首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the survivability of Trojan-type companions of Neptune during primordial radial migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. We adopt the usual planet migration model in which the migration speed decreases exponentially with a characteristic time scale τ (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus ∼1000 test particle Neptune Trojans with initial distributions of orbital eccentricity, inclination, and libration amplitude similar to those of the known jovian Trojans asteroids. We analyze these simulations to measure the survivability of Neptune's Trojans as a function of migration rate. We find that orbital migration with the characteristic time scale τ=106 years allows about 35% of preexisting Neptune Trojans to survive to 5τ, by which time the giant planets have essentially reached their final orbits. In contrast, slower migration with τ=107 years yields only a ∼5% probability of Neptune Trojans surviving to a time of 5τ. Interestingly, we find that the loss of Neptune Trojans during planetary migration is not a random diffusion process. Rather, losses occur almost exclusively during discrete prolonged episodes when Trojan particles are swept by secondary resonances associated with mean-motion commensurabilities of Uranus with Neptune. These secondary resonances arise when the circulation frequencies, f, of critical arguments for Uranus-Neptune mean-motion near-resonances (e.g., fUN1:2, fUN4:7) are commensurate with harmonics of the libration frequency of the critical argument for the Neptune-Trojan 1:1 mean-motion resonance (fNT1:1). Trojans trapped in the secondary resonances typically have their libration amplitudes amplified until they escape the 1:1 resonance with Neptune. Trojans with large libration amplitudes are susceptible to loss during sweeping by numerous high-order secondary resonances (e.g., fUN1:2≈11fNT1:1). However, for the slower migration, with τ=107 years, even tightly bound Neptune Trojans with libration amplitudes below 10° can be lost when they become trapped in 1:3 or 1:2 secondary resonances between fUN1:2 and fNT1:1. With τ=107 years the 1:2 secondary resonance was responsible for the single greatest episode of loss, ejecting nearly 75% of existing Neptune Trojans. This episode occurred during the late stages of planetary migration when the remnant planetesimal disk would have been largely dissipated. We speculate that if the number of bodies liberated during this event was sufficiently high they could have caused a spike in the impact rate throughout the Solar System.  相似文献   

2.
F. MarzariH. Scholl 《Icarus》2002,159(2):328-338
We have numerically explored the mechanisms that destabilize Jupiter's Trojan orbits outside the stability region defined by Levison et al. (1997, Nature385, 42-44). Different models have been exploited to test various possible sources of instability on timescales on the order of ∼108 years.In the restricted three-body model, only a few Trojan orbits become unstable within 108 years. This intrinsic instability contributes only marginally to the overall instability found by Levison et al.In a model where the orbital parameters of both Jupiter and Saturn are fixed, we have investigated the role of Saturn and its gravitational influence. We find that a large fraction of Trojan orbits become unstable because of the direct nonresonant perturbations by Saturn. By shifting its semimajor axis at constant intervals around its present value we find that the near 5:2 mean motion resonance between the two giant planets (the Great Inequality) is not responsible for the gross instability of Jupiter's Trojans since short-term perturbations by Saturn destabilize Trojans, even when the two planets are far out of the resonance.Secular resonances are an additional source of instability. In the full six-body model with the four major planets included in the numerical integration, we have analyzed the effects of secular resonances with the node of the planets. Trojan asteroids have relevant inclinations, and nodal secular resonances play an important role. When a Trojan orbit becomes unstable, in most cases the libration amplitude of the critical argument of the 1:1 mean motion resonance grows until the asteroid encounters the planet. Libration amplitude, eccentricity, and nodal rate are linked for Trojan orbits by an algebraic relation so that when one of the three parameters is perturbed, the other two are affected as well. There are numerous secular resonances with the nodal rate of Jupiter that fall inside the region of instability and contribute to destabilize Trojans, in particular the ν16. Indeed, in the full model the escape rate over 50 Myr is higher compared to the fixed model.Some secular resonances even cross the stability region delimited by Levison et al. and cause instability. This is the case of the 3:2 and 1:2 nodal resonances with Jupiter. In particular the 1:2 is responsible for the instability of some clones of the L4 Trojan (3540) Protesilaos.  相似文献   

