首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have developed a one-dimensional thermochemical kinetics and diffusion model for Jupiter’s atmosphere that accurately describes the transition from the thermochemical regime in the deep troposphere (where chemical equilibrium is established) to the quenched regime in the upper troposphere (where chemical equilibrium is disrupted). The model is used to calculate chemical abundances of tropospheric constituents and to identify important chemical pathways for CO-CH4 interconversion in hydrogen-dominated atmospheres. In particular, the observed mole fraction and chemical behavior of CO is used to indirectly constrain the jovian water inventory. Our model can reproduce the observed tropospheric CO abundance provided that the water mole fraction lies in the range (0.25-6.0) × 10−3 in Jupiter’s deep troposphere, corresponding to an enrichment of 0.3-7.3 times the protosolar abundance (assumed to be H2O/H2 = 9.61 × 10−4). Our results suggest that Jupiter’s oxygen enrichment is roughly similar to that for carbon, nitrogen, and other heavy elements, and we conclude that formation scenarios that require very large (>8× solar) enrichments in water can be ruled out. We also evaluate and refine the simple time-constant arguments currently used to predict the quenched CO abundance on Jupiter, other giant planets, and brown dwarfs.  相似文献   

2.
Mid-infrared 7-20 μm imaging of Jupiter from ESO’s Very Large Telescope (VLT/VISIR) demonstrate that the increased albedo of Jupiter’s South Equatorial Belt (SEB) during the ‘fade’ (whitening) event of 2009-2010 was correlated with changes to atmospheric temperature and aerosol opacity. The opacity of the tropospheric condensation cloud deck at pressures less than 800 mbar increased by 80% between May 2008 and July 2010, making the SEB (7-17°S) as opaque in the thermal infrared as the adjacent equatorial zone. After the cessation of discrete convective activity within the SEB in May 2009, a cool band of high aerosol opacity (the SEB zone at 11-15°S) was observed separating the cloud-free northern and southern SEB components. The cooling of the SEBZ (with peak-to-peak contrasts of 1.0 ± 0.5 K), as well as the increased aerosol opacity at 4.8 and 8.6 μm, preceded the visible whitening of the belt by several months. A chain of five warm, cloud-free ‘brown barges’ (subsiding airmasses) were observed regularly in the SEB between June 2009 and June 2010, by which time they too had been obscured by the enhanced aerosol opacity of the SEB, although the underlying warm circulation was still present in July 2010. Upper tropospheric temperatures (150-300 mbar) remained largely unchanged during the fade, but the cool SEBZ formation was detected at deeper levels (p > 300 mbar) within the convectively-unstable region of the troposphere. The SEBZ formation caused the meridional temperature gradient of the SEB to decrease between 2008 and 2010, reducing the vertical thermal windshear on the zonal jets bounding the SEB. The southern SEB had fully faded by July 2010 and was characterised by short-wave undulations at 19-20°S. The northern SEB persisted as a narrow grey lane of cloud-free conditions throughout the fade process.The cool temperatures and enhanced aerosol opacity of the SEBZ after July 2009 are consistent with an upward flux of volatiles (e.g., ammonia-laden air) and enhanced condensation, obscuring the blue-absorbing chromophore and whitening the SEB by April 2010. These changes occurred within cloud decks in the convective troposphere, and not in the radiatively-controlled upper troposphere. NH3 ice coatings on aerosols at p < 800 mbar are plausible sources of the suppressed 4.8 and 8.6-μm emission, although differences in the spatial distribution of opacity at these two wavelengths suggest that enhanced attenuation by a deeper cloud (p > 800 mbar) also occurred during the fade. Revival of the dark SEB coloration in the coming months will ultimately require sublimation of these ices by subsidence and warming of volatile-depleted air.  相似文献   

