the present-day gravitational form of the planet at degree 2 has significant contributions from non-Tharsis loads; in this case, the most plausible source would be internal heterogeneities linked to convection.  相似文献   

12.
A comparison of the internal structure of Earth-like planets is unavoidable to understand the formation and evolution of the solar system, and the differences between Earth’s, Mars’, and Venus’ atmospheres, surfaces and tectonic behaviors. Recent studies point at the role of core structure and dynamics in the evolution of the atmosphere, mantle and crust. On Earth, the crust thickness and the radius and physical state of the cores are known for almost one century, since the advent of seismological observations, but the lack of long-term surface-based geodetic, electromagnetic and seismological observations on the other planets, results in very large uncertainties on the crust thickness, on the temperature and composition of their mantle, and on the size and physical state of their cores. According to the currently available geodetic data, Mars’ dimensionless mean-moment-of-inertia ratio is equal to 0.3653±0.0008. When combined with geochemical observations and with the inputs of laboratory experiments on planetary materials at high pressure and high temperature, this result constrains a narrow range of density values for Mars’ mantle and favors a light [6200-6765 kg m−3] sulfur-rich core, but it still allows for a 1600-1750 km range for the core radius, i.e. an uncertainty at least ten times larger than the precision obtained in 1913 by Gutenberg for the Earth’s core. Mars’ mantle density distribution may be explained by a large range of temperatures and mineralogical compositions, either olivine- or pyroxene-rich. The unknown mean thickness of Mars’ crust makes necessary a number of working assumptions for the interpretation of gravimetric and magnetic data. The situation is worse for Venus, and the most conservative model of its deep interior is a transposition of the Earth’s structure scaled to Venus’ radius and mass. The temperature conditions at the surface of this planet hardly make possible long-term ground-based measurements, but this is indeed feasible at the surface of Mars. Precise measurements of Mars’ crust thickness, core radius and structure, and the proof of the existence or absence of an inner core, would put tight constraints on mantle dynamics and thermal evolution, and on possible scenarios leading to the extinction of Mars’ magnetic field about 4.0 Ga ago. Long-lasting surface-based geodetic, seismological and magnetic observations would provide this information, as well as the distributions as a function of depth of the density, elastic and anelastic parameters, and electrical conductivity. Current studies on the structure of Earth’s deep interior demonstrate that the latter data set, when constrained by laboratory experiments, may be inverted in terms of temperature, chemical, and mineralogical compositions.  相似文献   

13.
Abigail A. Fraeman 《Icarus》2010,210(1):43-57
We present a parameterized convection model of Mars by incorporating a new heat-flow scaling law for stagnant-lid convection, to better understand how the evolution of Mars may be affected by mantle melting. Melting in the mantle during convection leads to the formation of a compositionally buoyant lithosphere, which may also be intrinsically more viscous by dehydration. The consequences of these melting effects on the evolution of terrestrial planets have not been explored before. The temporal evolution of crust and lithospheric mantle is modeled in a self-consistent manner considering mantle melting, convective instability, and the rewetting of dehydrated lithosphere from below by hydrogen diffusion. Though the effect of compositional buoyancy turns out to be minimal, the introduction of viscosity contrast between wet and dry mantle can considerably slow mantle cooling and sometimes lead to non-monotonic core cooling. Furthermore, with or without dehydration stiffening, our model predicts that the martian mantle must have been degassed more extensively (>80%) than previously suggested (<10%); the loss of such a large amount of water from the mantle to surface has significant implications about the role of water in the early surface and climate evolution of Mars.  相似文献   

14.
A theoretical thermal evolution model of Mars is constructed, utilizing as constraints the available geophysical and geological data, including those provided by the Viking missions. The calculation includes conduction and subsolidus mantle convection. Calculated models indicate that Martian evolution can be roughly characterized by four different stages. (1) Core formation and crust differentiation: this stage starts from the planet formation to about 1 by thereafter. During this period, Martian core is separated and the initial crust is differentiated. (2) Heating, expansion, and mantle differentiation: this stage begins after the core separation and extends to about 3 by. First, mantle temperatures rise and reach partial melting. Between 2 and 3 by, extensive melting, differentiation, and outgassing occur. Planetary radius increases and extensional features observed at the surface are most likely generated at this stage. (3) Mature phase: after 3 by, the planet reaches maturity. Between 3 and 4 by slow and sustained evolution continues. Lithosphere thickens and partial melt zone deepens. (4) Cooling period: this stage represents the last phase of Martian history. The planet is cooling slowly. The partial melting zone shrinks and volcanic activity tapers off. At present, Martian lithosphere is about 200 km thick and the mantle is convecting slowly. The models suggest that the core is molten, and the calculated surface heat flux is 35 erg cm?2 sec?1.  相似文献   