3.
We have carried out an extensive study of the possibility of the detection of Earth-mass and super-Earth Trojan planets using transit timing variation method with the Kepler space telescope. We have considered a system consisting of a transiting Jovian-type planet in a short period orbit, and determined the induced variations in its transit timing due to an Earth-mass/super-Earth Trojan planet. We mapped a large section of the phase space around the 1:1 mean-motion resonance and identified regions corresponding to several other mean-motion resonances where the orbit of the planet would be stable. We calculated transit timing variations (TTVs) for different values of the mass and orbital elements of the transiting and perturbing bodies as well as the mass of central star, and identified orbital configurations of these objects (ranges of their orbital elements and masses) for which the resulted TTVs would be within the range of the variations of the transit timing of Kepler’s planetary candidates. Results of our study indicate that in general, the amplitudes of the TTVs fall within the detectable range of timing precision obtained from the Kepler’s long-cadence data, and depending on the parameters of the system, their magnitudes may become as large as a few hours. The probability of detection is higher for super-Earth Trojans with slightly eccentric orbits around short-period Jovian-type planets with masses slightly smaller than Jupiter. We present the details of our study and discuss the implications of its results.  相似文献   

4.
In a previous paper (Hou et al. in Celest Mech Dyn Astron 119:119–142, 2014a), the problem of dynamical symmetry between two Jupiter triangular libration points (TLPs) with Saturn’s perturbation in the present configuration of the two planets was studied. A small short-time scale spatial asymmetry exists but gradually disappears with the time going, so the planar stable regions around the two Jupiter TLPs should be dynamically symmetric from a longtime perspective. In this paper, the symmetry problem is studied when the two planets are in migration. Several mechanisms that can cause asymmetries are discussed. Studies show that three important ones are the large short-time scale spatial asymmetry when Jupiter and Saturn are in resonance, the changing orbits of Jupiter and Saturn in the planet migration process, and the chaotic nature of Trojan orbits during the planet migration process. Their joint effects can cause an observable difference to the two Jupiter Trojan swarms. The thermal Yarkovsky effect is also found to be able to cause dynamical differences to the two TLPs, but generally they are too small to be practically observed.  相似文献   

5.
Massive planets form within the lifetime of protoplanetary disks, and therefore, they are subject to orbital migration due to planet–disk interactions. When the first planet reaches the inner edge of the disk, its migration stops and consequently the second planet ends up locked in resonance with the first one. We detail how the resonant trapping works comparing semi-analytical formulae and numerical simulations. We restrict to the case of two equal-mass coplanar planets trapped in first-order resonances, but the method can be easily generalized. We first describe the family of resonant stable equilibrium points (zero-amplitude libration orbits) using series expansions up to different orders in eccentricity as well as a non-expanded Hamiltonian. Then we show that during convergent migration the planets evolve along these families of equilibrium points. Eccentricity damping from the disk leads to a final equilibrium configuration that we predict precisely analytically. The fact that observed multi-exoplanetary systems are rarely seen in resonances suggests that in most cases the resonant configurations achieved by migration become unstable after the removal of the protoplanetary disk. Here we probe the stability of the resonances as a function of planetary mass. For this purpose, we fictitiously increase the masses of resonant planets, adiabatically maintaining the low-amplitude libration regime until instability occurs. We discuss two hypotheses for the instability, that of a low-order secondary resonance of the libration frequency with a fast synodic frequency of the system, and that of minimal approach distance between planets. We show that secondary resonances do not seem to impact resonant systems at low amplitude of libration. Resonant systems are more stable than non-resonant ones for a given minimal distance at close encounters, but we show that the latter nevertheless play the decisive role in the destabilization of resonant pairs. We show evidence that as the planetary mass increases and the minimal distance between planets gets smaller in terms of mutual Hill radius, the region of stability around the resonance center shrinks, until the equilibrium point itself becomes unstable.  相似文献   

6.
Up to now, 17 Neptune Trojan asteroids have been detected with their orbits being well determined by continuous observations. This paper analyzes systematically their orbital dynamics. Our results show that except for two temporary members with relatively short lifespans on Trojan orbits, the vast majority of Neptune Trojans located within their orbital uncertainties may survive in the solar system age. The escaping probability of Neptune Trojans, through slow diffusion in the orbital element space in 4.5 billion years, is estimated to be ~50%. The asteroid 2012 UW177 classified as a Centaur asteroid by the IAU Minor Planet Center currently is in fact a Neptune Trojan. Numerical simulations indicate that it is librating on the tadpole-shaped orbit around the Neptune's L4 point. It was captured into the current orbit approximately 0.23 million years ago, and will stay there for at least another 1.3 million years in the future. Its high inclination of i ≈ 54° not only makes it the most inclined Neptune Trojan, but also makes it exhibit the complicated and interesting co-orbital transitions between the leading and trailing Trojans via the quasi-satellite orbit phase.  相似文献   