3.
Thermal-IR imaging from space-borne and ground-based observatories was used to investigate the temperature, composition and aerosol structure of Jupiter’s Great Red Spot (GRS) and its temporal variability between 1995 and 2008. An elliptical warm core, extending over 8° of longitude and 3° of latitude, was observed within the cold anticyclonic vortex at 21°S. The warm airmass is co-located with the deepest red coloration of the GRS interior. The maximum contrast between the core and the coldest regions of the GRS was 3.0-3.5 K in the north-south direction at 400 mbar atmospheric pressure, although the warmer temperatures are present throughout the 150-500 mbar range. The resulting thermal gradients cause counter-rotating flow in the GRS center to decay with altitude into the lower stratosphere. The elliptical warm airmass was too small to be observed in IRTF imaging prior to 2006, but was present throughout the 2006-2008 period in VLT, Subaru and Gemini imaging.Spatially-resolved maps of mid-IR tropospheric aerosol opacity revealed a well-defined lane of depleted aerosols around the GRS periphery, and a correlation with visibly-dark jovian clouds and bright 4.8-μm emission. Ammonia showed a similar but broader ring of depletion encircling the GRS. This narrow lane of subsidence keeps red aerosols physically separate from white aerosols external to the GRS. The visibility of the 4.8-μm bright periphery varies with the mid-IR aerosol opacity of the upper troposphere. Compositional maps of ammonia, phosphine and para-H2 within the GRS interior all exhibit north-south asymmetries, with evidence for higher concentrations north of the warm central core and the strongest depletions in a symmetric arc near the southern periphery. Small-scale enhancements in temperature, NH3 and aerosol opacity associated with localized convection are observed within the generally-warm and aerosol-free South Equatorial Belt (SEB) northwest of the GRS. The extent of 4.8-μm emission from the SEB varied as a part of the 2007 ‘global upheaval,’ though changes during this period were restricted to pressures greater than 500 mbar. Finally, a region of enhanced temperatures extended southwest of the GRS during the survey, restricted to the 100-400 mbar range and with no counterpart in visible imaging or compositional mapping. The warm airmass was perturbed by frequent encounters with the cold airmass of Oval BA, but no internal thermal or compositional effects were noted in either vortex during the close encounters.  相似文献   

4.
L.A. Sromovsky  P.M. Fry 《Icarus》2010,210(1):230-257
The Cassini flyby of Jupiter in 2000 provided spatially resolved spectra of Jupiter’s atmosphere using the Visual and Infrared Mapping Spectrometer (VIMS). A prominent characteristic of these spectra is the presence of a strong absorption at wavelengths from about 2.9 μm to 3.1 μm, previously noticed in a 3-μm spectrum obtained by the Infrared Space Observatory (ISO) in 1996. While Brooke et al. (Brooke, T.Y., Knacke, R.F., Encrenaz, T., Drossart, P., Crisp, D., Feuchtgruber, H. [1998]. Icarus 136, 1-13) were able to fit the ISO spectrum very well using ammonia ice as the sole source of particulate absorption, Sromovsky and Fry (Sromovsky, L.A., Fry, P.M. [2010]. Icarus 210, 211-229), using significantly revised NH3 gas absorption models, showed that ammonium hydrosulfide (NH4SH) provided a better fit to the ISO spectrum than NH3, but that the best fit was obtained when both NH3 and NH4SH were present in the clouds. Although the large FOV of the ISO instrument precluded identification of the spatial distribution of these two components, the VIMS spectra at low and intermediate phase angles show that 3-μm absorption is present in zones and belts, in every region investigated, and both low- and high-opacity samples are best fit with a combination of NH4SH and NH3 particles at all locations. The best fits are obtained with a layer of small ammonia-coated particles (r ∼ 0.3 μm) overlying but often close to an optically thicker but still modest layer of much larger NH4SH particles (r ∼ 10 μm), with a deeper optically thicker layer, which might also be composed of NH4SH. Although these fits put NH3 ice at pressures less than 500 mb, this is not inconsistent with the lack of prominent NH3 features in Jupiter’s longwave spectrum because the reflectivity of the core particles strongly suppresses the NH3 absorption features, at both near-IR and thermal wavelengths. Unlike Jupiter, Saturn lacks the broad 3-μm absorption feature, but does exhibit a small absorption near 2.965 μm, which resembles a similar jovian feature and suggests that both planets contain upper tropospheric clouds of sub-micron particles containing ammonia as a minor fraction.  相似文献   

5.
Both deep zonal winds, if they exist, and the basic rotational distortion of Jupiter contribute to its zonal gravity coefficients Jn for n ? 2. In order to capture the gravitational signature of Jupiter that is caused solely by its deep zonal winds, one must take into account the full effect of rotational distortion by computing the coefficients Jn in non-spherical geometry. This represents a difficult and challenging problem because the widely-used spherical-harmonic-expansion method becomes no longer suitable. Based on the model of a polytropic Jupiter with index unity, we compute Jupiter’s gravity coefficients J2, J4, J6, … , J12 taking into account the full effect of rotational distortion of the gaseous planet using a finite element method. For the model of deep zonal winds on cylinders parallel to the rotation axis, we also compute the variation of the gravity coefficients ΔJ2, ΔJ4, ΔJ6, … , ΔJ12 caused solely by the effect of the winds in non-spherical geometry. It is found that the effect of the zonal winds on lower-order coefficients is weak, ∣ΔJn/Jn∣ < 1%, for n = 2, 4, 6, but it is substantial for the high-degree coefficients with n ? 8.  相似文献   