15.
Thermal evolutions of the terrestrial planets   总被引:1,自引:0,他引:1  
The thermal evolution of the Moon, Mercury, Mars, Venus and hypothetical minor planets is calculated theoretically, taking into account conduction, solid-state convection, and differentiation. An assortment of geological, geochemical, and geophysical data is used to constrain both the present day temperatures and thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. Initial temperatures and core formation play the most important roles in the early differentiation. The size of the planet is the primary factor in determining its present day thermal state. A planetary body with radius less than 1000 km is unlikely to reach melting given heat source concentrations similar to terrestrial values and in the absence of intensive early heating such as short half-life radioactive heating and inductive heating.Studies of individual planets are constrained by varying amounts of data. Most data exist for the Earth and Moon. The Moon is a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. It is presently cooling rapidly and is relatively inactive tectonically.Mercury most likely has a large core. Thermal calculations indicate it may have a 500 km thick solid lithosphere, and the core may be partially molten if it contains some heat sources. If this is not the case, the planet's interior temperatures are everywhere below the melting curve for iron. The thermal evolution is dominated by core separation and the high conductivity of iron which makes up the bulk of Mercury.Mars, intermediate in size among the terrestrial planets, is assumed to have differentiated an Fe–FeS core. Differentiation and formation of an early crust is evident from Mariner and Viking observations. Theoretical models suggest that melting and differentiation of the mantle silicates has occurred at least up until 1 billion years ago. Present day temperature profiles indicate a relatively thick (250 km) lithosphere with a possible asthenosphere below. The core is molten.Venus is characterized as a planet similar to the Earth in many respects. Core formation probably occurred during the first billion years after the formation. Present day temperatures indicate a partially molten upper mantle overlain by a 100 km thick lithosphere and a molten Fe–Ni core. If temperature models are good indicators, we can expect that today, Venus has tectonic processes similar to the Earth's.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May 1978.  相似文献   

16.
Mars     
Mars is the fourth planet out from the sun. It is a terrestrial planet with a density suggesting a composition roughly similar to that of the Earth. Its orbital period is 687 days, its orbital eccentricity is 0.093 and its rotational period is about 24 hours. Mars has two small moons of asteroidal shapes and sizes (about 11 and 6 km mean radius), the bigger of which, Phobos, orbits with decreasing semimajor orbit axis. The decrease of the orbit is caused by the dissipation of tidal energy in the Martian mantle. The other satellite, Deimos, orbits close to the synchronous position where the rotation period of a planet equals the orbital period of its satellite and has hardly evolved with time. Mars has a tenous atmosphere composed mostly of CO with strong winds and with large scale aeolian transport of surface material during dust storms and in sublimation-condensation cycles between the polar caps. The planet has a small magnetic field, probably not generated by dynamo action in the core but possibly due to remnant magnetization of crustal rock acquired earlier from a stronger magnetic field generated by a now dead core dynamo. A dynamo powered by thermal power alone would have ceased a few billions of years ago as the core cooled to an extent that it became stably stratified. Mars' topography and its gravity field are dominated by the Tharsis bulge, a huge dome of volcanic origin. Tharsis was the major center of volcanic activity, a second center is Elysium about 100° in longitude away. The Tharsis bulge is a major contributor to the non-hydrostaticity of the planet's figure. The moment of inertia factor together with the mass and the radius presently is the most useful constraint for geophysical models of the Martian interior. It has recently been determined by Doppler range measurements to the Mars Pathfinder Lander to be (Folkner et al. 1997). In addition, models of the interior structure use the chemistry of the SNC meteorites which are widely believed to have originated on Mars. According to the models, Mars is a differentiated planet with a 100 to 200 km thick basaltic crust, a metallic core with a radius of approximately half the planetary radius, and a silicate mantle. Mantle dynamics is essential in forming the elements of the surface tectonics. Models of mantle convection find that the pressure-induced phase transformations of -olivine to -spinel, -spinel to -spinel, and -spinel to perovskite play major roles in the evolution of mantle flow fields and mantle temperature. It is not very likely that the -spinel to perovskite transition is present in Mars today, but a few 100 km thick layer of perovskite may have been present in the lower mantle immediately above the core-mantle boundary early in the Martian history when mantle temperatures were hotter than today. The phase transitions act to reduce the number of upwellings to a few major plumes which is consistent with the bipolar distribution of volcanic centers of Mars. The phase transitions also cause a partial layering of the lower mantle which keeps the lower mantle and the core from extensive cooling over the past aeons. A relatively hot, fluid core is the most widely accepted explanation for the present lack of a self-generated magnetic field. Growth of an inner core which requires sub-liquidus temperatures in the core would have provided an efficient mechanism to power a dynamo up to the present day. Received 10 May 1997  相似文献   