7.
Today there are more than 340 extra-solar planets in about 270 extra-solar systems confirmed. Besides the observed planets there exists also the possibility of a Trojan planet moving in the same orbit as the Jupiter-like planet. In our investigation we take also into account the habitability of a Trojan planet and whether such a terrestrial planet stays in the habitable zone. Its stability was investigated for multi-planetary systems, where one of the detected giant planets moves partly or completely in the habitable zone. By using numerical computations, we studied the orbital behaviour up to 107 years and determined the size of the stable regions around the Lagrangian equilibrium points for different dynamical models for fictitious Trojans. We also examined the interaction of the Trojan planets with a second or third giant planet, by varying its semimajor axis and eccentricity. We have found two systems (HD 155358 and HD 69830) that can host habitable Trojan planets. Another aim of this work was to determine the size of the stable region around the Lagrangian equilibrium points in the restricted three body problem for small mass ratios μ of the primaries μ ≤ 0.001 (e.g. Neptune mass of the secondary and smaller masses). We established a simple relation for the size depending on μ and the eccentricity.  相似文献   

8.
We explore the long-term stability of Earth Trojans by using a chaos indicator, the Frequency Map Analysis. We find that there is an extended stability region at low eccentricity and for inclinations lower than about $50^{\circ }$ even if the most stable orbits are found at $i \le 40^{\circ }$ . This region is not limited in libration amplitude, contrary to what found for Trojan orbits around outer planets. We also investigate how the stability properties are affected by the tidal force of the Earth–Moon system and by the Yarkovsky force. The tidal field of the Earth–Moon system reduces the stability of the Earth Trojans at high inclinations while the Yarkovsky force, at least for bodies larger than 10 m in diameter, does not seem to strongly influence the long-term stability. Earth Trojan orbits with the lowest diffusion rate survive on timescales of the order of $10^9$  years but their evolution is chaotic. Their behaviour is similar to that of Mars Trojans even if Earth Trojans appear to have shorter lifetimes.  相似文献   

9.
Recent Doppler velocity measurements have revealed the existence of two planets orbiting the star HD 12661 on medium-eccentricity orbits. The inner planet has a period of 263.6 d and a mass of 2.3 Jupiter masses, and the outer planet has a period of 1444.5d and a mass of 1.57 Jupiter masses. The stability of this system requires the two planets to be in a state of mean-motion orbit resonances. By numerical method we have studied the orbit migration and stability of the system in its early ages under the action of the proto-stellar disk, and calculated the probabilities of the planets being captured into the mean -motion resonances during their migrations. It is found that at present the two planets are probably situated at the edge of the 11:2 mean-motion resonance and are in chaotic motions. This result may be helpful to clarify the arguments on the present configuration. Besides, it is indicated that very probably, after the formation of the system, the gaseous disk has almost disappeared before the planets migrated to the present configuration.  相似文献   

10.
The temporary capture of the dust grains in the exterior resonances with planets is studied in the frames of the planar circular three-body problem with Poynting-Robertson (PR) drag. For the Earth and particles ~ 10 m the resonances 4/5, 5/6, 6/7, 7/8 are shown to be most effective. The capture is only temporary (of order 105 years) and the position of resonance may be calculated from semi-analytical model using averaged disturbing function. These semi-analytical results are confirmed by numerical integration. For various planet this picture changes as with increasing planetary mass the more exterior resonances become more important. We showed that for Jupiter (at least in the space between Jupiter and Saturn) the resonance 1/2 plays the dominant role. The capture time is here several myr but again eccentricity is evolving to eccentricity e 0 ~ 0.48 of libration point for this resonance.  相似文献   