6.
We present a study of the equatorial region of Jupiter, between latitudes ∼15°S and ∼15°N, based on Cassini ISS images obtained during the Jupiter flyby at the end of 2000, and HST images acquired in May and July 2008. We examine the structure of the zonal wind profile and report the detection of significant longitudinal variations in the intensity of the 6°N eastward jet, up to 60 m s−1 in Cassini and HST observations. These longitudinal variations are, in the HST case, associated with different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images show that at most there is only a small height difference, no larger than ∼0.5-1 scale heights, between the slow (∼100 m s−1) and fast (∼150 m s−1) moving features. This suggests that speed variability at 6°N is not dominated by vertical wind shears but instead we propose that Rossby wave activity is the responsible for the zonal variability. Removing this variability, we find that Jupiter’s equatorial jet is actually symmetric relative to equator with two peaks of ∼140-150 m s−1 located at latitudes 6°N and 6°S and at a similar pressure level. We also study the local dynamics of particular equatorial features such as several dark projections associated with 5 μm hot spots and a large, long-lived feature called the White Spot (WS) located at 6°S. Convergent flow at the dark projections appears to be a characteristic which depends on the particular morphology and has only been detected in some cases. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow.  相似文献   

7.
We obtained longitudinally resolved thermal infrared spectra (8-13 μm and 17-25 μm) of Jupiter’s impact debris at the Gemini South Telescope on July 24, 2009; five days after the July 19th collision. These were used to study the mechanisms responsible for the redistribution of thermal energy and material (ammonia and stratospheric particulates) following the impact. Upwelling of (8.5 ± 4.1) × 1014 g of tropospheric air was sufficient to deposit (6.7 ± 4.1) × 1012 g of NH3 over a 6° longitude range above the impact core. The NH3 was distributed over the 20-80 mbar region with a peak abundance of 1.0 ± 0.6 ppm at 45 mbar. Only a 10th of this abundance was observed over the western ejecta, and it is unlikely that these observations were sensitive to NH3 entrained in the ballistic plume itself. The pattern of excess thermal energy was markedly different from that of Shoemaker-Levy 9 (SL9), with a localized tropospheric perturbation of 2.0 ± 1.0 K at 200-300 mbar and a broader stratospheric warming of up to 3.5 ± 2.0 K at 10-30 mbar. We find no evidence of residual warmth at p < 1 mbar five days after the impact. The excess thermal energy places lower limits on the total energy of the impact (1.8-15.7 × 1026 ergs), which limits the impactor diameter to 70-510 m (depending on the bulk density chosen for the material).The models of the Gemini spectra required three distinct aerosol features, indicative of the mineralogy of the dark particulate debris, centred at 9.1, 10.0 and 18.5 μm. The retrieved opacities for each of these features were distributed over a larger area (9-10° longitude) and at higher altitudes (above the 10-mbar level) than the stratospheric NH3, and they are more spatially inhomogeneous. This implies the particulates were either entrained with the rising hot plume or created upon plume re-entry and are subsequently redistributed by stratospheric winds. The three particulate features were consistent with a mixture of amorphous iron and magnesium-rich silicates and silicas in the debris field. A broad 10-μm signature was coincident with peaks expected from material rich in amorphous olivines (but poor in pyroxenes), and similar to silicate features observed during SL9. A narrow 9.1-μm signature was interpreted as a combination of amorphous and crystalline silica. Finally, a broad 18.5-μm emitter was not adequately reproduced by a mixture of simple olivines and pyroxenes and remains to be identified.  相似文献   