17.
The thermal evolution of the Moon as it can be defined by the available data and theoretical calculations is discussed. A wide assortment of geological, geochemical and geophysical data constrain both the present-day temperatures and the thermal history of the lunar interior. On the basis of these data, the Moon is characterized as a differentiated body with a crust, a 1000-km-thick solid mantle (lithosphere) and an interior region (core) which may be partially molten. The presence of a crust indicates extensive melting and differentiation early in the lunar history. The ages of lunar samples define the chronology of igneous activity on the lunar surface. This covers a time span of about 1.5 billion yr, from the origin to about 3.16 billion yr ago. Most theoretical models require extensive melting early in the lunar history, and the outward differentiation of radioactive heat sources.Thermal history calculations, whether based on conductive or convective computation codes define relatively narrow bounds for the present day temperatures in the lunar mantle. In the inner region of the 700 km radius, the temperature limits are wider and are between about 100 and 1600°C at the center of the Moon. This central region could have a partially or totally molten core.The lunar heat flow values (about 30 ergs/cm2s) restrict the present day average uranium abundance to 60 ± 15 ppb (averaged for the whole Moon) with typical ratios of K/U = 2000 and Th/U = 3.5. This is consistent with an achondritic bulk composition for the Moon.The Moon, because of its smaller size, evolved rapidly as compared to the Earth and Mars. The lunar interior is cooling everywhere at the present and the Moon is tectonically inactive while Mars could be and the Earth is definitely active.  相似文献   

18.
19.
P. van Thienen  A. Rivoldini 《Icarus》2006,185(1):197-210
The two main volcanic centers on Mars, Tharsis and Elysium, are often interpreted in terms of mantle plume hotspots, even though there are several problems with the plume hypothesis for Mars. We present results of 2D cylindrical shell numerical mantle convection experiments in which we try to ascertain whether flushing of the hot lower mantle could provide a mechanism for the generation of a small number of plume-like features, i.e., localized upwelling of hot material. In this scenario the formation of hot upwellings is driven from the top by cold downwellings rather than from a hot thermal boundary layer at the CMB. First we construct a range of Mars interior structure models consistent with observations in order to demonstrate that the presence of a thin lower mantle in the martian interior is a viable scenario. Then we use a series of numerical convection experiments to investigate the effects of solid-state phase transitions, different stratified and temperature-dependent viscosity models, and the presence of a thick southern hemisphere crust on the operation of such a mechanism. Our results show that it is possible to generate hot strong localized upwellings from top-down dynamics if the lithosphere is thin or actively involved in the convective pattern. The presence of a thick, immobile, insulating southern hemisphere crust reduces the number of upwellings, and the perovskite phase transition causes a focusing of the upwellings. Further experiments demonstrate that an initial 500 Myr phase of mobile lid is sufficient to start this process create an upwelling which is stable for billions of years.  相似文献   

20.
A survey is made of the physics of the interiors of Venus. The introduction explains the main concepts used in the construction of models of Venus and the history of the question; observational data are gathered and analyzed. The method of constructing the models of the planet is explained and earth-like models of Venus and parametrically simple PVM models are discussed. Within the compass of a physical nodel of Venus, the thermodynamics of the mantle and core is constructed and questions are discussed concerning the heat conduction, temperature distribution in the lithosphere and the thermal flux from the interior of Venus, the electrical conduction and mechanical quality, and large-scale steady stresses in the mantle of Venus. A rheological model of the crust and mantle is constructed. In conclusion, the question as to the distribution of radioactivity and convection in the interior of the planet is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号