11.
D. NesvornýL. Dones 《Icarus》2002,160(2):271-288
We investigate the possibility that fractions of the primordial populations at the triangular Lagrangian points of Saturn, Uranus, and Neptune have survived to the present and form (as yet unobserved) clusters of bodies coorbiting with these planets. Such leftovers would be analogs of the numerous objects (Trojans) leading and trailing the revolutions of Jupiter around the Sun. We focus on the dynamical stability of such populations over the age of the Solar System, assuming the current configuration of planets, and also discuss effects of the early radial migration of the outer planets. Our results suggest that, while Saturn's and Uranus' primordial Trojan populations should have been depleted by a factor of 100, Neptune may retain 50% of its original population of Trojans. A population of neptunian Trojans comparable to, or even larger than, Jupiter's Trojan population cannot be ruled out by existing observations. We compute the present-day sky densities of the hypothetical Trojans of the outer planets which can be used to guide observational surveys. Finally, we propose that the long-term instabilities that cause some jovian Trojans to escape the region of the Lagrange points at the present are due to three-body resonances.  相似文献   

12.
Stephen J. Kortenkamp 《Icarus》2005,175(2):409-418
Numerical simulations of the gravitational scattering of planetesimals by a protoplanet reveal that a significant fraction of scattered planetesimals can become trapped as so-called quasi-satellites in heliocentric 1:1 co-orbital resonance with the protoplanet. While trapped, these resonant planetesimals can have deep low-velocity encounters with the protoplanet that result in temporary or permanent capture onto highly eccentric prograde or retrograde circumplanetary orbits. The simulations include solar nebula gas drag and use planetesimals with diameters ranging from ∼1 to ∼1000 km. Initial protoplanet eccentricities range from ep=0 to 0.15 and protoplanet masses range from 300 Earth-masses (M) down to 0.1M. This mass range effectively covers the final masses of all planets currently thought to be in possession of captured satellites—Jupiter, Saturn, Neptune, Uranus, and Mars. For protoplanets on moderately eccentric orbits (ep?0.1) most simulations show from 5-20% of all scattered planetesimals becoming temporarily trapped in the quasi-satellite co-orbital resonance. Typically, 20-30% of the temporarily trapped quasi-satellites of all sizes came within half the Hill radius of the protoplanet while trapped in the resonance. The efficiency of the resonance trapping combined with the subsequent low-velocity circumplanetary capture suggests that this trapped-to-captured transition may be important not only for the origin of captured satellites but also for continued growth of protoplanets.  相似文献   

13.
The equation of motion of long periodic libration around the Lagrangian point $L_4$ L 4 in the restricted three-body problem is investigated. The range of validity of an approximate analytical solution in the tadpole region is determined by numerical integration. The predictions of the model of libration are tested on the Trojan asteroids of Jupiter. The long time evolution of the orbital eccentricity and the longitude of the perihelion of the Trojan asteroids, under the effect of the four giant planets, is also investigated and a slight dynamical asymmetry is shown between the two groups of Trojans at $L_4$ L 4 and $L_5$ L 5 .  相似文献   

14.
In a previous paper, we have found that the resonance structure of the present Jupiter Trojan swarms could be split up into four different families of resonances. Here, in a first step, we generalize these families in order to describe the resonances occurring in Trojan swarms embedded in a generic planetary system. The location of these families changes under a modification of the fundamental frequencies of the planets and we show how the resonant structure would evolve during a planetary migration. We present a general method, based on the knowledge of the fundamental frequencies of the planets and on those that can be reached by the Trojans, which makes it possible to predict and localize the main events arising in the swarms during migration. In particular, we show how the size and stability of the Trojan swarms are affected by the modification of the frequencies of the planets. Finally, we use this method to study the global dynamics of the Jovian Trojan swarms when Saturn migrates outwards. Besides the two resonances found by Morbidelli et al. which could have led to the capture of the current population just after the crossing of the 2:1 orbital resonance, we also point out several sequences of chaotic events that can influence the Trojan population.  相似文献   

15.
A Hamiltonian model is constructed for the spin axis of a planet perturbed by a nearby planet with both planets in orbit about a star. We expand the planet–planet gravitational potential perturbation to first order in orbital inclinations and eccentricities, finding terms describing spin resonances involving the spin precession rate and the two planetary mean motions. Convergent planetary migration allows the spinning planet to be captured into spin resonance. With initial obliquity near zero, the spin resonance can lift the planet’s obliquity to near 90\(^\circ \) or 180\(^\circ \) depending upon whether the spin resonance is first or zeroth order in inclination. Past capture of Uranus into such a spin resonance could give an alternative non-collisional scenario accounting for Uranus’s high obliquity. However, we find that the time spent in spin resonance must be so long that this scenario cannot be responsible for Uranus’s high obliquity. Our model can be used to study spin resonance in satellite systems. Our Hamiltonian model explains how Styx and Nix can be tilted to high obliquity via outward migration of Charon, a phenomenon previously seen in numerical simulations.  相似文献   