8.
We show that the peak velocity of Jupiter’s visible-cloud-level zonal winds near 24°N (planetographic) increased from 2000 to 2008. This increase was the only change in the zonal velocity from 2000 to 2008 for latitudes between ±70° that was statistically significant and not obviously associated with visible weather. We present the first automated retrieval of fast (∼130 m s−1) zonal velocities at 8°N planetographic latitude, and show that some previous retrievals incorrectly found slower zonal winds because the eastward drift of the dark projections (associated with 5-μm hot spots) “fooled” the retrieval algorithms.We determined the zonal velocity in 2000 from Cassini images from NASA’s Planetary Data System using a global method similar to previous longitude-shifting correlation methods used by others, and a new local method based on the longitudinal average of the two-dimensional velocity field. We obtained global velocities from images acquired in May 2008 with the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). Longer-term variability of the zonal winds is based on comparisons with published velocities based on 1979 Voyager 2 and 1995-1998 HST images. Fluctuations in the zonal wind speeds on the order of 10 m s−1 on timescales ranging from weeks to months were found in the 1979 Voyager 2 and the 1995-1998 HST velocities. In data separated by 10 h, we find that the east-west velocity uncertainty due to longitudinal fluctuations are nearly 10 m s−1, so velocity fluctuations of 10 m s−1 may occur on timescales that are even smaller than 10 h. Fluctuations across such a wide range of timescales limit the accuracy of zonal wind measurements. The concept of an average zonal velocity may be ill-posed, and defining a “temporal mean” zonal velocity as the average of several zonal velocity fields spanning months or years may not be physically meaningful.At 8°N, we use our global method to find peak zonal velocities of ∼110 m s−1 in 2000 and ∼130 m s−1 in 2008. Zonal velocities from 2000 Cassini data produced by our local and global methods agree everywhere, except in the vicinity of 8°N. There, the local algorithm shows that the east-west velocity has large variations in longitude; vast regions exceed ∼140 m s−1. Our global algorithm, and all of the velocity-extraction algorithms used in previously-published studies, found the east-west drift velocities of the visible dark projections, rather than the true zonal velocity at the visible-cloud level. Therefore, the apparent increase in zonal winds between 2000 and 2008 at 8°N is not a true change in zonal velocity.At 7.3°N, the Galileo probe found zonal velocities of 170 m s−1 at the 3-bar level. If the true zonal velocity at the visible-cloud level at this latitude is ∼140 m s−1 rather than ∼105 m s−1, then the vertical zonal wind shear is much less than the currently accepted value.  相似文献   

9.
The latitudinal variation of Saturn’s tropospheric composition (NH3, PH3 and AsH3) and aerosol properties (cloud altitudes and opacities) are derived from Cassini/VIMS 4.6-5.1 μm thermal emission spectroscopy on the planet’s nightside (April 22, 2006). The gaseous and aerosol distributions are used to trace atmospheric circulation and chemistry within and below Saturn’s cloud decks (in the 1- to 4-bar region). Extensive testing of VIMS spectral models is used to assess and minimise the effects of degeneracies between retrieved variables and sensitivity to the choice of aerosol properties. Best fits indicate cloud opacity in two regimes: (a) a compact cloud deck centred in the 2.5-2.8 bar region, symmetric between the northern and southern hemispheres, with small-scale opacity variations responsible for numerous narrow light/dark axisymmetric lanes; and (b) a hemispherically asymmetric population of aerosols at pressures less than 1.4 bar (whose exact altitude and vertical structure is not constrained by nightside spectra) which is 1.5-2.0× more opaque in the summer hemisphere than in the north and shows an equatorial maximum between ±10° (planetocentric).Saturn’s NH3 spatial variability shows significant enhancement by vertical advection within ±5° of the equator and in axisymmetric bands at 23-25°S and 42-47°N. The latter is consistent with extratropical upwelling in a dark band on the poleward side of the prograde jet at 41°N (planetocentric). PH3 dominates the morphology of the VIMS spectrum, and high-altitude PH3 at p < 1.3 bar has an equatorial maximum and a mid-latitude asymmetry (elevated in the summer hemisphere), whereas deep PH3 is latitudinally-uniform with off-equatorial maxima near ±10°. The spatial distribution of AsH3 shows similar off-equatorial maxima at ±7° with a global abundance of 2-3 ppb. VIMS appears to be sensitive to both (i) an upper tropospheric circulation (sensed by NH3 and upper-tropospheric PH3 and hazes) and (ii) a lower tropospheric circulation (sensed by deep PH3, AsH3 and the lower cloud deck).  相似文献   

10.
We present results regarding the dynamical meteorology of Jupiter’s White Ovals at different points in their evolution. Starting from the era with three White Ovals FA, BC, and DE (Galileo), continuing to the post-merger epoch with only one Oval BA (Cassini), and finally to Oval BA’s current reddened state (New Horizons), we demonstrate that the dynamics of their flow have similarly evolved along with their appearance. In the Galileo epoch, Oval DE had an elliptical shape with peak zonal wind speeds of ∼90 m s−1 in both its northern and southern peripheries. During the post-merger epoch, Oval BA’s shape was more triangular and less elliptical than Oval DE; in addition to widening in the north-south direction, its northern periphery was 20 m s−1 slower, and its southern periphery was 20 m s−1 faster than Oval DE’s flow during the Galileo era. Finally, in the New Horizons era, the reddened Oval BA had evolved back to a classical elliptical form. The northern periphery of Oval BA increased in speed by 20 m s−1 from Cassini to New Horizons, ending up at a speed nearly identical to that of the northern periphery of Oval DE during Galileo. However, the peak speeds along the southern rim of the newly formed Oval BA were consistently faster than the corresponding speeds in Oval DE, and they increased still further between Cassini and New Horizons, ending up at ∼140-150 m s−1. Relative vorticity maps of Oval BA reveal a cyclonic ring surrounding its outer periphery, similar to the ring present around the Great Red Spot. The cyclonic ring around Oval BA in 2007 appears to be moderately stronger than observed in 1997 and 2001, suggesting that this may be associated with the coloration of the vortex. The modest strengthening of the winds in Oval BA, the appearance of red aerosols, and the appearance of a turbulent, cyclonic feature to Oval BA’s northwest create a strong resemblance with the Great Red Spot from both a dynamical and morphological perspective.In addition to the White Ovals, we also measure the winds within two compact cyclonic regions, one in the Galileo data set and one in the Cassini data set. In the images, these cyclonic features appear turbulent and filamentary, but our wind field reveals that the flow manifests as a coherent high-speed collar surrounding relatively quiescent interiors. Our relative vorticity maps show that the vorticity likewise concentrates in a collar near the outermost periphery, unlike the White Ovals which have peak relative vorticity magnitudes near the center of the vortex. The cyclones contain several localized bright regions consistent with the characteristics of thunderstorms identified in other studies. Although less studied than their anticyclonic cousins, these cyclones may offer crucial insights into the planet’s cloud-level energetics and dynamical meteorology.  相似文献   

11.
Detection and measurement of atmospheric water vapor in the deep jovian atmosphere using microwave radiometry has been discussed extensively by Janssen et al. (Janssen, M.A., Hofstadter, M.D., Gulkis, S., Ingersoll, A.P., Allison, M., Bolton, S.J., Levin, S.M., Kamp, L.W. [2005]. Icarus 173 (2), 447-453.) and de Pater et al. (de Pater, I., Deboer, D., Marley, M., Freedman, R., Young, R. [2005]. Icarus 173 (2), 425-447). The NASA Juno mission will include a six-channel microwave radiometer system (MWR) operating in the 1.3-50 cm wavelength range in order to retrieve water vapor abundances from the microwave signature of Jupiter (see, e.g., Matousek, S. [2005]. The Juno new frontiers mission. Tech. Rep. IAC-05-A3.2.A.04, California Institute of Technology). In order to accurately interpret data from such observations, nearly 2000 laboratory measurements of the microwave opacity of H2O vapor in a H2/He atmosphere have been conducted in the 5-21 cm wavelength range (1.4-6 GHz) at pressures from 30 mbars to 101 bars and at temperatures from 330 to 525 K. The mole fraction of H2O (at maximum pressure) ranged from 0.19% to 3.6% with some additional measurements of pure H2O. These results have enabled development of the first model for the opacity of gaseous H2O in a H2/He atmosphere under jovian conditions developed from actual laboratory data. The new model is based on a terrestrial model of Rosenkranz et al. (Rosenkranz, P.W. [1998]. Radio Science 33, 919-928), with substantial modifications to reflect the effects of jovian conditions. The new model for water vapor opacity dramatically outperforms previous models and will provide reliable results for temperatures from 300 to 525 K, at pressures up to 100 bars and at frequencies up to 6 GHz. These results will significantly reduce the uncertainties in the retrieval of jovian atmospheric water vapor abundances from the microwave radiometric measurements from the upcoming NASA Juno mission, as well as provide a clearer understanding of the role deep atmospheric water vapor may play in the decimeter-wavelength spectrum of Saturn.  相似文献   