16.
Trojan type orbits in the system of two gravitational centers with variable separation are studied within the framework of the restricted problem of three bodies. The backward numerical integration of the equations of motion of the bodies starting in the triangular libration pointsL 4 andL 5 (reverse problem) finds the breakdown of librations as the separation decreases because of the mass gain of the smaller component and an approach of the body of negligible, mass to the latter up to the distance below its sphere of action with a relative velocity approximately equal to the escape one on this sphere. The breakdown of librations aboutL 5 occurs under the mass gain of the smaller component considerably larger than in the case ofL 4 and implications are made for the asymmetry of the number of librators aboutL 4 andL 5 in the solar system (Greeks and Trojans). Other parameters of the libration motion near 1/1 commensurability are obtained, namely, the asymmetry of the libration amplitudes about the triangular points as well as the values of periods and amplitudes within the limits of those for real Trojan asteroids. Trojans could be supposedly, formed inside the Proto-jupiter and escape during its intensive mass loss.  相似文献   

17.
The temporary capture of the dust grains in the exterior resonances with planets is studied in the frames of the planar circular three-body problem with Poynting-Robertson (PR) drag. For the Earth and particles ~ 10 Μm the resonances 4/5, 5/6, 6/7, 7/8 are shown to be most effective. The capture is only temporary (of order 105 years) and the position of resonance may be calculated from semi-analytical model using averaged disturbing function. These semi-analytical results are confirmed by numerical integration. For various planet this picture changes as with increasing planetary mass the more exterior resonances become more important. We showed that for Jupiter (at least in the space between Jupiter and Saturn) the resonance 1/2 plays the dominant role. The capture time is here several myr but again eccentricity is evolving to eccentricity e 0 ~ 0.48 of libration point for this resonance.  相似文献   

18.
The known extrasolar planets exhibit a wide range of orbital eccentricities e. This has a profound influence on their rotations and climates. Because of tides in their interiors, mostly solid exoplanets are expected eventually to despin to a state of spin-orbit resonance, where the orbital period is some integer or half-integer times the rotation period. The most important of these resonances is the synchronous state, where the planet's spin period exactly equals its orbital period (like Earth's Moon, and indeed most of the regular satellites in the Solar System). Such planets seem doomed to roast on one side and freeze on the other. However, synchronous planets rock back and forth by an angle of ∼2Arcsine with respect to the sub-stellar point. For e=0.055 (as for the Moon), this optical libration amounts to only ∼6°; but for a synchronous planet with e=0.50, for example, it would rise to ∼59°. This greatly expands the temperate “twilight zone” near the terminator and considerably improves the planet's prospects for habitability. For e?0.72389, the optical libration exceeds 90°; for such planets, the sector of permanent night vanishes, while the sunniest region splits in two. Furthermore, the synchronous state is not the only possible spin resonance. For example, Mercury (with e≈0.206) has an orbital period exactly 1.5 times its rotation period. A terrestrial exoplanet with e=0.40, say, is liable to have an orbital period of 2.0, 2.5, or 3.0 times its spin period. The corresponding insolation patterns are generally complicated, and all different from the synchronous state. Yet these non-synchronous resonances also protect certain longitudes from the worst extremes of temperature and solar radiation, and improve the planet's habitability, compared to non-resonant rotation. These results also have implications for the direct detectability of extrasolar planets, and the interpretation of their thermal emissions.  相似文献   

19.
Ke Zhang  Douglas P. Hamilton 《Icarus》2007,188(2):386-399
We investigate the orbital resonant history of Proteus and Larissa, the two largest inner neptunian satellites discovered by Voyager 2. Due to tidal migration, these two satellites probably passed through their 2:1 mean-motion resonance a few hundred million years ago. We explore this resonance passage as a method to excite orbital eccentricities and inclinations, and find interesting constraints on the satellites' mean density () and their tidal dissipation parameters (Qs>10). Through numerical study of this mean-motion resonance passage, we identify a new type of three-body resonance between the satellite pair and Triton. These new resonances occur near the traditional two-body resonances between the small satellites and, surprisingly, are much stronger than their two-body counterparts due to Triton's large mass and orbital inclination. We determine the relevant resonant arguments and derive a mathematical framework for analyzing resonances in this special system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号