12.
We present a Monte Carlo (MC) model of [OI] 6300 Å and [SII] 6716 Å emission from Io entering eclipse. The simulation accounts for the 3-D distribution of SO2, O, SO, S, and O2 in Io’s atmosphere, several volcanic plumes, and the magnetic field around Io. Thermal electrons from the jovian plasma torus are input along the simulation domain boundaries and move along the magnetic field lines distorted by Io, occasionally participating in collisions with neutrals. We find that the atmospheric asymmetry resulting from varying degrees of atmospheric collapse across Io (due to eclipse ingress) and the presence of volcanoes contributes significantly to the unique morphology of the [OI] 6300 Å emission. The [OI] radiation lifetime of ∼134 s limits the emission to regions that have a sufficiently low neutral density so that intermolecular collisions are rare. We find that at low altitudes (typically <40 km) and in volcanic plumes (Pele, Prometheus, etc.) the number density is large enough (>4 × 109 cm−3) to collisionally quench nearly all (>95%) of the excited oxygen for reasonable quenching efficiencies. Upstream (relative to the plasma flow), Io’s perturbation of the jovian magnetic field mirrors electrons with high pitch angles, while downstream collisions can trap the electrons. This magnetic field perturbation is one of the main physical mechanisms that results in the upstream/downstream brightness asymmetry in [OI] emission seen in the observation by Trauger et al. (Trauger, J.T., Stapelfeldt, K.R., Ballester, G.E., Clarke, J.I., 1997. HST observations of [OI] emissions from Io in eclipse. AAS-DPS Abstract (1997DPS29.1802T)). There are two other main causes for the observed brightness asymmetry. First, the observation’s viewing geometry of the wake spot crosses the dayside atmosphere and therefore the wake’s observational field of view includes higher oxygen column density than the upstream side. Second, the phased entry into eclipse results in less atmospheric collapse and thus higher collisional quenching on the upstream side relative to the wake. We compute a location (both in altitude and latitude) for the intense wake emission feature that agrees reasonably well with this observation. Furthermore, the peak intensity of the simulated wake feature is less than that observed by a factor of ∼3, most likely because our model does not include direct dissociation-excitation of SO2 and SO. We find that the latitudinal location of the emission feature depends not so much on the tilt of the magnetic field as on the relative north/south flux tube depletion that occurs due to Io’s changing magnetic latitude in the plasma torus. From 1-D simulations, we also find that the intensity of [SII] 6716 and 6731 Å emission is much weaker than that of [OI] even if the [SII] excitation cross section is 103 times larger than excitation to [OI]. This is because the density of S+ is much less than that of O and because the Einstein-A coefficient of the [SII] emission is a factor of ∼10 smaller than that of [OI].  相似文献   

13.
Long-term MGS drag density observations at 390 km reveal variations of the density with season LS (by a factor of 2) and solar activity index F10.7 (by a factor of 3 for F10.7 = 40-100). According to Forbes et al. (Forbes, J.M., Lemoine, F.G., Bruinsma, S.L., Smith, M.D., Zhang, X. [2008]. Geophys. Res. Lett. 35, L01201, doi:10.1029/2007GL031904), the variation with F10.7 reflects variations of the exospheric temperature from 192 to 284 K. However, the derived temperature range corresponds to variation of the density at 390 km by a factor of 8, far above the observed factor of 3. The recent thermospheric GCMs agree with the derived temperatures but do not prove their adequacy to the MGS densities at 390 km. A model used by Forbes et al. neglects effects of eddy diffusion, chemistry and escape on species densities above 138 km. We have made a 1D-model of neutral and ion composition at 80-400 km that treats selfconsistently chemistry and transport of species with F10.7, T, and [CO2]80 km as input parameters. Applying this model to the MGS densities at 390 km, we find variation of T from 240 to 280 K for F10.7 = 40 and 100, respectively. The results are compared with other observations and models. Temperatures from some observations and the latest models disagree with the MGS densities at low and mean solar activity. Linear fits to the exospheric temperatures are T = 122 + 2.17F10.7 for the observations, T = 131 + 1.46F10.7 for the latest models, and T = 233 + 0.54F10.7 for the MGS densities at 390 km. Maybe the observed MGS densities are overestimated near solar minimum when they are low and difficult to measure. Seasonal variations of Mars’ thermosphere corrected for the varying heliocentric distance are mostly due to the density variations in the lower and middle atmosphere and weakly affect thermospheric temperature. Nonthermal escape processes for H, D, H2, HD, and He are calculated for the solar minimum and maximum conditions.Another problem considered here refers to Mars global photochemistry in the lower and middle atmosphere. The models gave too low abundances of CO, smaller by an order of magnitude than those observed. Our current work shows that modifications in the boundary conditions proposed by Zahnle et al. (Zahnle, K., Haberle, R.M., Catling, D.C., Kasting, J.F. [2008]. J. Geophys. Res. 113, E11004, doi:10.1029/2008JE003160) are reasonable but do not help to solve the problem.  相似文献   

14.
P. Hedelt  Y. Ito  L. Esposito 《Icarus》2010,210(1):424-435
Based on measurements performed by the Hydrogen Deuterium Absorption Cell (HDAC) aboard the Cassini orbiter, Titan’s atomic hydrogen exosphere is investigated. Data obtained during the T9 encounter are used to infer the distribution of atomic hydrogen throughout Titan’s exosphere, as well as the exospheric temperature.The measurements performed during the flyby are modeled by performing Monte Carlo radiative transfer calculations of solar Lyman-α radiation, which is resonantly scattered on atomic hydrogen in Titan’s exosphere. Two different atomic hydrogen distribution models are applied to determine the best fitting density profile. One model is a static model that uses the Chamberlain formalism to calculate the distribution of atomic hydrogen throughout the exosphere, whereas the second model is a Particle model, which can also be applied to non-Maxwellian velocity distributions.The density distributions provided by both models are able to fit the measurements although both models differ at the exobase: best fitting exobase atomic hydrogen densities of nH = (1.5 ± 0.5) × 104 cm−3 and nH = (7 ± 1) × 104 cm−3 were found using the density distribution provided by both models, respectively. This is based on the fact that during the encounter, HDAC was sensitive to altitudes above about 3000 km, hence well above the exobase at about 1500 km. Above 3000 km, both models produce densities which are comparable, when taking into account the measurement uncertainty.The inferred exobase density using the Chamberlain profile is a factor of about 2.6 lower than the density obtained from Voyager 1 measurements and much lower than the values inferred from current photochemical models. However, when taking into account the higher solar activity during the Voyager flyby, this is consistent with the Voyager measurements. When using the density profile provided by the particle model, the best fitting exobase density is in perfect agreement with the densities inferred by current photochemical models.Furthermore, a best fitting exospheric temperature of atomic hydrogen in the range of TH = (150-175) ± 25 K was obtained when assuming an isothermal exosphere for the calculations. The required exospheric temperature depends on the density distribution chosen. This result is within the temperature range determined by different instruments aboard Cassini. The inferred temperature is close to the critical temperature for atomic hydrogen, above which it can escape hydrodynamically after it diffused through the heavier background gas.  相似文献   

15.
The evolution of a large-amplitude disturbance at cloud level in Jupiter's 24° N jet stream in 1990 is used to constrain the vertical structure of a realistic atmospheric model down to the 6 bar pressure level. We use the EPIC model (Dowling et al., 1998, The explicit planetary isentropic-coordinate (EPIC) atmospheric model, Icarus 132, 221-238) to perform long-term, three-dimensional, nonlinear simulations with a series of systematic variations in vertical structure and find that the details of the 1990 disturbance combine with the characteristics of the 24° N jet, the fastest on Jupiter, to yield a tight constraint on the solution space. The most important free parameters are the vertical dependence of the zonal-wind profile, and the thermal structure, below the cloud tops (p>0.7 bar) at the jet's central latitude. The temporal evolution of the disturbed cloud patterns, which spans more than 2 years, can be reproduced if the jet peak reaches ∼180 ms−1 at the cloud level and increases to ∼210 ms−1 at 1 bar and up to ∼240 ms−1 at 6 bar; the observations were not reproduced for other configurations investigated. This trend is consistent with that measured by the Galileo Probe at 7° N; the implication is that this jovian jet extends well below the solar radiation penetration level situated near the 2 bar level.  相似文献   

16.
Variations of the upper cloud boundary and the CO, HF, and HCl mixing ratios were observed using the CSHELL spectrograph at NASA IRTF. The observations were made in three sessions (October 2007, January 2009, and June 2009) at early morning and late afternoon on Venus in the latitude range of ±60°. CO2 lines at 2.25 μm reveal variations of the cloud aerosol density (∼25%) and scale height near 65 km. The measured reflectivity of Venus at low latitudes is 0.7 at 2.25 μm and 0.028 at 3.66 μm, and the effective CO2 column density is smaller at 3.66 μm than those at 2.25 μm by a factor of 4. This agrees with the almost conservative multiple scattering at 2.25 μm and single scattering in the almost black aerosol at 3.66 μm. The expected difference is just a factor of (1 − g)−1 = 4, where g = 0.75 is the scattering asymmetry factor for Venus’ clouds. The observed CO mixing ratio is 52 ± 4 ppm near 08:00 and 40 ± 4 ppm near 16:30 at 68 km, and the higher ratio in the morning may be caused by extension of the CO morningside bulge to the cloud tops. The observed weak limb brightening in CO indicates an increase of the CO mixing ratio with altitude. HF is constant at 3.5 ± 0.2 ppb at 68 km in both morningside and afternoon observations and in the latitude range ±60°. Therefore the observations do not favor a bulge of HF, though HF is lighter than CO. Probably a source in the upper atmosphere facilitates the bulge formation. The recent measurements of HCl near 70 km are controversial (0.1 and 0.74 ppm) and require either a strong sink or a strong source of HCl in the clouds. The HCl lines of the (2-0) band are blended by the solar and telluric lines. Therefore we observed the P8 lines of the (1-0) band at 3.44 μm. These lines are spectrally clean and result in the HCl mixing ratio of 0.40 ± 0.03 ppm at 74 km. HCl does not vary with latitude within ±60°. Our observations support a uniformly mixed HCl throughout the Venus atmosphere.  相似文献   

17.
To constrain the properties of Oval BA before and after it reddened, we use Hubble methane band images from 1994 to 2009 to find that the distribution of upper tropospheric haze atop the oval and its progenitors remained unchanged, with reflectivity variations of less than 10% over this time span. We quantify measurement uncertainties and short-term fluctuations in velocity fields extracted from Cassini and Hubble data, and show that there were no significant changes in the horizontal velocity field of Oval BA in 2000, 2006, and 2009. Based on models of the oval’s dynamics, the static stability of the oval’s surroundings was also unchanged.The vertical extent of the oval did not change, based on the unchanged haze reflectivity and unchanged stratification. Published vortex models require Brunt-Väisälä frequencies of about 0.08 s−1 at the base of the vortex, and we combine this value with a review of prior constraints on the vertically variable static stability in Jupiter’s troposphere to show that the vortex must extend down to the condensation level of water in supersolar abundance.The only observable change was an increase in short-wavelength optical absorption that appeared not at the core of the oval, but in a red annulus. The secondary circulation in the vortex keeps this red annulus warmer than the vortex core. Although the underlying cause of the color change cannot be proven, we explore the idea that the new chromophores in the red annulus may be related to a global or hemispheric temperature change.  相似文献   

18.
S. Carles  J.-C. Guillemin 《Icarus》2011,211(1):901-905
Rate coefficient of the cyanide anion (CN) with cyanoacetylene (HC3N) reaction, has been studied in gas phase at room temperature using a Flowing Afterglow Langmuir Probe - Mass Spectrometer (FALP-MS) apparatus. The rate constant for the CN + HC3N reaction is k = 4.8 × 10−9 cm3/s with an uncertainty of 30%.  相似文献   

19.
The availability of new accurate radio flux densities of Jupiter in and around the λ?1.3 cm ammonia absorption band, one from ground-based radio data and five from the WMAP satellite, permits re-examination of the structure of the jovian upper troposphere. These flux densities, with accuracies of 1-3%, indicate that the jovian atmospheric ammonia is globally subsaturated within and above the ammonia cloud tops, 0.4 bar?P?0.6 bar, and subsolar (by a factor of 2) below the cloud base, 0.6 bar?P?2 bar.  相似文献   

20.
Ground-based optical observations of D1 and D2 line emissions from Jupiter’s sodium nebula, which extend over several hundreds of jovian radii, were carried out at Mt. Haleakala, Maui, Hawaii using a wide field filter imager from May 19 to June 21, 2007. During this observation, the east-west asymmetry of the nebula with respect to the Io’s orbital motion was clearly identified. Particularly, the D1+D2 brightness on the western side of Jupiter is strongly controlled by the Io phase angle. The following scenario was developed to explain this phenomenon as follows: First, more ionospheric ions like NaX+, which are thought to produce fast neutral sodium atoms due to a dissociative recombination process, are expected to exist in Io’s dayside hemisphere rather than in the nightside one. Second, it is expected that more NaX+ ionospheric ions are picked up by the jovian co-rotating magnetic field when Io’s leading hemisphere is illuminated by the Sun. Third, the sodium atom ejection rate varies with respect to Io’s orbital position as a result of the first two points. Model simulations were performed using this scenario. The model results were consistent with the observation results, suggesting that Io’s ionosphere is expected to be controlled by solar radiation just like Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号